LIST OF SYMBOLS

Constant for Langmuir equation (m^3kg^{-1}) a Redlich-Peterson isotherm constant $(m^3kg^{-1})^{-1/\beta_R}$ a_R Α Toth isotherm constant Constant for Langmuir equation (m^3kg^{-1}) b В Toth isotherm constant Dubinin–Radushkevich equation parameter (mol^2kJ^{-2}) B_{R} C_{ad} Reduction of adsorbate concentration of solution at equilibrium (kg/m^3) C_{ρ} Equilibrium concentration of naringin solution (KPBW) (kg/m^3) C_{ed} Final concentration of naringin at equilibrium in alcohol solution (kg/m^3) C_{t} Concentration of adsorbate at time $t (kg/m^3)$ Concentration of naringin in ethanol at time t C_{td} \overline{C}_{t} Concentration of adsorbate in adsorbent at any time $t (kg/m^3)$ C_{o} Initial concentration of naringin in solution (KPBW) (kg/m^3) C_{a}^{I} Concentration of naringin at the start of three distinct zones (kg/m^3) D Toth isotherm constant Mass diffusivity of adsorbate in macropores $(m^2 s^{-1})$ D_{c} Boyd's effective diffusivity for adsorption $(m^2 s^{-1})$ D_{ρ} Boyd's diffusivity for desorption $(m^2 s^{-1})$ D_{ed} Mass diffusivity of adsorbate in microspheres $(m^2 s^{-1})$ D_{P} Ε Mean free energy of sorption $(kJmol^{-1})$

- $F_n \qquad \left\lceil \frac{1}{(1-u_i)^{\frac{2}{3}}} 1 \right\rceil$
- H_{UNB} Unused bed length (m)
- H_T Total bed height (m)
- I Adsorption boundary layer thickness
- k Volume fraction of adsorbent bead saturated with adsorbate to form the saturated shell before start of three distinct zones
- k_f Rate constant of the pseudo-first-order adsorption (s^{-1})
- k_s Rate constant for the pseudo-second-order adsorption $(kg kg^{-1} s^{-1})$
- k_d Intra-particle diffusion rate constant $(kg kg^{-1} s^{-1/2})$
- k_o Bangham's equation parameter $(m^3 kg^{-1})$
- *K* Accumulation parameter
- $K_{a/d}$ Equilibrium constant between adsorption-desorption at temperature T
- K_f Freundlich isotherm constant
- K_{fd} Freundlich isotherm constant for desorption
- K_R Redlich-Peterson isotherm constant $(m^3 kg^{-1})$
- *n* Freundlich isotherm constant
- n_d Freundlich isotherm constant for desorption
- q_D Dubinin–Radushkevich isotherm constant (kg/kg)
- q_e Amount of naringin adsorbed at equilibrium (kg/kg)
- q_{ed} Amount of species desorbed from the resin in ethanol at equilibrium (kg/kg)
- $q_{\it ess}$ Adsorbate adsorbed by the resin in early period kg adsorbate/kg of resin

- $q_{\mbox{\tiny total}}$ Total naringin quantity adsorbed in column, (g)
- q_t Amount of naringin adsorbed at at time t(kg/kg)
- q_o Capacity of resin kg adsorbate/kg of resin
- q_{od} Initial naringin content in the resin (kg/kg)
- Q Volumetric flow rate $(m^3 s^{-1})$
- Q_e Flow rate of eluent
- r_c Radius of microsphere
- R Universal gas constant $(Jmol^{-1}K^{-1})$
- R_n Radius of the spherical adsorbent particle (m)
- s Solid content of resin
- *t* Time, (seconds)
- t_b Breakthrough time (s)
- t_e Bed exhaustion time (s)
- t_t Time equivalent to total or stoichiometric capacity (s)
- t_{total} Total flow time (s)
- t_u Time equivalent to usable capacity (s)
- T Temperature (K)
- u_t Fractional approach to equilibrium of resin
- $u_{d}(t)$ Fractional attainment of equilibrium at time t in desorption
- V Volume of solution (KPBW) (m^3)

- \overline{V} Volume of adsorbent (resin) (m^3)
- V_e Volume of ethanol (m^3)
- V_{eff} The total KPBW volume (m^3)
- w Weight of dry resin (kg)
- W_n Weight of naringin adsorbed on resin (kg)
- W_f Weight of resin without naringin (kg)
- W^I Weight of resin saturated with naringin (kg)
- α Initial adsorption rate

$$\beta = \frac{3(1-\varepsilon)q_0}{\varepsilon C_0} \cdot \frac{D_c/r_c^2}{D_P/R_P^2}$$

- β_R Redlich–Peterson dimensionless parameter
- γ Degree of saturation in the MTZ
- ΔG Gibb's free energy of adsorption ($kJmol^{-1}$)
- ΔH Enthalpy of adsorption ($kJmol^{-1}$)
- ΔR Thickness of initially developed saturated shell
- ΔS Entropy change $(kJmol^{-1}K^{-1})$
- ε Porosity (voidage) of adsorbent particles
- ε_d Polanyi potential ($kJmol^{-1}$)
- ω Adsorption rate
- *P* Density of swollen particles of adsorbent

$$\psi = \frac{3(1-\varepsilon) D_c/r_c^2}{\varepsilon D_P/R_P^2}$$

 σ Bangham's equation dimensionless parameter

LIST OF ABBREVIATIONS

AuA Anhydrogalacturonic acid

Conc: Concentration

DE Degree of esterification

GalA Galacturonic acid

HMP High methoxyl pectin

KPBW Kinnow peel boiled water

LMP Low methoxyl pectin

F.P.D. Filter paper dried

MC Methoxy content

MTZ Mass transfer zone (m)

MW Molecular weight

O.D.R. Oven dried resin

T.S.S. Total soluble solids

^oB Degree brix, equal to % of soluble solids