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Abstract
Let X be a compact Riemann surface of genus g ≥ 3. We consider the moduli space of
holomorphic connections over X and the moduli space of logarithmic connections singular
over a finite subset of X with fixed residues. We determine the Chow group of these moduli
spaces. We compute the global sections of the sheaves of differential operators on ample
line bundles and their symmetric powers over these moduli spaces and show that they are
constant under certain conditions. We show the Torelli-type theorem for the moduli space of
logarithmic connections.We also describe the rational connectedness of these moduli spaces.
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1 Introduction and statements of the results

Let X be a compact Riemann surface of genus g ≥ 3. We consider the moduli spaceMh(n)

of rank n holomorphic connections over X . In [31] and [32], Simpson constructed the moduli
space of holomorphic connections over a smooth complex projective variety.

Let

S = {x1, . . . , xm}
be a fixed subset of X such that xi �= x j for all i �= j .We consider themoduli spaceMlc(n, d)

of logarithmic connections of rank n and degree d , singular over S, with fixed residues (see
Sect. 2 for the definition). The moduli space of logarithmic connections over a complex
projective variety singular over a smooth normal crossing divisor has been constructed in
[26].

Assumption Throughout this article, we assume that the rank n and degree d are coprime,
except for the case where we deal with the moduli space of holomorphic connections.
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Several algebro-geometric invariants like the Picard group, algebraic functions of the
moduli space of holomorphic and logarithmic connections have been studied, see [5–7, 30,
33, 35].

In the present article, our aim is to study the Chow group, global sections of certain
sheaves, Torelli-type theorems, and rational connectedness of these moduli spaces.

The structure of the article is as follows. In Sect. 2, we define the notion of holomorphic
and logarithmic connections in a holomorphic vector bundle over X , and recall their moduli
spaces.

In Sect. 3, we compute the Chow group of the moduli spaces which is motivated by the
following result in [10]. Let U s(2,OX (x0)) be the moduli space of stable vector bundles of
rank 2 with determinant OX (x0), where x0 ∈ X . Then, in [10], the Chow group of 1-cycles
on U s(2,OX (x0)) has been computed, and it is proved that

CHQ
1 (U s(2,OX (x0))) ∼= CHQ

0 (X). (1.1)

Fix a holomorphic line bundle L over X of degree d . Consider the moduli space of
logarithmic connectionsMlc(n, L) of rank n and fixed determinant L as described in (2.9).
Let M′

lc(n, L) ⊂ Mlc(n, L) be the moduli space of logarithmic connections (E, D) with
E stable as described in (2.10). Then, we show the following (see Theorem 3.4). For every
0 ≤ l ≤ (n2 − 1)(g − 1), we have a canonical isomorphism

CHl+(n2−1)(g−1)(M′
lc(n, L)) ∼= CHl(U s(n, L)). (1.2)

As a consequence for n = 2, we have (see Corollary 3.6),

(1) CH3g−3(M′
lc(2, L)) ∼= Z.

(2) CHQ
3g−2(M′

lc(2, L)) ∼= CHQ
0 (X).

(3) CHQ
6g−8(M′

lc(2, L)) ∼= CHQ
0 (X) ⊕ Q.

Let L0 be a holomorphic line bundle over X of degree zero. LetM′
h(n, L0) and U s(n, L0)

be the moduli space defined in (3.15) and (3.14), respectively. Then, we show that (see
Theorem 3.10), for every 0 ≤ l ≤ (n2 − 1)(g − 1), we have a canonical isomorphism

CHQ

l+(n2−1)(g−1)
(M′

h(n, L0)) ∼= CHQ
l (U s(n, L0)). (1.3)

In Sect. 4, we study the global sections of certain locally free sheaves. Let M′
lc(n, d) be

the moduli space described in (2.8), and ζ an ample line bundle over M′
lc(n, d). For k ≥ 0,

let Dk(ζ ) denote the sheaf of differential operators on ζ of order k. Consider the following
natural morphism

p0 : M′
lc(n, d) → U s(n, d) (1.4)

sending (E, D) to E . Then, we have a morphism

p̃0� : H0(T ∗M′
lc,OT ∗M′

lc
) → H0(T ∗U s(n, d),OT ∗U s (n,d)). (1.5)

of vector spaces induced from

p̃0 : T ∗U s(n, d) → T ∗M′
lc,

where T ∗U s(n, d) and T ∗M′
lc are the cotangent bundles of U s(n, d) andM′

lc(n, d), respec-
tively.

Under the assumption that p̃0� in (1.5) is injective, we show that (see Theorem 4.1), for
every k ≥ 0,

H0(M′
lc(n, d),S ymk(D1(ζ ))) = C, (1.6)
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and (see Proposition 4.2)
H0(M′

lc(n, d),Dk(ζ )) = C. (1.7)

Under the same assumption, the above result is true for the moduli spaces M′
lc(n, L) (see

(2.10)), M′
h(n) (see (2.2)) and M′

h(n, L0) (see (3.15)).
In Sect. 5, we prove the Torelli-type result for the moduli space of logarithmic connections

and change the notation to emphasis on X , that is,

Mlc(X) = Mlc(X , S):=Mlc(n, d)

and

Mlc(X , L) = Mlc(X , S, L):=Mlc(n, L).

First we show that the abovemoduli spaces do not depend on the choice of S (see Lemmas 5.1
and 5.2), and therefore we remove S from the notation. We show the following (see Theorem
5.6).

Let (X , S) and (Y , T ) be two m-pointed compact Riemann surfaces of genus g ≥ 3. Let
Mlc(X , L) andMlc(Y , L ′) be the corresponding moduli spaces of logarithmic connections.
Then, Mlc(X , L) is isomorphic to Mlc(Y , L ′) if and only if X is isomorphic to Y .

Next, we show the universal property of the morphism (see Proposition 5.7)

G : Mlc(X) −→ Picd(X)

defined by sending (E, D) �→ ∧n E . Thus, Mlc(X) determines the pair (Picd(X), G) up
to an automorphism of Picd(X). In the end of Sect. 5, we present a Torelli-type theorem
for Mlc(X), that is, let (X , S) and (Y , T ) be two m-pointed compact Riemann surfaces of
genus g ≥ 3. Let Mlc(X) and Mlc(Y ) be the corresponding moduli spaces of logarithmic
connections. Then, Mlc(X) is isomorphic to Mlc(Y ) if and only if X is isomorphic to Y .

In the last Sect. 6, we talk about rational connectedness and rationality of themoduli space.
This section is motivated by the results in [19]. We show that the moduli spaces Mlc(n, d)

and Mh(n) are not rational (see Theorems 6.3 and 6.4, respectively). And finally we show
that the moduli space Mlc(n, L) is rationally connected (see Corollary 6.7).

2 Preliminaries

2.1 Moduli spaces of holomorphic and logarithmic connections

We recall the notion of holomorphic and logarithmic connection in a holomorphic vector
bundle over a smooth projective curve over C, that is, over a compact Riemann surface.

Let X be a compact Riemann surface of genus g ≥ 3. Let E be a holomorphic vector
bundle over X . A holomorphic connection in E is a C-linear map

D : E → E ⊗ �1
X

which satisfies the Leibniz rule

D( f s) = f D(s) + d f ⊗ s, (2.1)

where f is a local section of OX and s is a local section of E .
A theorem due to Atiyah [1] and Weil [38], which is known as the Atiyah–Weil criterion,

says that a holomorphic vector bundle over a compact Riemann surface admits a holomorphic
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connection if and only if the degree of each indecomposable component of the holomorphic
vector bundle is zero. Thus, if E admits a holomorphic connection, then

deg E = 0.

The slope μ(E) of E is defined as

μ(E) = deg E

rk(E)
.

A holomorphic connection D in E is said to be semistable (respectively, stable) if for
every nonzero proper subbundle F of E which is invariant under D, that is,

D(F) ⊂ F ⊗ �1
X ,

we have,
μ(F) ≤ 0 (resp. μ(F) < 0),

where μ(E) denotes the slope of E .
Let Mh(n) be the moduli space of semistable holomorphic connections of rank n. Then,

Mh(n) is a normal quasi-projective variety of dimension 2n2(g − 1) + 2. Let

Msm
h (n) ⊂ Mh(n)

be the smooth locus of the variety. Let

M′
h(n) ⊂ Msm

h (n) (2.2)

be the open subvariety whose underlying vector bundle is stable. Then, M′
h(n) is an irre-

ducible smooth quasi-projective variety of the same dimension as of Mh(n).
We now define the logarithmic connection. Fix a finite subset

S = {x1, . . . , xm}
of X such that xi �= x j for all i �= j . Let

Z = x1 + · · · + xm

denote the reduced effective divisor on X associated to the finite set S. Let�1
X (log Z) denote

the sheaf of logarithmic differential 1-forms along Z , see [29] for more details. For the theory
of the meromorphic and logarithmic connections, we refer to two excellent sources [11] and
[9].

A logarithmic connection on E singular over S is a C-linear map

D : E → E ⊗ �1
X (log Z) = E ⊗ �1

X ⊗ OX (Z) (2.3)

which satisfies the Leibniz identity

D( f s) = f D(s) + d f ⊗ s, (2.4)

where f is a local section of OX and s is a local section of E .
A logarithmic connection D in E is said to be semistable (respectively, stable) if for

every nonzero proper subbundle F of E which is invariant under D, that is,

D(F) ⊂ F ⊗ �1
X (log Z),

we have,
μ(F) ≤ μ(E)(resp. μ(F) < μ(E)),
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where μ(E) denotes the slope of E .
We next describe the notion of residues of a logarithmic connection D in E singular over

S. We will denote the fibre of E over any point x ∈ X by E(x).
Let v ∈ E(xβ) be any vector in the fibre of E over xβ . Let U be an open set around xβ

and s : U → E be a holomorphic section of E over U such that s(xβ) = v. Consider the
following composition

�(U , E) → �(U , E ⊗ �1
X ⊗ OX (S)) → E ⊗ �1

X ⊗ OX (S)(xβ) = E(xβ),

where the equality is given because for any xβ ∈ S, the fibre�1
X ⊗OX (S)(xβ) is canonically

identified with C by sending a meromorphic form to its residue at xβ . Then, we have an
endomorphism on E(xβ) sending v to D(s)(xβ). We need to check that this endomorphism
is well defined. Let s′ : U → E be another holomorphic section such that s′(xβ) = v. Then,

(s − s′)(xβ) = v − v = 0.

Let t be a local coordinate at xβ on U such that t(xβ) = 0, that is, the coordinate system
(U , t) is centred at xβ . Since s − s′ ∈ �(U , E) and (s − s′)(xβ) = 0, s − s′ = tσ for some
σ ∈ �(U , E). Now,

D(s − s′) = D(tσ) = t D(σ ) + dt ⊗ σ

= t D(σ ) + t(
dt

t
⊗ σ),

and hence D(s − s′)(xβ) = 0, that is, D(s)(xβ) = D(s′)(xβ).
Thus, we have a well-defined endomorphism, denoted by

Res(D, xβ) ∈ End(E)(xβ) = End(E(xβ)) (2.5)

that sends v to D(s)(xβ). This endomorphism Res(D, xβ) is called the residue of the loga-
rithmic connection D at the point xβ ∈ S (see [11] for the details).

From [27, Theorem 3], for a logarithmic connection D singular over S, we have

deg E +
m

∑

j=1

Tr(Res(D, x j )) = 0, (2.6)

where deg E denotes the degree of E , and Tr(Res(D, x j )) denotes the trace of the endomor-
phism Res(D, x j ) ∈ End(E(x j )), for all j = 1, . . . , m.

Let LC(E) denote the set of all logarithmic connections in E singular over S. Then,
LC(E) is an affine space modelled over the vector space H0(X ,End(E) ⊗ �1

X (log Z)), that
is, if D is any logarithmic connection in E singular over S, then

LC(E) = D + H0(X ,End(E) ⊗ �1
X (log Z)).

Recall that an endomorphism φ ∈ End(E(x j )) is said to be a rigid endomorphism if for
every global endomorphism α ∈ H0(X ,End(E)) we have

φ ◦ α(x j ) = α(x j ) ◦ φ,

where α(x j ) : E(x j ) → E(x j ) is an endomorphism.
In what follows, we fix a rigid endomorphism
 j ∈ End(E(x j )), for every j = 1, . . . , m,

such that for every direct summand F ⊂ E , we have

deg F +
m

∑

j=1

Tr(
 j |F(x j )) = 0. (2.7)
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Here, Tr(
 j |F(x j ))makes sense, because from [8,Theorem1.3 (1)], for a rigid endomorphism

 j ∈ End(E(x j )), and for every direct summand F of E , we have


 j (F(x j )) ⊂ F(x j ).

Let LC(E;
1, . . . , 
m) denote the set of all logarithmic connections singular over S
with fixed residues 
 j for all j = 1, . . . , m, that is,

LC(E;
1, . . . , 
m)

= {D | D is a logarithmic connection in E with Res(D, x j ) = 
 j for all j = 1, . . . , m}.
Then, LC(E;
1, . . . , 
m) is an affine space modelled over H0(X ,�1

X ⊗ End(E)).
Notice the difference between vector spaces when residue is fixed and otherwise.
We impose some more conditions on the residues 
 j for 1 ≤ j ≤ m to get a ‘well

behaved’ moduli space of logarithmic connections singular over S with fixed residues.
Suppose that the residues (rigid endomorphisms) 
 j for every j = 1, . . . , m satisfy the

following condition.

(P1): For every nonzero subbundle F ⊂ E ,


 j (F(x j )) ⊂ F(x j ),

and

Tr(
 j |F(x j ))

rk(F)
= Tr(
 j )

rk(E)
.

If we take 
 j = α j1E(x j ), where α j ∈ C and 1E(x j ) is the identity morphism on E(x j ),
for every 1 ≤ j ≤ m, then {
 j }1≤ j≤m satisfies (P1). In what follows, we take
 j = α j1E(x j )

for every j = 1, . . . , m.
We have an easy result.

Lemma 2.1 Let D ∈ LC(E;
1, . . . , 
m) with {
 j }1≤ j≤m satisfying (P1). Then, D is
semistable. Moreover, if (deg E, rk(E)) = 1, then D is stable.

A logarithmic connection D in a holomorphic vector bundle E is called irreducible if for
any holomorphic subbundle F of E with D(F) ⊂ F ⊗ �1

X (log Z), then either F = E or
F = 0.

If D ∈ LC(E;
1, . . . , 
m) satisfies (P1), and (deg E, rk(E)) = 1, then D is irreducible.
Let Mlc(n, d) denote the moduli space which parametrises the isomorphic class of pairs

(E, D), where by a pair (E, D) we mean that

(1) E is a holomorphic vector bundle of rank n and degree d over X , such that (n, d) = 1.
(2) D is a logarithmic connection with fixed residues Res(D, x j ) = 
 j satisfying (P1).

Two pairs (E, D) and (E ′, D′) satisfying the above conditions (1) and (2) are said to be
isomorphic if there exists an isomorphism � : E → E ′ such that the following diagram

E

�

D
E ⊗ �1

X (log Z)

�⊗1
�1

X (log Z)

E ′ D′
E ′ ⊗ �1

X (log Z)
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commutes.
From [26, Theorem 3.5], the moduli space Mlc(n, d) is a separated quasi-projective

scheme overC. Since {
 j }1≤ j≤m satisfies (2.7), from [8, Theorem 1.3 (2)] the moduli space
Mlc(n, d) is non-empty.

Aswe have observed that every logarithmic connection (E, D) inMlc(n, d) is irreducible,
and the singular points ofMlc(n, d) correspond to reducible logarithmic connections [6, p.n.
790], the moduli space Mlc(n, d) is smooth. Since genus g of X is greater than or equal to
3, the moduli space Mlc(n, d) is irreducible [32, Theorem 11.1].

Altogether, Mlc(n, d) is an irreducible smooth quasi-projective variety of dimension
2n2(g − 1) + 2. Let

M′
lc(n, d) ⊂ Mlc(n, d) (2.8)

be the moduli space of logarithmic connections whose underlying vector bundles are stable.
Then, from [22, p.635, Theorem 2.8(A)] M′

lc(n, d) is an open subset of Mlc(n, d), and
hence an irreducible smooth quasi-projective variety of dimension 2n2(g − 1) + 2.

Fix a holomorphic line bundle L over X of degree d , and a logarithmic connection DL on
L singular over S with residues Res(DL , x j ) = Tr(
 j ) for all j = 1, . . . , m. Let

Mlc(n, L) ⊂ Mlc(n, d) (2.9)

be the moduli space parametrising isomorphism class of pairs (E, D) such that
(

n
∧

E, D̃

)

∼= (L, DL),

where D̃ is the logarithmic connection on
∧n E induced by D. Then, Mlc(n, L) is an

irreducible smooth quasi-projective variety of dimension 2(n2 − 1)(g − 1).
Let

M′
lc(n, L) ⊂ Mlc(n, L) (2.10)

be the moduli space of logarithmic connections (E, D) with E stable.

3 Chow group of themoduli spaces

In this section, we determine the Chow groups of the moduli spaces M′
lc(n, L), M′

lc(n, d),
M′

h(n) and M′
h(n, L0).

Before that, we recall the definition of Chow group of a quasi-projective scheme over a
field (see [15, 37]).

Let X be a quasi-projective scheme over a field K . Let Zk(X ) be the free abelian group
generated by the reduced and irreducible k-dimensional closed subvarieties of X , or we can
say the free abelian group generated by k-dimensional closed integral subschemes of X . An
element of Zk(X ) is called a k-dimensional algebraic cycle on X .

Let f ∈ K (X )∗. Then, we have a divisor div( f ) on X associated to the nonzero rational
function f on X .

A k-cycle α is rationally equivalent to zero, written α ∼ 0, if there is a finite number
of (k + 1)-dimensional subvarieties (that is, closed integral subschemes) Wi of X and fi ∈
K (Wi )

∗, such that
α =

∑

i

div( fi ).

123



586 Annals of Global Analysis and Geometry (2022) 62:579–601

Since 0 = div(1) and div( f −1) = −div( f ), the cycles rationally equivalent to zero form a
subgroup Zk(X )rat of Zk(X ).

We define the quotient group

CHk(X ) := Zk(X )/Zk(X )rat ,

and call it the Chow group of k-cycles on X . A graded sum is denoted by

CH∗(X ) =
dim(X )
⊕

k=0

CHk(X ).

The Chow group of k-cycles on X with rational coefficients will be denoted by CHQ
k (X ).

Let U s(n, L) be the moduli space of stable vector bundles of rank n with
∧n E ∼= L .

Then, U s(n, L) is a smooth projective variety of dimension (n2 − 1)(g − 1), as we have
assumed n and deg(L) = d are coprime.

Let x0 ∈ X , andOX (x0) the line bundle on X associated with the reduced effective divisor
x0. For n = 2, we have U s(2,OX (x0)) the moduli space of stable vector bundles of rank 2
over X whose determinant is OX (x0).

In [3], it was shown that

CHQ
3g−5(U s(2,OX (x0))) ∼= CHQ

0 (X)
⊕

Q. (3.1)

In [10], Choe and Hwang computed the Chow group of 1-cycles on U s(2,OX (x0)), and
they proved that

CHQ
1 (U s(2,OX (x0))) ∼= CHQ

0 (X). (3.2)

Let M be a holomorphic line bundle over X of degree d ′ and

M0 = OX (x0) ⊗ M⊗2.

Then, deg(M0) = 2d ′ + 1. Define a map

�M : U s(2,OX (x0)) → U s(2, M0)

by
�M ([E]) = [E ⊗ M].

The map is well defined, and in fact, an isomorphism of varieties.
Thus, the above results (3.1) and (3.2) are true for U(2, L), where deg(L) is odd.
Define

p : M′
lc(n, L) → U s(n, L) (3.3)

by sending (E, D) �→ E , that is, p is the forgetfulmapwhich forgets its logarithmic structure.
For every E ∈ U(n, L), p−1(E) is an affine space modelled over H0(X ,�1

X ⊗ ad(E)),
where ad(E) ⊂ End(E) is the subbundle consisting of endomorphisms of E whose trace is
zero. Actually, p is a fibre bundle and using Riemann–Roch theorem and Serre duality it can
be easily computed that the dimension of p−1(E) is (n2 − 1)(g − 1).

Let �1
U s (n,L) denote the holomorphic cotangent bundle on U s(n, L). Since n and d are

coprime, there exists a universal bundle E on U s(n, L) × X . Let p1 : U s(n, L) × X →
U s(n, L) and p2 : U s(n, L) × X → X be the first and second projection, respectively.
Then, from infinitesimal deformation theory and local property of moduli space, we have
R1 p1(ad(E)) = TU s(n, L). Moreover, we have p1∗(ad(E) ⊗ p∗

2(�
1
X )) = �1

U s (n,L). Now,

from the fact thatLC(E;
1, . . . , 
m) is an affine spacemodelled overH0(X ,�1
X ⊗End(E))

as observed above, we have
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Lemma 3.1 M′
lc(n, L) is an �1

U s (n,L)-torsor over U s(n, L).

We state two standard lemmas from the theory of Chow groups which we will use to
compute the Chow groups of moduli spaces.

LetY be a variety over a field K . Let i : F → Y be the inclusion of a closed subscheme. Let
j : U = Y \ F → Y be the inclusion of the complement. Since j is an open immersion, it is
flat, and i is a closed immersion, it is proper. Therefore, we have morphisms j∗ : CHk(Y ) →
CHk(U ) and i∗ : CHk(F) → CHk(Y ) of Chow groups and j∗ ◦ i∗ = 0, since the cycles
supported on F do not intersect U . Thus, we have what is called localisation sequence.

Lemma 3.2 [37, Lemma 9.12] The following sequence of abelian groups

CHl(F)
i∗−→ CHl(Y )

j∗−→ CHl(U ) → 0. (3.4)

is exact for every l = 0, . . . , dim(Y ).

Theorem 3.3 [37, Theorem 9.25] Let π : P(E) → Y be a projective bundle with rank
rk(E) = r . Then, the map

r−1
⊕

k=0

hkπ∗ :
r−1
⊕

k=0

CHl−r+1+k(Y ) → CHl(P(E)) (3.5)

is an isomorphism, where h ∈ Pic(P(E)) denotes the class of the tautological line bundle
OP(E)(1).

Theorem 3.4 For every 0 ≤ l ≤ (n2 − 1)(g − 1), we have a canonical isomorphism

CHl+(n2−1)(g−1)(M′
lc(n, L)) ∼= CHl(U s(n, L)). (3.6)

Proof Let G be an affine bundle modelled on a vector bundleH of rank r = (n2 − 1)(g − 1)
over U s(n, L). Now, using the standard inclusion of the affine group in GL(r + 1,C), we
obtain a vector bundle F of rank r + 1 together with an embedding of G in P(F) as an open
subset with complement P(H∨).

Since M′
lc(n, L) is an �1

U s (n,L)-torsor over U s(n, L) (see Lemma 3.1), the above con-
struction gives an algebraic vector bundle F over U s(n, L) with M′

lc(n, L) embedded in
P(F) such that the complement P(F) \ M′

lc(n, L) is a hyperplane H at infinity. Now, the
hyperplane at infinityH is canonically identified with the total space of the projective bundle
P(TU s(n, L)), the space of all hyperplanes in the fibre of the tangent bundle TU s(n, L).

Putting F = P(TU s(n, L)), Y = P(F) and U = M′
lc(n, L) in Lemma 3.2, we get an

exact sequence

CHl(P(TU s(n, L)))
i∗−→ CHl(P(F))

j∗−→ CHl(M′
lc(n, L)) → 0. (3.7)

of abelian groups for every l = 0, . . . , dim(P(F)) = 2(n2 − 1)(g − 1).
Since rk(F) = (n2−1)(g −1)+1, and rk(TU s(n, L)) = (n2−1)(g −1), from Theorem

3.3, we have following isomorphisms

CHl(P(F)) ∼=
(n2−1)(g−1)

⊕

k=0

CHl−(n2−1)(g−1)+k(U s(n, L)) (3.8)

and

CHl(P(TU s(n, L))) ∼=
(n2−1)(g−1)−1

⊕

k=0

CHl−(n2−1)(g−1)+1+k(U s(n, L)). (3.9)
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From (3.7), (3.8) and (3.9), we get an exact sequence

(n2−1)(g−1)−1
⊕

k=0

CHl−(n2−1)(g−1)+1+k(U s(n, L))
i∗−→

(n2−1)(g−1)
⊕

k=0

CHl−(n2−1)(g−1)+k(U s(n, L))
j∗−→ CHl(M′

lc(n, L)) → 0,

(3.10)

which is actually a short exact sequence, because i∗ is injective. Thus, we have

CHl(M′
lc(n, L)) ∼= CHl−(n2−1)(g−1)(U s(n, L)), (3.11)

for every (n2 − 1)(g − 1) ≤ l ≤ 2(n2 − 1)(g − 1). Now, rescaling l, we will get the desired
result, and this completes the proof. ��
Corollary 3.5 For l = 2(n2 − 1)(g − 1) − 1, we have

CHl(M′
lc(n, L)) ∼= Z.

Proof See [35, Proposition 5.3]. ��
Corollary 3.6 For n = 2, we have

(1) CH3g−3(M′
lc(2, L)) ∼= Z.

(2) CHQ
3g−2(M′

lc(2, L)) ∼= CHQ
0 (X).

(3) CHQ
6g−8(M′

lc(2, L)) ∼= CHQ
0 (X) ⊕ Q.

Proof From Theorem 3.4, and Eqs. (3.1) and (3.2), we conclude the corollary. ��
Next, let U s(n, d) be the moduli space of stable vector bundle of rank n and degree d .

Consider the following natural morphism

p0 : M′
lc(n, d) → U s(n, d) (3.12)

sending (E, D) to E . Then, p−1
0 (E) is an affine space modelled over the vector space

H0(X ,�1
X ⊗ End(E)). Since E is stable, the dimension of the vector space H0(X ,�1

X ⊗
End(E)) is n2(g − 1) + 1. In view of [35, Theorem 1.1], we can show a result similar to
Theorem 3.4, which interprets the Chow groups of M′

lc(n, d) in terms of Chow groups of
U s(n, d).

Theorem 3.7 For every 0 ≤ l ≤ n2(g − 1) + 1, we have canonical isomorphism

CHl+n2(g−1)+1(M′
lc(n, d)) ∼= CHl(U s(n, d)). (3.13)

Now, we compute the same for the moduli space of holomorphic connections. Fix a
holomorphic line bundle L0 of degree 0 on X . Let U(n, L0) denote the moduli space of
S-equivalence classes of semistable vector bundles of rank n and determinant

∧n E ∼= L0.
Then, the moduli space U(n, L0) is known to be an irreducible normal projective variety of
dimension (n2 − 1)(g − 1).

Let
U s(n, L0) ⊂ U(n, L0) (3.14)

be the open subvariety parametrising the stable bundles on X . This open subvariety coincides
with the smooth locus of U(n, L0) follows from [23, p. 20, Theorem 1].
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Fix a holomorphic connection DL0 on L0. Let Mh(n, L0) be the moduli space of holo-
morphic connections parametrising the isomorphism classes of the pairs (E, D) where E is
a holomorphic vector bundle of rank n with

(

n
∧

E, D̃

)

∼= (L0, DL0),

and D̃ is a holomorphic connection on
∧n E induced from D. Then, Mh(n, L0) is an

irreducible normal quasi-projective variety of dimension 2(n2 − 1)(g − 1). Let

Msm
h (n, L0) ⊂ Mh(n, L0)

be the smooth locus of Mh(n, L0). Let

M′
h(n, L0) ⊂ Msm

h (n, L0) (3.15)

be the subset consisting of holomorphic connections whose underlying vector bundle is
stable. Then, M′

h(n, L0) is an irreducible smooth quasi-projective variety of dimension
2(n2 − 1)(g − 1).

Let
q : M′

h(n, L0) → U s(n, L0) (3.16)

be the forgetful map which forgets the holomorphic connection. Then, for every E ∈
U s(n, L0), q−1(E) is an affine space modelled over H0(X ,�1

X ⊗ad(E)). In fact,M′
h(n, L0)

is an �1
U(n,L0)

-torsor on U s(n, L0).
Let Y be an N -dimensional smooth quasi-projective variety. Then, the Picard group

Pic(Y ) ⊗Z Q can be identified with CHQ
N−1(Y ). Thus, it is enough to compute Pic(Y ).

The morphism q as defined in (3.16) induces a homomorphism

q∗ : Pic(U s(n, L0)) → Pic(M′
h(n, L0)) (3.17)

of Picard groups given by sending a line bundle M to its pull-back q∗M . Using the similar
techniques as in [35, Theorem 1.2], we can show the following.

Proposition 3.8 The homomorphism q∗ : Pic(U s(n, L0)) → Pic(M′
h(n, L0)) is an isomor-

phism of groups.

Since Pic(U s(n, L0)) ∼= Z (see [14]), we have

Corollary 3.9 For l = 2(n2 − 1)(g − 1) − 1, we have

CHl(M′
h(n, L0)) ∼= Z.

Using the exactly similar steps as in Theorem 3.4, we can prove the following.

Theorem 3.10 For every 0 ≤ l ≤ (n2 − 1)(g − 1), we have canonical isomorphisms

CHl+(n2−1)(g−1)(M′
h(n, L0)) ∼= CHl(U s(n, L0)). (3.18)

Next, let U s(n):=U s(n, 0) be the moduli space of stable bundles of rank n and degree
zero. Then, U s(n) is an irreducible smooth projective variety of dimension n2(g − 1) + 1.
Again, we have a natural morphism

q0 : M′
h(n) → U s(n) (3.19)

of varieties which forgets the holomorphic connection. Using the same method as above, we
have the following theorem similar to Theorem 3.7.
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Theorem 3.11 For every 0 ≤ l ≤ n2(g − 1) + 1, we have canonical isomorphism

CHl+n2(g−1)+1(M′
h(n)) ∼= CHl(U s(n)). (3.20)

4 Differential operators on themoduli spaces

In [4], Biswas studied the global sections of sheaves of differential operators on an ample line
bundle over a polarised abelian variety. Also, in [34], Hitchin variety is defined and global
sections of the sheaf of k-th-order differential operators, and symmetric powers of the sheaf
of first-order differential operators on a line bundle over a Hitchin variety have been studied.
The moduli space of stable vector bundles over a compact Riemann surface is an example
of Hitchin variety. The moduli spaces of holomorphic and logarithmic connections are not
Hitchin varieties. In this section, we study the global sections of certain sheaves over the
four moduli spaces M′

lc(n, d), M′
h(n), M′

lc(n, L) and M′
h(n, L0) which we have defined

in previous sections.
Let ζ be an ample line bundle over M′

lc(n, d). Let k ≥ 0 be an integer. Recall that a
differential operator of order k on ζ is a C-linear map

θ : ζ → ζ (4.1)

such that for every open subsetU ofM′
lc(n, d) and for every f ∈ OM′

lc(n,d)(U ), the bracket

[θ |U , f ] : ζ |U → ζ |U
defined as

[θ |U , f ]V (s) = θ( f |V s) − θ |V PV (s)

is a differential operator of order k − 1, for every open subset V of U , and for all s ∈ ζ(V ),
where a differential operator of order zero on ζ is just a OM′

lc(n,d)-module homomorphism
(see [17] and [28] for the definition and properties of differential operators).

For k ≥ 0, letDk(ζ )denote the sheaf of differential operators on ζ of order k. In fact,Dk(ζ )

is a locally free sheaf with D0(ζ ) = OM′
lc(n,d). Given a first-order differential operator θ on

ζ , we get a section of the tangent bundle TM′
lc(n, d) denoted by σ1(θ), where σ1 is called the

symbol of a first-order differential operator. For simplicity, we shall denote TM′
lc(n, d) by

TM′
lc. Thus, consider the symbol operator σ1 : D1(ζ ) → TM′

lc. This induces a morphism

S ymk(σ1) : S ymk(D1(ζ )) → S ymk(TM′
lc)

of k-th symmetric powers. Now, because of the following composition

OM′
lc(n,d) ⊗ S ymk−1(D1(ζ )) ↪→ D1(ζ ) ⊗ S ymk−1(D1(ζ )) → S ymk(D1(ζ )),

we have
S ymk−1(D1(ζ )) ⊂ S ymk(D1(ζ )) for all k ≥ 1. (4.2)

Thus, we get a short exact sequence

0 → S ymk−1(D1(ζ )) → S ymk(D1(ζ ))
S ymk (σ1)−−−−−→ S ymk(TM′

lc) → 0. (4.3)

Thus, we have

S ymk(D1(ζ ))/S ymk−1(D1(ζ )) ∼= S ymk(TM′
lc) for all k ≥ 1. (4.4)
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From (4.2), we have the following chain of C-vector spaces

H0(M′
lc(n, d),OM′

lc(n,d)) ⊂ H0(M′
lc(n, d),S ym1(D1(ζ ))) ⊂ . . . (4.5)

Consider the following commutative diagram,

T ∗M′
lc

π ′

T ∗U(n, d)
p̃0

π

M′
lc(n, d)

p0 U(n, d)

(4.6)

where π , π ′ are the canonical projections and p̃0 is induced from p0 as defined in (3.12).
Thus, we have a morphism

p̃0� : H0(T ∗M′
lc,OT ∗M′

lc
) → H0(T ∗U s(n, d),OT ∗U s (n,d)). (4.7)

of vector spaces induced from p̃0.

Theorem 4.1 Suppose that p̃0� in (4.7) is an injective morphism. Then, for every k ≥ 0, we
have

H0(M′
lc(n, d),S ymk(D1(ζ ))) = C. (4.8)

Proof Let
Mlc

X :=Mlc(1, d) (4.9)

be the moduli space of rank one logarithmic connections singular over S, with fixed residues
Tr(
 j ) for every j = 1, . . . , m, for more details, see [30] and [33]. Then, there is a natural
morphism of varieties

det : M′
lc(n, d) −→ Mlc

X (4.10)

sending (E, D) �→ (
∧n E, ˜D), where ˜D is the induced logarithmic connection on

∧n E .
For any pair (L,∇) ∈ Mlc

X ,

det−1((L,∇)) = M′
lc(n, L).

From [30, Theorem 2], we have

H0(Mlc
X ,OMlc

X
) = C,

and from [35, Theorem 1.4], we have

H0(M′
lc(n, L),OM′

lc(n,L)) = C.

Combining both the results and using (4.10), we have

H0(M′
lc(n, d),OM′

lc(n,d)) = C.

Thus, from (4.5), it is enough to show that for every k ≥ 0, the inclusion

H0(M′
lc(n, d),OM′

lc(n,d)) → H0(M′
lc(n, d),S ymk(D1(ζ )))
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is an isomorphism. From the isomorphism in (4.4), we have the following commutative
diagram

0 S ymk−1(D1(ζ )) S ymk(D1(ζ ))
S ymk (σ1)S ymk(TM′

lc) 0

0 S ymk−1(TM′
lc)

S ymk (D1(ζ ))

S ymk−2(D1(ζ ))
S ymk(TM′

lc) 0

(4.11)

which gives rise to the following commutative diagram of long exact sequences

· · · H0(M′
lc(n, d),S ymk TM′

lc)
δ′

k
H1(Mlc(n, d)′,S ymk−1(D1(ζ ))) · · ·

· · · H0(M′
lc(n, d),S ymk TM′

lc)
δk

H1(M′
lc(n, d),S ymk−1TM′

lc) · · ·
(4.12)

In order to prove the theorem, it is enough to show that the connecting homomorphism
δ′

k , depicted in the above commutative diagram (4.12), is injective for all k ≥ 1. Again from
the above commutative diagram (4.12), δ′

k is injective for every k ≥ 1 if and only if the
connecting homomorphism

δk : H0(M′
lc(n, d),S ymk TM′

lc) → H1(M′
lc(n, d),S ymk−1TM′

lc) (4.13)

is injective for every k ≥ 1.
Let at(ζ ) ∈ H1(M′

lc(n, d), T ∗M′
lc) be the Atiyah class of the line bundle ζ , which is

nothing but the extension class of the Atiyah exact sequence (see [1])

0 → OM′
lc

→ D1(ζ )
σ1−→ TM′

lc → 0. (4.14)

The Atiyah class at(ζ ) determines the first Chern class c1(ζ ) of the line bundle ζ . Let γk be
the extension class of the short exact sequence (4.3). Since the short exact sequence (4.3)
is the symmetric power of (4.14), the extension class γk can be expressed in terms of the
first Chern class c1(ζ ). Further, let αk denote the extension class of the following short exact
sequence

0 → S ymk−1(TM′
lc) → S ymk(D1(ζ ))

S ymk−2(D1(ζ ))
→ S ymk(TM′

lc) → 0, (4.15)

which is the bottom short exact sequence in the commutative diagram (4.11). Then, γk maps
to αk . Thus, αk can also be described in terms of the first Chern class c1(ζ ).

Since a connecting homomorphism can be expressed as the cup product by the extension
class of the corresponding short exact sequence, the connecting homomorphism δk in (4.13)
can be described using the first Chern class c1(ζ ) of the line bundle ζ . Indeed, the cup product
with c1(ζ ) gives rise to a homomorphism

τ : H0(M′
lc(n, d),S ymk TM′

lc) → H1(M′
lc(n, d),S ymk TM′

lc ⊗ T ∗M′
lc). (4.16)

The canonical homomorphism

υ : S ymk TM′
lc ⊗ T ∗M′

lc → Sk−1TM′
lc
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induces a morphism of C-vector spaces

υ∗ : H1(M′
lc(n, d),S ymk TM′

lc ⊗ T ∗M′
lc) → H1(M′

lc(n, d),S ymk−1TM′
lc). (4.17)

Thus, we get a morphism

τ̃ = υ∗ ◦ τ : H0(M′
lc(n, d),S ymk TM′

lc) → H1(M′
lc(n, d),S ymk−1TM′

lc), (4.18)

Then, from the above observation we have τ̃ = δk . It is sufficient to show that τ̃ is injective.
In view of the assumption that p̃0� in (4.7) is an injective morphism, now using the similar
technique as in the proof of [35, Theorem 1.4], we can show that τ̃ is injective. ��
Proposition 4.2 Under the hypothesis of Theorem 4.1, for k ≥ 0, we have

H0(M′
lc(n, d),Dk(ζ )) = C. (4.19)

Proof Proof follows from the similar steps as in Theorem 4.1. ��
Under the same hypothesis of Theorem 4.1 for the corresponding moduli spaces, we have

Theorem 4.3 Suppose that the hypothesis of Theorem 4.1 holds for the moduli space X ,
where X denote M′

lc(n, L), M′
h(n) or M′

h(n, L0). Let ζ be a line bundle over X . Then, for
every k ≥ 0, we have

(1) H0(X ,S ymk(D1(ζ ))) = C.

(2) H0(X ,Dk(ζ )) = C.

In [6], global sections of a line bundle on the moduli space of logarithmic connections
singular exactly over one point of a compact Riemann surface have been studied. In this
section, we study global sections of line bundles over M′

lc(n, L).
Let L be a line bundle over M′

lc(n, L). Then,

L = q∗�l (4.20)

for some l ∈ Z, where p is the morphism defined in (3.3) and � is the generalised theta line
bundle over U(n, L). Then, we have a natural generalisation of [6, p.797, Theorem 4.3], and
the same ideas can be used to prove the following.

Theorem 4.4 For every l < 0, we have

H0(M′
lc(n, L), q∗�l) = 0. (4.21)

5 Torelli-type theorem for themoduli spaces

In [5, Theorem 5.2], a Torelli-type theorem has been proved for the moduli space of holo-
morphic connections over compact Riemann surface, and in [7], Torelli-type theorems have
been proved for the moduli space of logarithmic connections singular exactly over one point
with fixed residue. In this section, we prove Torelli-type theorems for the moduli spaces
Mlc(n, d) and Mlc(n, L). We assume that 
 j = α j1E(x j ), for every j = 1, . . . , m, where
α j ∈ C.

We show that the isomorphism classes of the moduli spaces Mlc(n, d) and Mlc(n, L)

do not depend on the choice of S. Let T = {y1, . . . , ym} be a finite subset of X such that
yi �= y j for i �= j . Note that �S = �T .
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In this section, we use the following notations

Mlc(X , S):=Mlc(n, d),

and

Mlc(X , S, L):=Mlc(n, L)

to emphasise S and T . Let Mlc(X , T ) and Mlc(X , T , L) denote the moduli spaces corre-
sponding to T .

Lemma 5.1 There is an isomorphism between Mlc(X , S) and Mlc(X , T ).

Proof Depending on the sets S and T , we have two cases

(1) S ∩ T = ∅.

(2) S ∩ T �= ∅.

Suppose S ∩ T = ∅. For every i = 1, . . . , m, let Li = OX (yi − xi ) be a line bundle of
degree zero. Let Di be the de Rham logarithmic connection on the line bundle Li singular
over xi and yi , defined by sending a local section si of Li to dsi . Then, Res(Di , xi ) = −1
and Res(Di , yi ) = 1. Define a line bundle

L0 =
m

⊗

i=1

Li .

Then, L0 admits a logarithmic connection induced from {Di }m
i=1, which can be expressed as

follows

D0 =
m

∑

i=1

1L1 ⊗ · · · ⊗ αi Di ⊗ · · · ⊗ 1Lm .

Moreover, Res(D0, xi ) = −αi and Res(D0, yi ) = αi for every i = 1, . . . , m. Let (E, D) ∈
M(X , S). Then, E ⊗ L0 admits a logarithmic connection given by

D ⊗ 1L0 + 1E ⊗ D0.

Note that for every i = 1, . . . , m, we have

Res(D ⊗ 1L0 + 1E ⊗ D0, xi ) = 0,

and

Res(D ⊗ 1L0 + 1E ⊗ D0, yi ) = αi .

Thus, we have a morphism

�(L0,D0) : M(X , S) −→ M(X , T )

of algebraic varieties sending (E, D) to (E ⊗ L0, D ⊗ 1L0 + 1E ⊗ D0), which is an isomor-
phism.

Next suppose that S ∩ T �= ∅. Without loss of generality, we assume that x1 = y1, x2 =
y2, . . . , xr = yr for r ≤ m. In this case, we consider the line bundle

L0 =
m

⊗

j=r+1

OX (y j − x j ).

Now, using the above steps, we can get a logarithmic connection D0 in L0. A morphism
similar to �(L0,D0) can be defined, which turns out to be an isomorphism. ��
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A similar result is true for the moduli space Mlc(X , S, L).

Lemma 5.2 There is an isomorphism between Mlc(X , S, L) and Mlc(X , T , L ′).

Thus, for the simplicity of the notations, we write Mlc(X) in place of Mlc(X , S) and
Mlc(X , L) in place of Mlc(X , S, L).

Now, we shall compute the cohomology group of Mlc(X) and Mlc(X , L).
Let M′

lc(X):=M′
lc(n, d), and M′

lc(X , L):=M′
lc(n, L). Then, let

p0 : M′
lc(X) −→ U s(n, d)

be the morphism defined in (3.12). Since a fibre of p0 is an affine space modelled over a
vector space, which is contractible, we get an isomorphism

p∗
0 : Hi (U s(n, d),Q) −→ Hi (M′

lc(X),Q) (5.1)

of rational cohomology groups for every i ≥ 0. For the cohomology of U s(n, d) see [2] and
[20].

Let Z :=Mlc(n, L) \ M′
lc(n, L). Then, from [7, Lemma 3.1], we have

Lemma 5.3 The codimension of the Zariski closed set Z in Mlc(n, L) is at least (n −1)(g −
2) + 1. In particular, if n ≥ 2, g ≥ 3, then codim(Z ,Mlc(n, L)) ≥ 2.

Similarly, let p : M′
lc(X , L) → U s(n, L) be the morphism defined in (3.3). Then, p is a

fibre bundle with fibres as affine spaces modelled over vector spaces, and since affine spaces
with the usual topology are contractible, the induced homomorphism

p∗ : Hi (U s(n, L),Z) −→ Hi (M′
lc(X , L),Z) (5.2)

of cohomology groups, is an isomorphism for all i ≥ 0.
Let Y be a complex algebraic variety. For every i ≥ 0, there is amixed Hodge structure

on the cohomology group Hi (Y,Z). This result is due to Deligne, for more details see [12,
13].

The isomorphism p∗ in (5.2) is an isomorphism of mixed Hodge structures. Moreover,
the cohomology group Hi (M′

lc(X , L),Z) is equipped with pure Hodge structure of weight
i for every i ≥ 0, because U s(n, L) is a smooth projective variety over C, and from [12] the
cohomology group Hi (U s(n, L),Z) is endowed with a pure Hodge structure of weight i , for
every i ≥ 0.

Let A be a smooth complex analytic space. For every integer k ≥ 0, the (k + 1)-th
intermediate Jacobian variety J k+1(A) of Y is defined as follows.

J k+1(A):=H2k+1(A,R)/H2k+1(A,Z) (5.3)

The space J k+1(A) carries a canonical structure of complex manifold. We consider that the
moduli space Mlc(X , L) is equipped with the complex analytic topology.

Proposition 5.4 The second intermediate J 2(Mlc(X , L)) is isomorphic to the Jacobian
J (X):=Pic0(X) of X.

Proof First we show that the mixed Hodge structure on Mlc(X , L) is in fact a pure Hodge
structure. Let Z :=Mlc(X , L) \ M′

lc(X , L) as in Lemma 5.3. Then, we have a long exact
sequence of relative cohomology groups,

H3
Z (Mlc(X , L),Z) → H3(Mlc(X , L),Z)

ι∗−→ H3(M′
lc(X , L),Z)

∂−→ H4
Z (Mlc(X , L),Z)
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where ι∗ is induced by the inclusionmap ι : M′
lc(X , L) ↪→ Mlc(X , L) and ∂ is the boundary

operator. We show that ι∗ is an isomorphism. From Alexander duality [18, Theorem 4.7,
p.381], we have an isomorphism

Hi
Z (Mlc(X , L),Z) −→ HB M

2N−i (Z ,Z),

where N = 2(n2 − 1)(g − 1) is the complex dimension of the moduli spaceMlc(X , L) and
HB M∗ is the Borel–Moore homology. In view of Lemma 5.3, we have

codim(Z ,Mlc(X , L)) ≥ 2,

therefore the real dimension of Z is at most 2N − 4. Thus,

HB M
2N−i (Z ,Z) = 0, for i = 0, 1, 2, 3,

and hence

H3
Z (Mlc(X , L),Z) = 0.

This implies that ι∗ is an injective morphism. Let � be a smooth compactification of
Mlc(X , L), and

Z ′ = � \ M′
lc(X , L).

Then, from [12, Corollaire 3.2.17], we have a surjective morphism

H3(�,Q) −→ H3(Mlc(X , L),Q)

of mixed Hodge structures, and since

codim(Z ′, �) ≥ 3

from [36, p.269, Lemma 11.13], we have an isomorphism

H3(�,Z) −→ H3(M′
lc(X , L),Z)

of Hodge structures. Then, we have a commutative diagram

H3(�,Q)

H3(Mlc(X , L),Q)
ι∗
Q

H3(M′
lc(X , L),Q)

and from the above facts, the vertical and diagonal arrows are the surjective morphisms of
mixed Hodge structures induced from their respective inclusion maps. Now, because of the
commutativity of the diagram, ι∗

Q
is a surjective morphism of mixed Hodge structures. Since

H3(M′
lc(X , L),Z) (being isomorphic to H3(U(n, L),Z)) is torsion-free Z-module of finite

rank [24, Theorem 3] and ι∗ is an injective morphism, H3(Mlc(X , L),Z) is torsion free. In
order to show that ι∗ is surjective, we need to show that H4

Z (Mlc(X , L),Z) is torsion free. In
fact, if Z has codimension ≥ 3, this group is zero; if Z has codimension 2, it is isomorphic
to HB M

2N−4(Z ,Z), which is the top homology group and necessarily torsion free. Thus, ι∗ is a
surjective morphism, and hence the mixed Hodge structure on H3(Mlc(X , L),Z) is a pure
Hodge structure of weight 3. Therefore, the second intermediate Jacobian J 2(Mlc(X , L)) is
isomorphic to J 2(M′

lc(X , L)), and the latter is isomorphic to J 2(U(n, L)). Thus, from [24,
Theorem 3], J 2(Mlc(X , L)) is isomorphic to J (X). This completes the proof. ��
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Let � be the theta divisor on the Jacobian J (X). The pair (J (X),�) is called a prin-
cipally polarised Jacobian. Then, the classical Torelli theorem says that the pair (J (X),�)

determines the compact Riemann surface X up to isomorphism.
In view of Proposition 5.4, the moduli space Mlc(X , L) determines the Jacobian J (X)

of the compact Riemann surface X . But this does not qualify for the determination of X ,
because two non-isomorphic compact Riemann surfaces can have isomorphic Jacobian.

Nevertheless, from [25, p.125, Corollary 1.2], there are, up to isomorphism, only finitely
many compact Riemann surfaces having a given abelian variety as the Jacobian. Thus, there
are, up to isomorphism, only finitely many compact Riemann surface Y such thatMlc(Y , L)

is isomorphic to Mlc(X , L).

Remark 5.5 Let ˜� be the canonical polarisation on the second intermediate Jacobian
J 2(U(n, L)). Then, from [24, Theorem 3], we have

(J 2(U(n, L)), ˜�) ∼= (J (X),�).

In [7, Section 4], Biswas and Muñoz constructed the principal polarisation ̂� on the second
intermediate Jacobian of the moduli space Mx0

lc (X) of logarithmic connections singular
exactly over one point x0 of the compact Riemann surface X with fixed determinant such that
the principally polarised abelian variety (J 2(Mx0

lc (X)), ̂�) is isomorphic to the principally
polarised abelian variety (J 2(U(n, L)), ˜�). Imitating the similar technique as in [7, Section
4], a principal polarisation can be constructed on Mlc(X , L).

From Lemma 5.2, the moduli spaceMlc(X , L) does not depend on the choice of S. Thus,
we have

Theorem 5.6 Let (X , S) and (Y , T ) be two m-pointed compact Riemann surfaces of genus
g ≥ 3. Let Mlc(X , L) and Mlc(Y , L ′) be the corresponding moduli spaces of logarithmic
connections. Then, Mlc(X , L) is isomorphic to Mlc(Y , L ′) if and only if X is isomorphic
to Y .

Next, we show the Torelli-type theorem for the moduli space Mlc(X). Let

G : Mlc(X) −→ Picd(X) (5.4)

be the map sending (E, D) �→ ∧n E . Note that the morphism G is surjective. Since d , n
and 
 j = α j1E(x j ) for j = 1, . . . , m satisfy (2.7), from [8, Theorem 1.3 (2)] E admits a
logarithmic connection with residues α j1E(x j ) at x j ∈ S.

Now, we have a natural generalisation of [5, p.431, Lemma 5.1] and [7, p.313, Proposition
5.1].

Proposition 5.7 Let A be a complex abelian variety, and

f : Mlc(X) −→ A (5.5)

a regular morphism. Then, there exists a unique regular morphism

f0 : Picd(X) −→ A

such that
f0 ◦ G = f , (5.6)

where G is defined in (5.4).
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Proof Consider M′
lc(X):=M′

lc(n, d) ⊂ Mlc(X) as in (2.8). Let

p0 : M′
lc(X) −→ U(n, d)

be the morphism defined in (3.12). For E ∈ U(n, d), it has been observed that p−1
0 (E) is an

affine space modelled over the vector space H0(X ,�1
X ⊗ End(E)), and hence p−1

0 (E) is a
rational variety. Restricting f to p−1

0 (E), we get a map

f |p−1
0 (E)

: p−1
0 (E) −→ A,

which is a constant map, because any regular morphism from a rational variety to an abelian
variety is constant.

Now, consider the determinant map

F : U(n, d) −→ Picd(X)

defined by sending E to
∧n E . Then, F is a surjective map. For any L ∈ Picd(X), F−1(L)

is nothing but the moduli space U(n, L). Thus, we get a regular morphism

ψ0|F−1(L) : U(n, L) = F−1(L) −→ A.

on each of the fibres of F . From [19, Theorem 1.2], U(n, L) is a rational variety, and hence
the regular morphism ψ0|F−1(L) is constant. This completes the proof. ��

Let MX
lc be the moduli space defined in (4.9). Then, we have a morphism

δ : MX
lc −→ Picd(X) (5.7)

defined by (L, D) �→ L . Then, δ−1(L) is an affine space modelled over H0(X ,�1
X ). Then,

G = δ ◦ det,

where G is defined in (5.4), and det : Mlc(X) → MX
lc defined in (4.10). Thus, we have a

morphism
η : G−1(L) −→ Mlc(X , L) (5.8)

which is a fibration and each fibre is an affine space modelled over H0(X ,�1
X ). Since the

fibre of η is contractible, we have an isomorphism

η∗ : Hi (Mlc(X , L),Z) −→ Hi (G−1(L),Z)

of cohomology groups for all i ≥ 0. Therefore, we have

J 2(Mlc(X , L)) ∼= J 2(G−1(L)).

As mentioned in Remark 5.5, similar steps give a principal polarisation ̂
̂� on J 2(G−1(L))

such that

(J 2(Mlc(X , L)), ̂�) ∼= (J 2(G−1(L)), ̂
̂�).

Thus, in view of Lemma 5.1 and using Theorem 5.6, we get

Theorem 5.8 Let (X , S) and (Y , T ) be two m-pointed compact Riemann surfaces of genus
g ≥ 3. Let Mlc(X) and Mlc(Y ) be the corresponding moduli spaces of logarithmic connec-
tions. Then, Mlc(X) is isomorphic to Mlc(Y ) if and only if X is isomorphic to Y .
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6 Rational connectedness of themoduli spaces

In [33], we have shown that the moduli space of rank one logarithmic connections with fixed
residues is not rational. In this section, we show that the moduli space Mlc(n, d) is not
rational. For the theory of rational varieties, we refer to [21].

Recall that a smooth complex variety V is said to be rationally connected if any two
general points on V can be connected by a rational curve in V . The following lemma is an
easy consequence of the definition.

Lemma 6.1 Let f : Y → X be a dominant rational map of complex algebraic varieties with
Y rationally connected. Then, X is rationally connected.

Theorem 6.2 ([19], Theorem 1.1) The moduli space U(n, d) is birational to J (X) ×
A

(n2−1)(g−1), where J (X) is the Jacobian of X.

Note that J (X) is not rationally connected, because it does not contain any rational curve.
Therefore, U(n, d) is not rationally connected.

Proposition 6.3 The moduli space Mlc(n, d) is not rational.

Proof It is enough to show that the moduli spaceMlc(n, d) is not rationally connected. Let

p0 : M′
lc(n, d) −→ U(n, d)

be themorphismof varieties defined in (3.12). Suppose thatM′
lc(n, d) is rationally connected.

Then, from Lemma 6.1, U(n, d) is rationally connected, which is not true. Thus, M′
lc(n, d)

is not rationally connected and hence not rational. Since M′
lc(n, d) is an open dense subset

of Mlc(n, d), Mlc(n, d) is not rational. ��
A similar argument gives the following.

Proposition 6.4 The moduli space Mh(n) is not rational.

Lemma 6.5 ([16], Corollary 1.3) Let f : X → Y be any dominant morphism of complex
varieties. If Y and the general fibre of f are rationally connected, then X is rationally
connected.

Proposition 6.6 The moduli space M′
lc(n, L) is rationally connected.

Proof Consider the dominant morphism

p : M′
lc(X , L) −→ U(n, L)

defined in (3.3). As observed earlier every fibre of p is an affine space and hence rationally
connected. Since U(n, L) is rationally connected, from Lemma 6.5, M′

lc(n, L) is rationally
connected. ��
Corollary 6.7 Mlc(n, L) is rationally connected.

Proof It follows from the fact that rationally connectedness is a birational invariant, and
M′

lc(n, L) is a dense open subset of Mlc(n, L). ��
Therefore, we have a natural question.

Question 6.8 Is the moduli space Mlc(n, L) rational ?
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