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Abstract
This article introduces the concept of weak sharp minima for convex interval-valued functions. To solve constrained and
unconstrained convex IOPs by WSM, we provide primal and dual characterizations of the set of WSM. The primal charac-
terization is given in terms of gH -directional derivatives. On the other hand, to derive dual characterizations, we propose
the notions of the support function of a subset of I (R)n and gH -subdifferentiability for convex IVFs. Further, we develop
the required gH -subdifferential calculus for convex IVFs. Thereafter, by using the proposed gH -subdifferential calculus, we
provide dual characterizations for the set of WSM of objective IVFs of convex constrained and unconstrained IOPs. Two
applications of the proposed theory are presented. The first one determines the set of WSM of a minimum risk portfolio
interval optimization problem. In the second application, we propose a way to find weak efficient solutions of linear and
nonlinear IOPs using WSM.

Keywords Interval-valued function · gH -directional derivative · gH -subgradient · Interval optimization ·Weak sharp minima

1 Introduction

Due to the presence of uncertainty, deterministic optimiza-
tion fails to represent many real-life optimization problems.
In such cases, we need to proceed with the tools of uncertain
optimization. If the uncertainty is given by a randomvariable,
then these optimization problems come under the umbrella
of stochastic optimization. On the other, if the uncertainty
is given by a membership function, then these optimization
problems are solved with the techniques of fuzzy optimiza-
tion. Also, it is seen that the uncertainty of many practical
problems is expressed using closed and bounded intervals.
Thus, interval optimization is an indispensable way to deal
with the uncertainty present in many real-life problems.
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In 1966, Moore (1966) introduced interval analysis
to investigate interval-valued functions (IVFs). In Moore
(1966), Moore extensively gave arithmetic of intervals.
Subsequently, there was a need to improve this arith-
metic (Hukuhara 1967), especially the subtraction. Due to
this, Hukuhara (1967) presented a notion of the difference
between intervals, which is known as Hukuhara differ-
ence (H -difference). Stefanini and Bede (2009) proposed
an extended version of H -difference, known as generalized
Hukuhara difference (gH -difference), which has been com-
prehensively adopted in interval analysis.

We know that the solution concepts of optimization prob-
lems dependwidely on ordering the range set of the objective
function. Unlike real numbers, the set of intervals is not
linearly ordered. Thus, to introduce a solution concept for
optimization problems under interval uncertainties, many
partial ordering relations of intervals were proposed in the lit-
erature (see Ishibuchi and Tanaka 1990; Sengupta et al. 2001;
Wu 2008a, b; Jiang et al. 2008; Bhurjee and Panda 2012, and
the references therein). With the help of the existing ordering
concepts of a pair of intervals, many theories and meth-
ods have been developed regarding solutions of optimization
problems with IVFs or of interval optimization problems
(IOPs) (Shaocheng 1994; Inuiguchi and Sakawa 1995; Mráz
1998; Wu 2009, 2010; Jana and Panda 2014). Inuiguchi and
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Sakawa (1995) proposed treatment of optima for IVFs by
minimax regret criteria. Chanas and Kuchta (1996) gave a
solution concept based on a preference relation of intervals.
A robust efficient solution for interval linear programming
was given in Ida (2003). Chen et al. (2004) reported a solu-
tion concept by midpoint deterministic approach. Wu (2007)
defined type I and type II LU -optimal solution concepts sim-
ilar to Pareto optimality. A survey on the different ordering
of intervals and related optimality concepts can be found in
Jiang et al. (2012), Ghosh et al. (2020) and from their refer-
ences.

The major developments on IOPs started after a rich
calculus of IVFs was ready to be used. Hukuhara (1967)
laid the foundation to develop the calculus of IVFs by
introducing the concept of H -differentiability of IVFs.
However, this definition of H -differentiability is restrictive
(Chalco-Cano et al. 2013). To overcome the deficiencies
of H -differentiability, Stefanini and Bede (2009) proposed
the notion of gH -differentiability for IVFs. Later, by using
gH -differentiability, many concepts on calculus have been
developed, for instance, see Chalco-Cano et al. (2013),
Lupulescu (2013), Ghosh et al. (2020). In 2007, Wu (2007)
proposed two solution concepts by considering two partial
ordering concepts on the set of all closed intervals and derived
KKT optimality conditions for IOPs using H -derivative.
Subsequently, Wu investigated KKT optimality conditions
for multi-objective IOPs (Wu 2009). In 2012, Bhurjee and
Panda (2012) developed a methodology to study the exis-
tence of the solution of general IOPs by expressing IVFs
in the parametric form. Chalco-Cano et al. (2013) derived
KKT optimality conditions for IOPs using gH -derivative
and explained the advantages of using gH -derivative instead
of H -derivative. In 2016, Singh et al. (2016) proposed
the concept of Pareto optimal solution for the interval-
valued multi-objective programming problems. Many other
researchers have also proposed optimality conditions and
solution concepts for IOPs, see for instance (Ahmad et al.
2019; Ghosh 2017; Ghosh et al. 2018, 2019; Treanţă 2021)
and the references therein.

1.1 Motivation and work done

Consider an IOP

min
x∈S F(x), (1)

where F : Rn → I (R) is gH -lsc, convex IVF and S is a con-
vex subset ofRn . In our best knowledge of literature of IVFs,
to solve the IOP (1) having nondifferentiable objective IVF
F, a proper method or concept has not been given yet. This
is our primary motivation for this article. Due to nonsmooth-
ness of IVFF in IOP (1) at some points, the gH -gradient ofF

at these points cannot be calculated. Hence, we introduce the
concepts of gH -subgradient and gH -subdifferentiability of
F. Using this gH -subdifferentiability, we propose the notion
of WSM to solve the IOP (1).

Also, it is known that WSM plays an important role in
the sensitivity analysis and convergence analysis of conven-
tional optimization problems (Burke and Ferris 1993; Burke
and Deng 2002, 2005). In Burke and Ferris (1993), Burke
and Ferris introduced the notion of WSM and explained the
convergence theory of algorithms with the help of WSM
in conventional optimization. After that, Burke and Deng
(2002) generalized the concept ofWSM to the normed linear
space setting and dissected the normal cone inclusion char-
acterization for WSM. Further, in Burke and Deng (2005),
Burke et al. gave the study in which they provided a link
between theWSM, linear regularity and error bounds in con-
vex programming. It is also seen thatmany algorithms exhibit
finite termination at WSM (Burke and Ferris 1993; Ferris
1990; Zhou andWang 2012; Matsushita and Xu 2012; Wang
et al. 2015). In Zhou and Wang (2012), Zhou and Wang pre-
sented the concept ofWSMby using conjugate functions and
established the finite termination property for convex pro-
gramming and variational inequality problem, respectively.
Subsequently, Matsushita and Xu (2012) solved convex opti-
mization problem by the proximal point algorithm in a finite
number of steps under the assumption that the solution set is a
set ofWSM.Wang et al. (2015) studied the finite termination
of sequences generated by inexact proximal point algorithms
for finding zeroes of a maximal monotone (set-valued) oper-
ator T on a Hilbert space. Motivated by these properties and
wide applications of WSM in conventional optimization,
in this article, we attempt to propose and mathematically
characterize the notion of WSM for convex IVFs. To give
characterizations of WSM for convex IVFs, we defined gH -
subdifferentiability for convex IVFs and support function of
a subset of I (R)n . Some required fundamental characteristics
of gH -subdifferential set are proposed. A few related results
on the support function of a nonempty subset of I (R)n are
also derived. As an application of the proposed study, first
we find the set of WSM of a minimum risk portfolio inter-
val optimization problem and secondly we find the set of
weakly efficient solutions of the interval linear and nonlinear
programming problems using WSM.

1.2 Delineation

The article is presented in the following manner. In Sect. 2,
basic terminologies and definitions on intervals and IVFs are
provided. In Sect. 3, we propose the concept of the support
function of a subset of I (R)n ; alongside, a few necessary
results on extended support function are also given. Next, we
derive the idea of gH -subdifferentiability for convex IVFs, in
Sect. 4 that are required in the subsequent sections. The con-
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cept ofWSM for convex IVFs is presented in Sect. 5; further,
we give primal and dual characterizations of WSM. Appli-
cations of the proposed study are given in Sect. 6. Lastly, the
conclusion and future scopes are given in Sect. 7.

2 Preliminaries and Terminologies

In this article, the following notations are used throughout.

• R denotes the set of real numbers
• R

+ denotes the set of nonnegative real numbers
• ‖·‖ denotes the Euclidean norm and 〈·, ·〉 denotes the
standard inner product on R

n

• I (R) represents the set of all closed andbounded intervals
• Bold capital letters refer to the elements of I (R)

• I (R) = I (R) ∪ {−∞,+∞}
• B = {x ∈ R

n : ‖x‖ ≤ 1} denotes the closed unit ball in
R
n

• ψ∗
S (x) is a support function of a subset S ofR

n at x ∈ R
n

• cl(S) denotes the closure of the set S.

2.1 Fundamental Operations on Intervals

Arithmetic operations of two intervals A = [a, a] and B =[
b, b
]
are defined by A ⊕ B = [

a + b, a + b
]
, A � B =[

a − b, a − b
]
,A ⊗ B = [min{ab, ab},max{ab, ab}]

and

λ � A = A � λ =
{

[λa, λa], if λ ≥ 0

[λa, λa], if λ < 0,

where λ is a real constant.
The norm (Moore 1966) of an intervalA = [a, a] in I (R)

is defined by ‖A‖I (R) = max{|a|, |a|}.
The norm of an interval vector Â = (A1,A2, . . . ,An) ∈

I (R)n is given by (see Moore 1966)

‖Â‖I (R)n =
n∑

i=1

‖Ai‖I (R).

It is to note that a real number p can be represented by the
interval [p, p].
Definition 1 (gH-difference of intervals Stefanini and Bede
2009). Let A and B be two elements in I (R). The gH -
difference betweenA and B, denoted byA�gH B, is defined
by the interval C such that

A = B ⊕ C or B = A � C.

It is to be noted that for A = [a, a
]
and B = [b, b

]
,

A �gH B = [min{a − b, a − b}, max{a − b, a − b}] ,

and A �gH A = 0.

Definition 2 (Algebraic operations on I (R)n). Let Â =
(A1,A2, . . . ,An) and B̂ = (B1,B2, . . . ,Bn) be two ele-
ments in I (R)n . An algebraic operation � between Â and B̂,
denoted by Â�B̂, is defined by

Â�B̂ = (A1�B1,A2�B2, . . . ,An�Bn),

where � ∈ {⊕, �, �gH }.
Definition 3 (Special product). For any x = (x1, x2, . . . , xn)
∈ R

n and a vector of intervals Â = (A1,A2, . . . ,An) ∈
I (R)n withAi = [ai , ai ] for each i = 1, 2, . . . , n, the special
product between x and Â, denoted by x� � Â, is given by

x� � Â =
[

min

{
n∑

i=1

xiai ,
n∑

i=1

xiai

}

,

max

{
n∑

i=1

xiai ,
n∑

i=1

xiai

}]

.

Remark 1 It is to notice that if all the components of Â are
degenerate intervals, i.e., Â ∈ R

n , then the special product
x� � Â reduces to the standard inner product of x ∈ R

n with
Â.

Definition 4 (Dominance of intervals Wu 2008b). Let A =
[a, a] and B = [b, b] be two elements in I (R).

(i) B is said to be dominated by A if a ≤ b and a ≤ b, and
then we write A � B;

(ii) B is said to be strictly dominated by A if A � B and
A �= B, and then we write A ≺ B. Equivalently, A ≺ B
if and only if any of the following holds:
‘a < b and a ≤ b’ or ‘a ≤ b and a < b’ or
‘a < b and a < b’;

(iii) if neither A � B nor B � A, we say that none of A and
B dominates the other, or A and B are not comparable.
Equivalently,A andB are not comparable if either ‘a < b
and a > b’ or ‘a > b and a < b’.

2.2 Calculus of IVFs

Throughout this subsection, F is an IVF defined on a
nonempty subset X of Rn .

Definition 5 (gH -continuity Ghosh 2017). Let F be an IVF
and let x̄ be a point of X and h ∈ R

n such that x̄ + h ∈ X .
The function F is said to be gH -continuous at x̄ if

lim‖h‖→0

(
F(x̄ + h) �gH F(x̄)

) = 0.
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Definition 6 (gH -derivative Stefanini and Bede 2009). The
gH -derivative of an IVF F : R → I (R) at x̄ ∈ R is defined
by

F′(x̄) = lim
h→0

F(x̄ + h) �gH F(x̄)

d
, provided the limit exists.

Remark 2 (See Stefanini and Bede 2009). Let F = [F, F]
be an IVF on X , where F and F are real-valued functions
defined on X . Then, the gH -derivative of F at x̄ ∈ X exists
if the derivatives of F and F at x̄ exist and

F′(x̄) =
[
min

{
F ′(x̄), F ′

(x̄)
}

,max
{
F ′(x̄), F ′

(x̄)
}]

.

Definition 7 (gH -partial derivative Ghosh 2017). Let x̄ =
(x̄1, x̄2, . . . , x̄n)� be a point of X . For a given i ∈
{1, 2, . . . , n}, we define a functionGi byGi (xi ) = F(x̄1, x̄2,
. . . , x̄i−1, xi , x̄i+1, . . . , x̄n). If gH -derivative of Gi exists at
x̄i , then we say that F has the i th gH -partial derivative at x̄ .
We denote the i th gH -partial derivative of F at x̄ by DiF(x̄),
i.e., DiF(x̄) = G′

i (x̄i )
�.

Definition 8 (gH-gradient Ghosh 2017). The gH -gradient
of F at a point x̄ ∈ X , denoted by ∇F(x̄) ∈ I (R)n , is defined
by

∇F(x̄) = (D1F1(x̄), D2F2(x̄), . . . , DnFn(x̄))
�.

Lemma 1 Let A,B, and C are in I (R). Then, for any real
number r ,

(i) [r , r ] � A and A � B �gH C �⇒ C ⊕ [r , r ] � B and
(i) ((1 − λ) � A ⊕ λ � B) �gH A = λ � (

B �gH A
)
for

any λ ∈ [0, 1].

Proof See Appendix A. ��
Definition 9 (Convex IVF Wu 2007). Let X be a nonempty
convex subset of Rn . An IVF F : X → I (R) is said to be
convex on X if for any x1 and x2 in X ,

F(λ1x1 + λ2x2) � λ1 � F(x1) ⊕ λ2 � F(x2)

for all λ1, λ2 ∈ [0, 1] with λ1 + λ2 = 1.

Lemma 2 (SeeWu2007). Let X be a nonempty convex subset
of Rn, and F = [F, F] be an IVF on X, where F and F are
real-valued functions defined on X. Then, F is convex on X
if and only if F and F are convex on X.

Definition 10 (gH -directional derivativeGhosh et al. 2020).
Let F be an IVF on X . Let x̄ ∈ X and d ∈ R

n . If the limit

lim
λ→0+

1

λ
� (F(x̄ + λd) �gH F(x̄)

)

exists, then the limit is said to be gH -directional derivative
of F at x̄ in the direction d, and it is denoted by FD (x̄)(d).

Definition 11 (gH-differentiability Ghosh 2017). An IVF F
is said to be gH -differentiable at x̄ ∈ X if there exist two
IVFs E(F(x̄); h) and Lx̄ : Rn → I (R) such that

F(x̄ + h) �gH F(x̄) = Lx̄ (h) ⊕ ‖h‖ � E(F(x̄); h)

for ‖h‖ < δ for some δ > 0, where lim‖h‖→0
E(F(x̄); h) = 0

and Lx̄ is such a function that satisfies

(i) Lx̄ (x + y) = Lx̄ (x) ⊕ Lx̄ (y) for all x, y ∈ X , and
(ii) Lx̄ (cx) = c � Lx̄ (x) for all c ∈ R and x ∈ X .

Theorem 1 (See Ghosh 2017). Let F : X → I (R) be gH-
differential at x̄ . Then, Lx̄ exists for every h ∈ R

n and

Lx̄ =
n∑

i=1

hi � DiF(x̄),

where
n∑

i=1
hi � DiF(x̄) = h1 � D1F(x̄) ⊕ h2 � D2F(x̄) ⊕

· · · ⊕ hn � DnF(x̄).

Remark 3 (See Ghosh 2017). Let F : X → I (R) be gH -
differentiable at x̄ ∈ X . Then, there exist a nonzero λ and
δ > 0 such that

lim
λ→0

1

λ
� (F(x̄ + λh) �gH F(x̄)

) = Lx̄ (h)

for all h ∈ R
n with |λ|‖h‖ < δ, where Lx̄ is an IVF, defined

in Definition 11 of gH -differentiability.

Lemma 3 Let F : X → I (R) be a gH-differentiable at
x̄ ∈ X. Then, F has gH-directional derivative at x̄ for every
direction h ∈ R

n and

FD (x̄)(h) = Lx̄ (h) for all h ∈ R
n,

where Lx̄ is as defined in Definition 11.

Proof Since F is gH -differentiable at x̄ , by Remark 3, we
have

lim
λ→0

1

λ
� (F(x̄ + λh) �gH F(x̄)

) = Lx̄ (h) for all h ∈ R
n

�⇒ lim
λ→0+

1

λ
� (F(x̄ + λh) �gH F(x̄)

)

= Lx̄ (h) for all h ∈ R
n .

Hence, by Definition 10, we conclude that F has gH -
directional derivative at x̄ and

FD (x̄)(h) = Lx̄ (h) for all h ∈ R
n . ��
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Definition 12 (Proper IVF). An extended IVF F : X →
I (R) is called a proper IVF if there exists x̄ ∈ X such that
F(x̄) ≺ [+∞,+∞] and [−∞,−∞] ≺ F(x) for all x ∈ X .

Definition 13 (Effective domain of IVF). The effective dom-
ain of an extended IVF F : X → I (R) is the collection of all
such points at which F is finite. It is denoted by dom(F), i.e.,

dom(F) =
{
x ∈ X : F(x) ≺ [+∞,+∞]

}
.

Definition 14 (Linear IVF). An IVF F : X → I (R) is said
to be linear if the following two conditions hold:

(i) F(c x) = c � F(x) for all x ∈ X and for all c ∈ R, and
(ii) for all x, y ∈ X ,

F(x) ⊕ F(y) = F(x + y).

Theorem 2 Let X be a nonempty convex subset of Rn and
F : X → I (R) be a convex IVF with F(x) = [F(x), F(x)],
where F and F are real-valued functions defined on X. Then,
at any x̄ ∈ X, gH-directional derivativeFD (x̄)(d) exists and

FD (x̄)(d) =
[
min

{
FD (x̄)(d), FD (x̄)(d)

}
,

max
{
FD (x̄)(d), FD (x̄)(d)

}]
.

Proof Similar to the proof of Theorem 3.1 in Ghosh et al.
(2020). ��
Definition 15 (gH -Lipschitz continuous IVF Ghosh et al.
2020). An IVF F is said to be gH -Lipschitz continuous on
X if there exists M > 0 such that

‖F(x) �gH F(y)‖I (R) ≤ M‖x − y‖ for all x, y ∈ X .

The constant M is called a Lipschitz constant.

Definition 16 (gH -locally Lipschitz continuous IVF). An
IVF F is said to be gH -locally Lipschitz continuous on X if
there exists M ′ > 0 and δ > 0 such that

‖F(x) �gH F(y)‖I (R) ≤ M ′‖x − y‖
and ‖x − y‖ ≤ δ for all x, y ∈ X .

Definition 17 (Weak efficient solution Ghosh et al. 2021). A
point x̄ ∈ S is said to be a weak efficient solution of IOP
(27), if F(x̄) � F(x) for all x ∈ S.

Definition 18 (Supremum of a subset of I (R) Kumar and
Ghosh2021). LetSbe a nonempty subset of I (R).An interval
Ā ∈ I (R) is said to be an upper bound of S if B � Ā for all
B in S. An upper bound Ā of S is called a supremum of S,
denoted by sup S, if for all upper boundsC of S in I (R), Ā �

C. Moreover, if the supremum of the set S belongs to the set
itself, then it is called maximum of S, denoted by max S.

Remark 4 (See Kumar and Ghosh 2021). Let � be an index
set, and λ ∈ �. For any subset S = [aλ, bλ] of I (R), we have

supS =
[
sup
λ∈�

aλ, sup
λ∈�

bλ

]
.

Lemma 4 (See Kumar and Ghosh 2021). Let F1 and F2 be
two proper extended IVFs defined on S, which is a nonempty
subset of X. Then,

(i) inf
x∈S

F1(x) ⊕ inf
x∈S

F2(x) � inf
x∈S

(F1(x) ⊕ F2(x)) and

(ii) sup
x∈S

(F1(x) ⊕ F2(x)) � sup
x∈S

F1(x) ⊕ sup
x∈S

F2(x).

Definition 19 (Lower limit and gH -lower semicontinuity of
an extended IVF Kumar and Ghosh 2021). The lower limit
of an extended IVF F at x̄ ∈ X , denoted by lim inf

x→x̄
F(x), is

defined by

lim inf
x→x̄

F(x) = lim
δ↓0(inf{F(x) : x ∈ Bδ(x̄)})

= sup
δ>0

(inf{F(x) : x ∈ Bδ(x̄)}),

where Bδ(x̄) is an open ball with radius δ centered at x̄ . F
is called gH -lower semicontinuous (gH -lsc) at a point x̄ if
F(x̄) � lim inf

x→x̄
F(x). Further, F is called gH -lsc on X if F

is gH -lsc at every x̄ ∈ X .

Remark 5 By Note 5 of Kumar and Ghosh (2021), we see
that F is gH -lsc at x̄ ∈ X if and only if F and F both are lsc
at x̄ .

Lemma 5 Let F: Rn → I (R) be a proper convex IVF. Then,
for all x, y ∈ dom(F), we have

FD (x)(y − x) � F(y) �gH F(x).

Proof By Definition 10 of gH -directional derivative, we
have

FD (x)(d) = lim
λ→0+

1

λ
� (F(x + λd) �gH F(x)

)
. (2)

By taking d = y − x in (2), we get

FD (x)(d) = lim
λ→0+

1

λ
� (F(x + λ(y − x)) �gH F(x)

)

= lim
λ→0+

1

λ
� (F((1 − λ)x + λ(y)) �gH F(x)

)

� lim
λ→0+

1

λ
� {((1 − λ) � F(x) ⊕ λ

�F(y)) �gH F(x)
}
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= lim
λ→0+

1

λ
� λ

(
F(y) �gH F(x)

)
by (ii) of Lemma 1

= F(y) �gH F(x).

Definition 20 (Convergence of a sequence in I (R)n). A
sequence Ĝ : N → I (R)n is said to be convergent if there
exists a Ĝ ∈ I (R)n such that

‖Ĝk �gH Ĝ‖I (R)n → 0 as k → ∞,

where Ĝ(k) = Ĝk , k ∈ N.

Remark 6 It is noteworthy that if a sequence
{
Ĝk
}
in I (R)n,

where Ĝk = (Gk1,Gk2, . . . ,Gkn) ∈ I (R)n with Gki =
[g

ki
, gki ], converges to Ĝ = (G1,G2, . . . ,Gn) ∈ I (R)n

with Gi = [g
i
, gi ], then according to Definition 2 and norm

on I (R)n , the corresponding sequence {Gki } in I (R) con-
verges to Gi ∈ I (R) for each i = 1, 2, . . . , n. Also, by
Definition 20, the sequences g

ki
and gki in R converge to g

i
and gi in R, respectively, for each i = 1, 2, . . . , n.

2.3 Results from convex analysis

Apart from the results of interval analysis, we use the fol-
lowing results from classical convex analysis throughout the
article.

Definition 21 (Projection Rockafellar and Wets 2009). Let
A be a nonempty closed set in R

n . Then, the projection of a
point x ∈ R

n onto the set A is denoted by P(x | A), and is
defined by

P(x | A) = {y ∈ A : ‖x − y‖ = inf{‖x − u‖ : u ∈ A}}.

Definition 22 (Polar cone Rockafellar and Wets 2009). Let
A be a nonempty set in Rn . Then, the polar cone of the set A
is

Ao = {x∗ ∈ R
n : 〈x∗, x〉 ≤ 0 for all x ∈ A}.

Definition 23 (Tangent cone Rockafellar and Wets 2009).
Let A be a nonempty closed convex set in R

n . Then, the
tangent cone to the set A at x ∈ A is defined by

TA(x) = cl

(
⋃

t>0

A − x

t

)

.

Definition 24 (Normal cone Rockafellar and Wets 2009).
The normal cone to a nonempty set A in R

n at x is polar
of the tangent cone at x to the A, i.e., NA(x) = TA(x)o.
Therefore,

NA(x) = {x∗ ∈ R
n : 〈x∗, y − x〉 ≤ 0, for any y ∈ A

}
.

Lemma 6 (Hiriart-Urruty and Lemaréchal 2004). Consider
a convex set S ⊆ R

n. Then, x̄ is an element in the closure of
S if and only if 〈x, x̄〉 ≤ ψ∗

S (x) for all x ∈ R
n, where ψ∗

S is
the support function of S, i.e., ψ∗

S (x) = sup
s∈S

〈x, s〉.

Lemma 7 (Burke and Deng 2002). Let C be a nonempty
closed convex subset of Rn.

(i) For all y ∈ R
n, dist(y,C) = sup

x∈C
dist(y, x + TC (x)),

where the distance function is given by dist(y,C) =
inf
x∈C‖y − x‖.

(ii) Define ρ(x) = dist(x,C). Then, for all x ∈ C and d ∈
R
n,

ρD (x)(d) = dist(d, TC (x)) = ψ∗
B∩NC (x)(d).

Moreover, if d ∈ NC (x), thenρD (x)(d) = dist(d, TC (x))
= ψ∗

B∩NC (x)(d) = ‖d‖.

Theorem 3 (Burke and Ferris 1993). Suppose we have a lin-
ear programming problem (LPP)

min
x∈S′ F(x), (3)

where F is a linear real-valued function on R
n and S′ is

polyhedral subset of Rn. Then, the solution set of LPP (3) is
equal to the set of WSM of F over S′.

3 Support function in I(R)n

In this section, we attempt to extend the conventional notion
of support functions for subsets of I (R)n . The derived con-
cepts of support function are used later in Sect. 5 to derive
dual characterizations of WSM for convex IVFs.

Definition 25 (Support function of a subset of I (R)n). Let
S be a nonempty subset of I (R)n . Then, the support func-
tion of S at x ∈ R

n , denoted by ψ∗
S(x), is defined by

ψ∗
S(x) = sup

Â∈S
x� � Â.

Lemma 8 Let S1,S2 be two nonempty subsets of I (R)n such
that S1 ⊆ S2. Then, for any x ∈ X ⊆ R

n,

ψ∗
S1(x) � ψ∗

S2(x).

Proof For any B̂ = ([b1, b1], [b2, b2], . . . , [bn, bn]
) ∈ S2

and x ∈ X , we have x� � B̂ � ψ∗
S2(x). Given S1 ⊆

S2, i.e., for any D̂ = ([d1, d1], [d2, d2], . . . , [dn, dn]
) ∈

123



WSM for IVFs and its characterizations... 10259

S1, we have D̂ ∈ S2. Therefore,

x� � D̂ � ψ∗
S2(x).

Since D̂ is arbitrary, we get

ψ∗
S1(x) = sup

Ê∈S1
x� � Ê � ψ∗

S2(x).

��
Theorem 4 Let K be a nonempty closed convex cone in X ⊆
R
n. Let P and Q be two nonempty subsets of I (R)n. Then,

ψ∗
P(x) � ψ∗

Q(x) for all x ∈ K

if and only if ψ∗
P(x) � ψ∗

Q⊕Ko(x) for all x ∈ X ,

where Ko is the polar cone of K .

Proof Let ψ∗
P(x) � ψ∗

Q(x) for all x ∈ K . Consider x ∈ K .
Clearly Q ⊆ Q ⊕ Ko. Then, by Lemma 8, we have

ψ∗
Q(x) � ψ∗

Q⊕Ko (x)

� ψ∗
Q(x) ⊕ ψ∗

Ko (x) by (ii) of Lemma 4 and Definition 25

� ψ∗
Q(x) because ψ∗

Ko (x) = 0.

Therefore,

ψ∗
Q(x) = ψ∗

Q⊕Ko(x) for all x ∈ K . (4)

Also, by hypothesis, we have ψ∗
P(x) � ψ∗

Q(x) for all x ∈
K , and hence

ψ∗
P(x) � ψ∗

Q⊕Ko(x) for all x ∈ K . (5)

Suppose now if x /∈ K , then there exists z ∈ Ko such
that 〈z, x〉 > 0. Thus, for any Â ∈ Q and λ ≥ 0, Â ⊕ λz ∈
Q ⊕ Ko. Also, x� � (Â ⊕ λz)

=
[
min

{
n∑

i=1

xi (ai + λzi ),
n∑

i=1

xi (ai + λzi )

}

,

max

{
n∑

i=1

xi (ai + λzi ),
n∑

i=1

xi (ai + λzi )

}]

=
[
min

{
n∑

i=1

xiai + λx�z,
n∑

i=1

xiai + λx�z
}

,

max

{
n∑

i=1

xiai + λx�z,
n∑

i=1

xiai + λx�z
}]

.

Note that as λ → +∞, λx�z → +∞, and therefore
x� � (Â ⊕ λz) → +∞, which implies

ψ∗
Q⊕Ko(x) = [+∞,+∞].

Thus,

ψ∗
P(x) � ψ∗

Q⊕Ko(x) for all x ∈ X\K . (6)

Therefore, from (5) and (6), we have

ψ∗
P(x) � ψ∗

Q⊕Ko(x) for all x ∈ X .

Proof of the converse part follows from (4). This completes
the proof. ��
Lemma 9 Let P be a nonempty subset of Rn and Q be a
nonempty closed convex subset of I (R)n. Then, for any x ∈
R
n,

ψ∗
P (x) � ψ∗

Q(x) if and only if P ⊆ Q.

Proof Let ψ∗
P (x) � ψ∗

Q(x) for x ∈ R
n . Therefore, for any

p ∈ P and x ∈ R
n , we have

〈x, p〉 � sup
Q̂i∈Q

x� � Q̂i , where Q̂i

=
([

q
i1

, qi1
]
,
[
q
i2

, qi2
]
, . . . ,

[
q
in

, qin
])

�⇒ 〈x, p〉 � sup
Q̂i∈Q⎡

⎣min

⎧
⎨

⎩

n∑

j=1

x jqi j ,
n∑

j=1

x jqi j

⎫
⎬

⎭
,

max

⎧
⎨

⎩

n∑

j=1

x jqi j ,
n∑

j=1

x jqi j

⎫
⎬

⎭

⎤

⎦ .

We now consider the following two possible cases.

• Case 1. Let
n∑

j=1
x jqi j ≤

n∑

j=1
x jqi j . In this case, we have

〈x, p〉 � sup
Q̂i∈Q

⎡

⎣
n∑

j=1

x jqi j ,
n∑

j=1

x jqi j

⎤

⎦ . (7)

Next, define two sets S1 and S2 such that S1 ={
Q

1
, Q

2
, . . . , Q

n
, . . .

}
and S2={Q1, Q2, . . . , Qn, . . .

}
,

where Q
i

=
(
q
i1

, q
i2

, . . . , q
in

)
∈ R

n and Qi =
(
qi1, qi2, . . . , qin

) ∈ R
n .

Therefore, (7) along with Remark 4 gives,

〈x, p〉 ≤ sup
Q
i
∈S1

〈
x, Q

i

〉
(8)

and 〈x, p〉 ≤ sup
Qi∈S2

〈
x, Qi

〉
. (9)
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Thus, from (8) and Lemma 6, we have p ∈ S1, i.e., p =
Q

m
for some m.

To show that p ∈ Q, we have to show that p = Qm as
well.
Note that

〈x, p〉 =
〈
x, Q

m

〉
≤ 〈x, Qm

〉
for all x ∈ R

n because

n∑

j=1

x jqi j ≤
n∑

j=1

x jqi j

�⇒ 〈x, p〉 ≤ sup
〈
x, Qm

〉
for all x ∈ R

n

�⇒ 〈x, p〉 ≤ ψ∗
S′ (x) for all x ∈ R

n,

where S′ is the singleton set
{
Qm
}
. (10)

Thus, from equation (10) and Lemma 6, we have p ∈ S
′
,

i.e., p = Qm .
Hence, p ∈ Q. Since p is arbitrary, P ⊆ Q.

• Case 2. Let
n∑

j=1
x jqi j ≤

n∑

j=1
x jqi j . By following similar

steps as in Case 1, in this case also, we get P ⊆ Q.

Proof of the converse part follows from Lemma 8. ��
Lemma 10 For x ∈ R

n and Â = (A1,A2, . . . ,An) ∈ S ⊆
R
n, we have

x� � Â � ‖x‖ � [‖Â‖I (R)n , ‖Â‖I (R)n
]
.

Proof Note that x� � Â

=
[
min

{
n∑

i=1

xiai ,
n∑

i=1

xiai

}

,max

{
n∑

i=1

xiai ,
n∑

i=1

xiai

}]

�
[
min

{
n∑

i=1

|xi |‖Ai‖I (R),

n∑

i=1

|xi |‖Ai‖I (R)

}

,

max

{
n∑

i=1

|xi |‖Ai‖I (R),

n∑

i=1

|xi |‖Ai‖I (R)

}]

= [
min

{‖x‖‖Â‖I (R)n , ‖x‖‖Â‖I (R)n
}
,

max
{‖x‖‖Â‖I (R)n , ‖x‖‖Â‖I (R)n

}]

� ‖x‖ � [‖Â‖I (R)n , ‖Â‖I (R)n
]
.

��
Lemma 11 The support function of a nonempty set S ⊆
I (R)n is finite everywhere if and only if S is bounded.

Proof Suppose that S is bounded, i.e., we have M > 0
such that ‖Â‖I (R)n ≤ M for all Â = (A1,A2, . . . ,An) ∈
S with Ai = [ai , ai ] for each i = 1, 2, . . . , n.ByLemma10
and ‖Â‖I (R)n ≤ M , for any x ∈ R

n, we have

x� � Â � ‖x‖ � [‖Â‖I (R)n , ‖Â‖I (R)n
]

� ‖x‖ � [M, M] � ‖x‖M .

Since Â ∈ S is arbitrary chosen, therefore

ψ∗
S(x) = sup

Â∈S
x� � Â � ‖x‖M .

Hence, ψ∗
S(x) is finite everywhere.

Conversely, let ψ∗
S(x) is finite for every x ∈ R

n . There-
fore, there exists an M > 0 such that ψ∗

S(x) � M, which
implies that for any x ∈ R

n and Â ∈ S, we have

x� � Â =
[
min

{
n∑

i=1

xiai ,
n∑

i=1

xiai

}

,

max

{
n∑

i=1

xiai ,
n∑

i=1

xiai

}]
� M

�⇒
n∑

i=1

xiai ≤ M and
n∑

i=1

xiai ≤ M .

Take
n∑

i=1
xiai ≤ M , then by Remark 1, we have

〈x, a〉 ≤ M, where a = (a1, a2, . . . , an) ∈ R
n . (11)

If a �= 0, choose x = a
‖a‖ , then (11) gives

〈
a

‖a‖ , a

〉
≤ M

�⇒ ‖a‖ ≤ M, where a = (a1, a2, . . . , an) ∈ R
n

�⇒ |ai | ≤ M for each i = 1, 2, . . . , n.

Similarly, when we take
n∑

i=1
xiai ≤ M , we get |ai | ≤ M

for each i = 1, 2, . . . , n. Therefore, we have

Ai = [ai , ai ] � M for each i = 1, 2, . . . , n

�⇒ Â � M .

Since Â ∈ S was arbitrary chosen, therefore we have Â �
M for all Â ∈ S. Hence, S is bounded. ��

4 gH-subdifferentiability of convex IVFs

In this section, we develop gH -subdifferential calculus for
convex IVFs that are used later to find dual characterization
of WSM for convex IVFs.
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Fig. 1 The IVF F of Example 1

Definition 26 (gH -subdifferentiability). Let F : X ⊆ R
n →

I (R) be a proper convex IVF and x̄ ∈ dom(F). Then, gH -
subdifferential of F at x̄ , denoted by ∂F(x̄) is defined by

∂F(x̄) =
{
Ĝ ∈ I (R)n : (x − x̄)� � Ĝ

� F(x) �gH F(x̄) for all x ∈ X
}
. (12)

The elements of (12) are known as gH -subgradients of
F at x̄ . Further, if ∂F(x̄) �= ∅, we say that F is gH -
subdifferentiable at x̄ .

Example 1 Consider F : R → I (R) be a convex IVF such
that F(x) = |x | � A, where 0 � A. Let us check gH -
subdifferentiability of F at 0.

∂F(0) = {G ∈ I (R) : (x − 0) � G � F(x) �gH F(0) for all x ∈ R
}

= {G ∈ I (R) : x � G � |x | � A for all x ∈ R} . (13)

• Case 1. x ≤ 0. In this case, for all x ∈ R, (13) gives,

x � G � (−x) � A �⇒ (−1) � A � G.

• Case 2. x > 0. In this case, for all x ∈ R, (13) gives,

x � G � x � A �⇒ G � A.

Hence, from Case 1 and Case 2, we have ∂F(0) = {G ∈
I (R) : (−1) � A � G � A}.

In Fig. 1, the IVF F, withA = [ 14 , 1
]
, is drawn by the gray

shaded region between two red dashed lines, and its possible
two gH -subgradientsG1 andG2 at 0 are shown by blue and
green shaded regions, respectively.

Lemma 12 Let X be a nonempty convex subset of Rn and
F : X → I (R) be a proper convex IVF. Then, for any
x̄ ∈ dom(F) and h ∈ R

n such that x̄ + h ∈ X, the gH-
subdifferential set of F at x̄ is

∂F(x̄) =
{
Ĝ ∈ I (R)n : h� � Ĝ � FD (x̄)(h)

}
,

whereFD (x̄)(h) is gH-directional derivative ofF at x̄ in the
direction of h.

Proof Suppose Ĝ ∈ ∂F(x̄). Then, by Definition 26, we have

(x − x̄)� � Ĝ � F(x) �gH F(x̄) for all x ∈ X . (14)

By taking x = x̄ + λh with λ > 0 and h ∈ R
n in (14), we

get

h� � Ĝ � F(x̄ + λh) �gH F(x̄)

λ

�⇒ h� � Ĝ � lim
λ→0

F(x̄ + λh) �gH F(x̄)

λ

�⇒ h� � Ĝ � FD (x̄)(h).

Next, if we take any Ĝ ∈ I (R)n such that h� � Ĝ �
FD (x̄)(h) for all h ∈ R

n . Then, by a similar reasoning as
above it can be seen that Ĝ ∈ ∂F(x̄). ��

Theorem 5 Let X be a nonempty convex subset of Rn and
F : X → I (R) be a proper convex IVF with F(x) =
[F(x), F(x)], where F, F : X → R are extended real-
valued functions. Then, for any x̄ ∈ dom(F), ∂F(x̄) is closed
and convex.

Proof We first prove the closedness of ∂F(x̄). Let
{
Ĝk
}
be

a sequence in ∂F(x̄), which converges to Ĝ ∈ I (R)n , where
Ĝk = (Gk1,Gk2, . . . ,Gkn) and Ĝ = (G1,G2, . . . ,Gn).
Since Ĝk ∈ ∂F(x̄), for all h ∈ R

n such that x̄ + h ∈ X ,
we have

h� � Ĝk � F(x̄ + h) �gH F(x̄),

�⇒ min

{
n∑

i=1

hi gki ,
n∑

i=1

hi gki

}

≤ min
{
F(x̄ + h) − F(x̄), F(x̄ + h) − F(x̄)

}

and max

{
n∑

i=1

hi gki ,
n∑

i=1

hi gki

}

≤ max
{
F(x̄ + h) − F(x̄), F(x̄ + h) − F(x̄)

}
. (15)

Since the sequence
{
Ĝk
}
converges to Ĝ, in view of

Remark 6, the sequences {g
ki

} and {gki
}
converge to g

i
and
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gi , respectively, for each i = 1, 2, . . . , n. Thus,

n∑

i=1

hi gki →
n∑

i=1

hi gi and
n∑

i=1

hi gki →
n∑

i=1

hi gi as k → ∞.

(16)

Therefore, in view of (15) and (16), we have

(

min

{
n∑

i=1

hi gki ,
n∑

i=1

hi gki

})

→
(

min

{
n∑

i=1

hi gi ,
n∑

i=1

hi gi

})

≤ min
{
F(x̄ + h) − F(x̄), F(x̄ + h) − F(x̄)

}

and

(

max

{
n∑

i=1

hi gki ,
n∑

i=1

hi gki

})

→
(

max

{
n∑

i=1

hi gi ,
n∑

i=1

hi gi

})

≤ max
{
F(x̄ + h) − F(x̄), F(x̄ + h) − F(x̄)

}
.

Thus,

[

min

{
n∑

i=1

hi gi ,
n∑

i=1

hi gi

}

,max

{
n∑

i=1

hi gi ,
n∑

i=1

hi gi

}]

� F(x̄ + h) �gH F(x̄)

�⇒ h� � Ĝ � F(x̄ + h) �gH F(x̄) for all h ∈ X .

Therefore, Ĝ ∈ ∂F(x̄), and hence ∂F(x̄) is closed.
Toprove the convexity of∂F(x̄), let Ĥ = (H1,H2, . . . ,Hn)

and K̂ = (K1,K2, . . . ,Kn) be any two elements of ∂F(x̄)
with Hi = [hi , hi ] and Ki = [ki , ki ] for each i =
1, 2, . . . , n. Then, for all λ1, λ2 ≥ 0, with λ1 + λ2 = 1
and for any d ∈ R

n , we have

d� � (λ1 � Ĥ ⊕ λ2 � K̂
)

=
[
min

{
n∑

i=1

di (λ1hi + λ2ki ),
n∑

i=1

di (λ1hi + λ2ki )

}

,

max

{
n∑

i=1

di (λ1hi + λ2ki ),
n∑

i=1

di (λ1hi + λ2ki )

}]
.

• Case1.Letmin

{
n∑

i=1
di (λ1hi +λ2ki ),

n∑

i=1
di (λ1hi +λ2ki )

}

=
n∑

i=1
di (λ1hi + λ2ki ). Then,

d� � (λ1 � Ĥ ⊕ λ2 � K̂
)

=
[

n∑

i=1

di (λ1hi + λ2ki ),
n∑

i=1

di (λ1hi + λ2ki )

]

=
[

n∑

i=1

λ1di hi ,
n∑

i=1

λ1di hi
]

⊕
[ n∑

i=1

λ2di ki ,
n∑

i=1

λ2di ki

]

= λ1 � d� � Ĥ ⊕ λ2 � d� � K̂

� λ1 � FD (x̄)(d) ⊕ λ2 � FD (x̄)(d) by Lemma 12

= FD (x̄)(d) for any d ∈ R
n .

Hence, d� � (λ1 � Ĥ⊕λ2 � K̂) � FD (x̄)(d) for any d ∈
R
n . Therefore, by Lemma 12, λ1 � Ĥ⊕λ2 � K̂ ∈ ∂F(x̄).

• Case2.Letmin

{
n∑

i=1
di (λ1hi +λ2ki ),

n∑

i=1
di (λ1hi +λ2ki )

}

=
n∑

i=1
di (λ1hi + λ2ki ). Proof contains similar steps as in

Case 1.

Thus, for any x̄ ∈ dom(F), ∂F(x̄) is convex. ��
Theorem 6 Let X be a nonempty convex subset ofRn and let
F : X → I (R) be a gH-differentiable convex IVF at x̄ ∈ X.
Then,

∂F(x̄) = {∇F(x̄)} .

Proof Let Ĝ ∈ ∂F(x̄). SinceF is gH -differentiable at x̄ , with
the help of Lemma 3 and Lemma 12, we get

h� � Ĝ � Lx̄ (h) for all h ∈ R
n

�⇒ h� � Ĝ �
n∑

i=1

hi � DiF(x̄) by Theorem 1. (17)

Replacing h by −h in (17), we obtain

(−h)� � Ĝ �
n∑

i=1

(−hi ) � DiF(x̄)

�⇒
n∑

i=1

hi � DiF(x̄) � h� � Ĝ for all h ∈ R
n . (18)

Thus, (17) and (18), simultaneously give

n∑

i=1

hi � DiF(x̄) = h� � Ĝ for all h ∈ R
n . (19)

Therefore, for each i ∈ {1, 2, . . . , n} , by choosing h = ei in
(19), we have DiF(x̄) = Gi .
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Hence, ∇F(x̄) = Ĝ. Since Ĝ ∈ ∂F(x̄) is arbitrary,
∂F(x̄) = {∇F(x̄)}. ��
Lemma 13 Let X be a nonempty convex subset of Rn and
F : X → I (R) be a proper convex IVF with F(x) =
[F(x), F(x)], where F, F : X → R are extended real-
valued functions. Then, the subdifferential set of F at x̄ ∈
int(dom(F)) can be obtained by the subdifferential sets of F
and F at x̄ and vice-versa.

Proof Since F is proper convex, with the help of Lemma 2,
we note that F and F are also convex. Therefore, by the
property of real-valued proper convex functions, the subdif-
ferential sets of F and F at x̄ ∈ int(dom(F)) are nonempty
(see Beck 2017). Let g = (g

1
, g

2
, . . . , g

n
) ∈ ∂F(x̄) and

g = (g1, g2, . . . , gn) ∈ ∂F(x̄). Then, by Definition 26 of
gH -subdifferentiability, for any h ∈ R

n such that x̄+h ∈ X ,
we have

h� �g ≤ F(x̄+h)− F(x̄) and h� �g ≤ F(x̄+h)− F(x̄).

(20)

Note that F(x̄ + h) �gH F(x̄)

=
[
min

{
F(x̄ + h) − F(x̄), F(x̄ + h) − F(x̄)

}
,

max
{
F(x̄ + h) − F(x̄), F(x̄ + h) − F(x̄)

}]

�⇒
[
min

{
h� � g, h� � g

}
,max

{
h� � g, h� � g

}]

� F(x̄ + h) �gH F(x̄) by (20)

�⇒ h� � Ĝ � F(x̄ + h) �gH F(x̄),

where Ĝ = (G1,G2, . . . ,Gn) with Gi = [g
i
, gi ]

�⇒ Ĝ ∈ ∂F(x̄).

Thus, for any g ∈ ∂F(x̄) and g ∈ ∂F(x̄), we have the corre-

sponding Ĝ ∈ ∂F(x̄).
To prove the converse part, for any x̄ ∈ int(dom(F)), take

Ĝ = (G1,G2, . . . ,Gn) ∈ ∂F(x̄) with Gi = [g
i
, gi ], i =

1, 2, . . . , n. Then, byDefinition26of gH -subdifferentiability,
we have

h� � Ĝ � F(x̄ + h) �gH F(x̄)

for all h ∈ R
n such that x̄ + h ∈ X

�⇒
[
min

{
n∑

i=1

hi gi ,
n∑

i=1

hi gi

}

,

max

{
n∑

i=1

hi gi ,
n∑

i=1

hi gi

}]
� F(x̄ + h) �gH F(x̄).

Therefore,

min

{
n∑

i=1

hi gi ,
n∑

i=1

hi gi

}

≤ min
{
F(x̄ + h) − F(x̄), F(x̄ + h) − F(x̄)

}
(21)

and

max

{
n∑

i=1

hi gi ,
n∑

i=1

hi gi

}

≤ max
{
F(x̄ + h) − F(x̄), F(x̄ + h) − F(x̄)

}
. (22)

We now consider the following two possible cases.

• Case 1. Let min

{
n∑

i=1
hi gi ,

n∑

i=1
hi gi

}
=

n∑

i=1
hi gi and

min
{
F(x̄ + h) − F(x̄), F(x̄ + h) − F(x̄)

}
= F(x̄ +

h) − F(x̄). In this case, by (21) and (22), we have

n∑

i=1

hi gi ≤ F(x̄ + h) − F(x̄)

and
n∑

i=1

hi gi ≤ F(x̄ + h) − F(x̄)

�⇒ h� � g ≤ F(x̄ + h) − F(x̄)

and h� � g ≤ F(x̄ + h) − F(x̄),

where g = (g
1
, g

2
, . . . , g

n
) ∈ R

n

and g = (g1, g2, . . . , gn) ∈ R
n .

Thus, we get g ∈ ∂F(x̄) and g ∈ ∂F(x̄), which are
required.

• Case 2. Let min

{
n∑

i=1
hi gi ,

n∑

i=1
hi gi

}
=

n∑

i=1
hi gi and

min
{
F(x̄ + h) − F(x̄), F(x̄ + h) − F(x̄)

}
= F(x̄ +

h) − F(x̄). Proof contains similar steps as in Case 1.

From Case 1 and Case 2, it is clear that for any Ĝ ∈
∂F(x̄), we can obtain the subgradients of F and F at x̄ . This
completes the proof for the converse part. ��

Remark 7 By Lemma 13, it is easy to note that for any proper
convex IVF F(x) = [F(x), F(x)] and x̄ ∈ int(dom(F)),
∂F(x̄) is nonempty.

Theorem 7 Let X be a nonempty convex subset of Rn and
F : X → I (R) be a proper convex IVF with F(x) =
[F(x), F(x)], where F, F : X → R are extended real-
valued functions. Then, at any x̄ ∈ int(dom(F)),

FD (x̄)(h) = ψ∗
∂F(x̄)(h) for all h ∈ R

n such that x̄ + h ∈ X ,

whereFD (x̄)(h) is gH-directional derivative ofF at x̄ in the
direction of h.
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Proof Note that F(x) and F(x) are proper convex, and there-
fore ∂F(x̄) and ∂F(x̄) are nonempty. Let g = (g

1
, g

2
, . . . ,

g
n
) ∈ ∂F(x̄) and g = (g1, g2, . . . , gn) ∈ ∂F(x̄) for

x̄ ∈ int(dom(F)). By the property of real-valued convex
functions (see Dhara and Dutta 2011), we have

FD (x̄)(h) = ψ∗
∂F(x̄)(h) and FD (x̄)(h) = ψ∗

∂F(x̄)
(h)

for all h ∈ R
n such that x̄ + h ∈ X .

Due to Theorem 2, we get

FD (x̄)(h) =
[
min

{
FD (x̄)(h), FD (x̄)(h)

}
,

max
{
FD (x̄)(h), FD (x̄)(h)

}]

=
[
min

{
ψ∗

∂F(x̄)(h), ψ∗
∂F(x̄)

(h)
}
,

max
{
ψ∗

∂F(x̄)(h), ψ∗
∂F(x̄)

(h)
}]

. (23)

We now consider the following two possible cases.

• Case 1. Letψ∗
∂F(x̄)(h) ≤ ψ∗

∂F(x̄)
(h). In this case, by (23),

we get

FD (x̄)(h) =
[
ψ∗

∂F(x̄)(h), ψ∗
∂F(x̄)

(h)
]

=
[

sup
g∈∂F(x̄)

h� � g, sup
g∈∂F(x̄)

h� � g

]

= sup
g∈∂F(x̄), g∈∂F(x̄)

[
h� � g, h� � g

]

= sup
g∈∂F(x̄), g∈∂F(x̄)

[
n∑

i=1

hi gi ,
n∑

i=1

hi gi

]

.

(24)

We have seen in Lemma 13 that corresponding to every
g ∈ ∂F(x̄) and g ∈ ∂F(x̄), we get Ĝ ∈ ∂F(x̄) and
vice-versa. Thus, for g = (g

1
, g

2
, . . . , g

n
) ∈ ∂F(x̄) and

g = (g1, g2, . . . , gn) ∈ ∂F(x̄), by (24), we obtain

FD (x̄)(h) = sup
Ĝ∈∂F(x̄)

h� � Ĝ, where Ĝ = (G1,G2, . . . ,Gn)

with Gi = [g
i
, gi ]

= ψ∗
∂F(x̄)(h).

• Case 2. Let ψ∗
∂F(x̄)

(h) ≤ ψ∗
∂F(x̄)(h). Proof contains sim-

ilar steps as in Case 1.

Hence, from Case 1 and Case 2, we have

FD (x̄)(h) = ψ∗
∂F(x̄)(h) for all h ∈ R

n such that x̄ + h ∈ X .

��

Theorem 8 Let F : X → I (R) be a proper convex IVF and
x̄ ∈ int(dom(F)). Then, the gH-subdifferential set of F at x̄
is bounded.

Proof Note that by Theorem 2, for x̄ ∈ int(dom(F)), the
directional derivative of F at x̄ exists everywhere. Thus, for
all h ∈ R

n such that x̄ + h ∈ X , we have

FD (x̄)(h) is finite

�⇒ ψ∗
∂F(x̄)(h) is finite by Theorem 7

�⇒ ∂F(x̄) is bounded by Lemma 11.

Hence, the gH -subdifferential set of F at x̄ ∈ int(dom(F))

is bounded, i.e., for every Ĝ ∈ ∂F(x̄), there exists an M > 0
such that ‖Ĝ‖I (R)n ≤ M . ��
Lemma 14 Let F be an IVF on a nonempty set X ⊆ R

n such
that

F(x) �gH F(y) � c‖x − y‖ for all x, y ∈ X ,

where c ∈ R. Then,

‖F(x) �gH F(y)‖I (R) ≤ c‖x − y‖ for all x, y ∈ X .

Proof We have F(x)�gH F(y) � c‖x− y‖ for all x, y ∈ X ,

which implies that

F(x) − F(y) ≤ c‖x − y‖ and F(x) − F(y) ≤ c‖x − y‖.
(25)

Interchanging x and y in (25), we obtain

F(y) − F(x) ≤ c‖x − y‖ and F(y) − F(x) ≤ c‖x − y‖.
(26)

With the help of (25) and (26), we get

|F(x) − F(y)| ≤ c‖x − y‖
and |F(x) − F(y)| ≤ c‖x − y‖ for all x, y ∈ X ,

which implies

‖F(x) �gH F(y)‖I (R) ≤ c‖x − y‖ for all x, y ∈ X .

��
Theorem 9 Let X be a nonempty convex subset of Rn and F
be a convex IVF on X such that F has gH-subgradient at
every x ∈ X. Then, F is gH-Lipschitz continuous on X.

Proof SinceF has gH -subgradient at every x ∈ X , then there
exists a Ĝ ∈ I (R)n such that

(y − x)� � Ĝ � F(y) �gH F(x) for all y ∈ X
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�⇒ (−1) �
(
(x − y)� � Ĝ

)
� F(y) �gH F(x)

�⇒ F(x) �gH F(y) � (x − y)� � Ĝ

�⇒ F(x) �gH F(y) � ‖x − y‖
� [‖Ĝ‖I (R)n , ‖Ĝ‖I (R)n

]
by Lemma 10

�⇒ ‖F(x) �gH F(y)‖I (R)

≤ ‖Ĝ‖I (R)n‖x − y‖ by Lemma 14

�⇒ ‖F(x) �gH F(y)‖I (R)

≤ M‖x − y‖, where ‖Ĝ‖I (R)n ≤ M by Theorem 8.

Thus, F is gH -Lipschitz continuous on X. ��

5 Weak sharpminima and its
characterizations

In this section, we present the main results—primal and dual
characterizations of WSM for a gH -lsc and convex IVF.

Definition 27 (WSM for an IVF). Let F: Rn → I (R) be a
gH -lsc and convex IVF. Let S̄ and S be two nonempty closed
convex sets such that S̄ ⊆ S ⊆ R

n . Further, let dom(F)∩S �=
∅. Then, the set S̄ is said to be a set of WSM of F over the
set S with modulus α > 0 if

F(x) ⊕ α dist(x, S̄) � F(x) for all x ∈ S̄ and x ∈ S.

Remark 8 Let F: Rn → I (R) be a gH -lsc and convex IVF
with F(x) = [F(x), F(x)] for all x ∈ R

n , where F, F :
R
n → R be two extended real-valued functions. Then, S̄ is a

set of WSM of F over S with modulus α > 0 if and only if S̄
is a set of WSM of F and F over S with modulus α > 0. The
reason is as follows. By Remark 5 and Lemma 2, it is easy
to see that the functions F and F are lsc and convex. Let S̄
be a set of WSM of F over S with modulus α > 0. Then,

F(x̄) ⊕ α dist(x, S̄) � F(x) for all x̄ ∈ S̄ and x ∈ S

⇐⇒ [F(x̄) + α dist(x, S̄), F(x̄) + α dist(x, S̄)]
� [F(x), F(x)] for all x̄ ∈ S̄ and x ∈ S

⇐⇒ F(x̄) + α dist(x, S̄) ≤ F(x) and F(x̄)

+α dist(x, S̄) ≤ F(x) for all x̄ ∈ S̄ and x ∈ S

⇐⇒ S̄ is a set of WSM of both F and F over

S with modulus α > 0.

Example 2 Let F : R2 → I (R) be an IVF defined by

F(x) = [5 − x1x2 − x1, 10 − x21 x2 − x22 x1].

Let S = [−a, 0] × [−a, 0] ⊆ R
2 and S̄ = {0} × [−a, 0],

where a > 0. Thus, S̄ ⊆ S ⊆ R
n . Clearly, the functions

F and F are 5 − x1x2 − x1 and 10 − x21 x2 − x22 x1, respec-
tively. Note that for any α > 0,

F(x̄) + α dist(x, S̄) ≤ F(x) and F(x̄) + α dist(x, S̄)

≤ F(x) for all x̄ ∈ S̄ and x ∈ S.

Thus, S̄ = {0} × [−a, 0] is a set of WSM of both F and
F over S with modulus α, for any α > 0. Therefore, by
Remark 8, S̄ is a set of WSM of F over S with modulus
α > 0.

Let us consider an IOP

min
x∈S F(x), (27)

where F and S are same as in Definition 27. Note that con-
strained IOP (27) can be converted into unconstrained IOP
(28)

min
x∈Rn

Fo(x), (28)

where Fo(x) =
{
F(x), if x ∈ S,

+∞, otherwise.
Thus, we can solve the constrained and unconstrained IOP

both using the concepts ofWSM.Regarding this, we give two
characterizations primal and dual below.

Theorem 10 (Primal characterization). Let F, and S be as in
IOP (27). Further, define an IVF Fo : Rn → I (R) as in IOP
(28). Let S̄ be the set of WSM of F. Then, the set S̄ is a set of
WSM of F over the set S with modulus α > 0 if and only if

α dist(d, TS̄(x)) � FoD (x)(d) for all x ∈ S̄ and d ∈ R
n .

(29)

Proof Suppose S̄ is a set of WSM of F over S with modulus
α > 0. Then, by Definition 27, for any x ∈ S̄, d ∈ R

n, and
t > 0, we have

Fo(x) ⊕ α dist(x + td, S̄) � Fo(x + td)

�⇒ α dist(x + td, S̄) � Fo(x + td) �gH Fo(x)

�⇒ α

t

(
dist(x + td, S̄) − dist(x, S̄)

)

� 1

t
� (Fo(x + td) �gH Fo(x)

)

�⇒ lim
t→0

α

t

(
dist(x + td, S̄) − dist(x, S̄)

)

� lim
t→0

1

t
� (Fo(x + td) �gH Fo(x)

)

�⇒ α lim
t→0

1

t

(
dist(x + td, S̄) − dist(x, S̄)

)

� FoD (x)(d) by Definition 10
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�⇒ α dist(d, TS̄(x))

� FoD (x)(d) by part (ii) of Lemma 7.

Thus,

α dist(d, TS̄(x)) � FoD (x)(d) for all x ∈ S̄ and d ∈ R
n .

For the converse part, let y ∈ S and x ∈ S̄. Therefore, from
Lemma 5, we get

FoD (x)(y − x) � Fo(y) �gH Fo(x)

�⇒ Fo(x) ⊕ FoD (x)(y − x) � Fo(y)

�⇒ Fo(x) ⊕ α dist(y − x, TS̄(x)) � Fo(y) by (29)

�⇒ Fo(x) ⊕ α dist(y, x + TS̄(x)) � Fo(y).

Since x ∈ S̄ is arbitrary, we have

Fo(x) ⊕ α sup
x∈S̄

dist(y, x + TS̄(x)) � Fo(y)

�⇒ Fo(x) ⊕ α dist(y, S̄) � Fo(y)

for all x ∈ S̄ and α > 0 by part (i) of Lemma 7.

Hence, S̄ is the set ofWSM of F over S with modulus α > 0,
and the proof is complete. ��
Theorem 11 (Dual characterizations). Let F, and S be as in
IOP (27). Further, define an IVF Fo : Rn → I (R) as in IOP
(28). Let S̄ be the set of WSM of F. Then, for any α > 0, the
following statements are equivalent.

(a) The set S̄ is a set of WSM ofF over the set S with modulus
α.

(b) The normal cone inclusion holds. That is,

αB ∩ NS̄(x) ⊆ ∂Fo(x) for all x ∈ S̄.

(c) For all x ∈ S̄ and d ∈ TS(x),

α dist(d, TS̄(x)) � FD (x)(d).

(d) The following inclusion holds,

αB
⋂
⎛

⎝
⋃

x∈S̄
NS̄(x)

⎞

⎠ ⊆
⋃

x∈S̄
∂Fo(x).

(e) For all x ∈ S̄ and d ∈ TS(x) ∩ NS̄(x),

α‖d‖ � FD (x)(d).

(f) For all y ∈ S,

α dist(y, S̄) � FD (p)(y − p),

where p ∈ P(y | S̄).

Proof (a) ⇐⇒ (b). Let x ∈ S̄. By hypothesis, S̄ is a set of
WSM of F over S. Therefore, by Theorem 10, we get

α dist(d, TS̄(x)) � FoD (x)(d) for all d ∈ R
n,

which along with Theorem 7 imply

α dist(d, TS̄(x)) � ψ∗
∂Fo(x)(d) for all d ∈ R

n . (30)

Notice that for all x ∈ S̄ and d ∈ R
n , we have

α dist(d, TS̄(x))

= αψ∗
B∩NS̄(x)

(d) by (ii) of Lemma 7

= α sup〈z, d〉, where z ∈ B ∩ NS̄(x)

= sup〈αz, d〉, where z ∈ B ∩ NS̄(x) and α > 0

= sup〈z, d〉, where z ∈ αB ∩ NS̄(x)

= ψ∗
αB∩NS̄(x)

(d) for all d ∈ R
n .

That is,

α dist(d, TS̄(x)) = ψ∗
αB∩NS̄(x)

(d) for all d ∈ R
n . (31)

Thus, by (30) and (31), we get

ψ∗
αB∩NS̄(x)

(d) � ψ∗
∂Fo(x)(d). (32)

Next, with the help of Lemma 9, we get the desired result

αB ∩ NS̄(x) ⊆ ∂Fo(x) for all d ∈ R
n . (33)

Conversely, we have

αB ∩ NS̄(x) ⊆ ∂Fo(x) for all x ∈ S̄ (34)
�⇒ ψ∗

αB∩NS̄(x)
(d)

� ψ∗
∂Fo(x)(d) for all d ∈ R

n by Lemma 8

�⇒ α dist(d, TS̄(x)) � ψ∗
∂Fo(x)(d) for all d ∈ R

n by (31).
(35)

Also, by Theorem 7, we have

ψ∗
∂Fo(x)(d) = FoD (x)(d) for all d ∈ R

n .

Thus, by (34), we get

α dist(d, TS̄(x)) � FoD (x)(d) for all d ∈ R
n .

Therefore, by Theorem 10, S̄ is a set of WSM of F over S
with modulus α.
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(a) ⇐⇒ (c). Let the statement (a) holds. Let x ∈ S̄. There-
fore, by Theorem 10, we have

α dist(d, TS̄(x)) � FoD (x)(d) for all d ∈ TS(x).

Note that for x ∈ S̄, Fo(x) = F(x). Thus,

FoD (x)(d) = FD (x)(d) for x ∈ S̄ and d ∈ TS(x). (36)

By (36) and Theorem 10, we get

α dist(d, TS̄(x)) � FD (x)(d) for all d ∈ TS(x) and x ∈ S̄.

Conversely, we are given that

α dist(d, TS̄(x)) � FD (x)(d) for all x ∈ S̄ and d ∈ TS(x)

�⇒ α dist(d, TS̄(x))

� ψ∗
∂F(x)(d) for all d ∈ TS(x) by Theorem 7. (37)

Note that for x ∈ S̄, we have

ψ∗
∂F(x)(d) = ψ∗

∂Fo(x)(d) for all d ∈ R
n . (38)

In view of (37) and (38), we have

α dist(d, TS̄(x)) � ψ∗
∂Fo(x)(d) for all d ∈ TS(x)

�⇒ α dist(d, TS̄(x))

� FoD (x)(d) for all d ∈ TS(x) by Theorem 7.

Hence, by Theorem 10, S̄ is the set of WSM of F over S with
modulus α > 0.
(b) ⇐⇒ (d). If the statement (b) holds, then obviously the
statement (d) also holds.

Conversely, let the statement (d) holds. Let x ∈ S̄ and
Ĝ ∈ αB ∩ NS̄(x). Therefore, there exists a ȳ ∈ S̄ such that
Ĝ ∈ ∂Fo(ȳ). Thus, by Definition 26, we get

(z − ȳ)� � Ĝ � Fo(z) �gH Fo(ȳ) for all z ∈ R
n . (39)

In particular, for any z ∈ S̄, Fo(z) = Fo(ȳ). Thus, (39)
reduces to

(z − ȳ)� � Ĝ � 0 for all z ∈ S̄.

Since Ĝ ∈ R
n , by using Remark 1, (z − ȳ)� � Ĝ =〈

Ĝ, z − ȳ
〉 ≤ 0 for all z ∈ S̄. Therefore,

〈
Ĝ, z

〉 ≤ 〈Ĝ, ȳ
〉
for all z ∈ S̄

�⇒ sup
z∈S̄

〈
Ĝ, z

〉 ≤ 〈Ĝ, ȳ
〉

�⇒ ψ ∗̄
S
(Ĝ) = 〈Ĝ, ȳ

〉
because ȳ ∈ S̄. (40)

Since Ĝ ∈ NS̄(x), by Definition 24, we have

〈
Ĝ, z − x

〉 ≤ 0 for all z ∈ S̄

�⇒ ψ ∗̄
S
(Ĝ) = 〈Ĝ, x

〉
. (41)

Combining (40) and (41), we get

〈
Ĝ, x

〉 = 〈Ĝ, ȳ
〉
. (42)

Note that

(z − x)� � Ĝ

= 〈Ĝ, z − x
〉
for all z ∈ R

n

= 〈Ĝ, z − ȳ
〉
for all z ∈ R

n by (42)

= (z − ȳ)� � Ĝ for all z ∈ R
n by Remark 1

� Fo(z) �gH Fo(ȳ) for all z ∈ R
n by (39)

= Fo(z) �gH Fo(x) for all z ∈ R
n because F(x) = F(ȳ).

Hence, Ĝ ∈ ∂Fo(x). Since x ∈ S̄ is arbitrary, the statement
(b) holds.
(c) �⇒ (e). From the statement (c), we have

α dist(d, TS̄(x)) � FD (x)(d) for all d ∈ TS(x) and x ∈ S̄

�⇒ α‖d‖
� FD (x)(d) for all d ∈ TS(x) ∩ NS̄(x) by (ii) of Lemma 7.

Hence, the statement (e) holds.
(e) �⇒ (a). Let y ∈ S. Set x = P(y | S̄), then (y − x) ∈
TS(x) ∩ NS̄(x). Therefore, according to the hypothesis, we
obtain

α‖y − x‖ � FD (x)(y − x)

�⇒ α dist(y, S̄) � FD (x)(y − x) by Definition 21

�⇒ α dist(y, S̄) � F(y) �gH F(x) by Lemma 5

�⇒ F(x) ⊕ α dist(y, S̄) � F(y) by (i) of Lemma 1,

which shows that S̄ is a set of WSM of F over S.
(a) ⇐⇒ (f). Let the statement (a) holds. Let y ∈ S and
p = P(y | S̄). Thus, the statement (a) gives

F(p)⊕α dist(y, S̄) � F(y), i.e., F(p)⊕α‖y− p‖ � F(y).

(43)

Define zλ = λy + (1 − λ)p for λ ∈ [0, 1]. Then, p =
P(zλ | S̄) for all λ ∈ [0, 1]. From (43), we have

F(p) ⊕ α‖zλ − p‖ � F(zλ)

�⇒ F(p) ⊕ αλ‖y − p‖ � F(zλ)

�⇒ α‖x − p‖ � 1

λ
�
(
F(p + λ(y − p)) �gH F(p)

)
.

(44)
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By taking limit as λ ↓ 0 in (44), we get

α dist(y, S̄) � FD (p)(y − p), where p ∈ P(y | S̄).

Conversely, let y ∈ S and set x = P(y | S̄). Then, from the
statement (f), we get

α dist(y, S̄) � FD (x)(y − x)

�⇒ α dist(y, S̄) � F(y) �gH F(x) by Lemma 5

�⇒ F(x) ⊕ α dist(y, S̄) � F(y) by (i) of Lemma 1,

which is the required result. ��

6 Applications

In this section, we present two applications of the proposed
study.

6.1 Application 1

As a first application, we find the set of WSM of a Minimum
Risk Portfolio Interval Optimization Problem (MRPIOP),
where the returns and the components of risk covariance
matrix of returns are intervals.

The conventional minimum risk portfolio optimization
problem of two assets is given by (see Bartholomew-Biggs
2006)

min y�Qy
subject to y1 + y2 = 1

0 ≤ yi , i = 1, 2,

where y = (y1, y2)�, yi is the proportion of investment cor-
responding to the i-th asset, and Q is the risk covariance
matrix of returns. Conventionally, the entries in Q are real
numbers. However, in practice, for a portfolio optimization
problems, realistic data involves uncertainty.We, thus, aim to
formulate and solve an MRPIOP with interval-valued data.

We define an MRPIOP as

min
x∈[0,1]F(x), (45)

where F(x) = x2 � Q11 ⊕ (1 − x)2 � Q21 ⊕ x2 � Q12 ⊕
(1− x)2 �Q22, andQik for i, k = 1, 2 are (interval-valued)
entries of the risk covariance matrix Q of interval-valued
returns.

For instance, we consider two assets namely ‘AAL’ and
‘DAL’ of the companies American Airlines Group and Delta
Airlines Inc., respectively, for the period January 2021 to
December 2021.We calculate the interval-valued returnsRi j

of every month using lowest and highest indices of the i-th

Table 1 Sample interval-valued returns of the given assets

Periods Returns of AAL (R1 j ) Returns of DAL (R2 j )

Jan-21 [1.1400,5.9200] [2.4300,2.4700]

Feb-21 [0.9200,5.1900] [0.9300,11.8500]

Mar-21 [2.8100,4.3400] [2.8100,6.4600]

Apr-21 [1.2500,2.9500] [1.0100,4.2500]

May-21 [1.3600,3.7400] [0.4100,5.5500]

Jun-21 [0.6900,3.1900] [1.0400,5.9000]

Jul-21 [1.0000,1.8500] [1.7600,2.7300]

Aug-21 [1.3700,2.1800] [1.7700,4.4900]

Sep-21 [1.0800,2.1500] [2.0500,5.1400]

Oct-21 [2.1900,3.2600] [4.5500,6.3700]

Nov-21 [2.1000,3.4700] [3.1900,4.2400]

Dec-21 [0.9300,1.7900] [3.0200,3.4700]

Table 2 The risk covariance interval-valued matrixQ of the returns of
the given assets

Assets AAL DAL

AAL [0.0091,0.1486] [0.0092,0.1821]

DAL [0.0092,0.1821] [0.0475,0.4738]

asset in the j-th month, for i = 1, 2 and j = 1, 2, . . . , 12.
These interval-valued returns are displayed in Table 1.

We calculate the interval-valued mean return RiM for the
i-th asset by the formula

RiM = 1

12
� (Ri1 ⊕ Ri2 ⊕ · · · ⊕ Ri12) ,

for i = 1, 2. The interval-valued mean returns are

R1M = [1.4033, 3.3358] and R2M = [2.1183, 5.2433].

The interval componentsQik of risk covariance matrixQ are
computed by the formula

Qik = 1

144
� [{(Ri1 �gH RiM ) ⊗ (Rk1 �gH RkM )

}

⊕ {(Ri2 �gH RiM ) ⊗ (Rk2 �gH RkM )
}

⊕ · · · ⊕ {(Ri12 �gH RiM ) ⊗ (Rk12 �gH RkM )
}],

for i, k = 1, 2, and are shown in Table 2. With the help of
Q, MRPIOP (45) can be written as

min
x∈[0,1] {x2 � [0.0091, 0.1486] ⊕ (1 − x)2

�[0.0092, 0.1821] ⊕ x2 � [0.0092, 0.1821]
⊕(1 − x)2 � [0.0475, 0.4738]}

= min
x∈[0,1] {x2 � [0.0183, 0.3307]
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⊕(1 − x)2 � [0.0567, 0.6559]}
= min

x∈[0,1] [0.0750x2 − 0.1134x + 0.0567, 0.9876x2

−1.3118x + 0.6559].

Thus,

F(x) = [0.0750x2 − 0.1134x + 0.0567, 0.9876x2

−1.3118x + 0.6559], x ∈ [0, 1].

Considerα = 0.075, S̄1 = [0, 0.6641] and S̄2 = [0.7560, 1].
Then, with respect to the usual Euclidean distance,

dist(x, S̄1) = (x − 0.6641)2, and dist(x, S̄2) = (x −
0.7560)2, where x ∈ [0, 1].

In Fig. 2, we have depicted the graph of F(x) by red-
shaded region. The black-shaded portions show the graphs
ofF(x̄)⊕α dist(x, S̄1) for x̄ ∈ S̄1 and ofF(x̄)⊕α dist(x, S̄2)
for x̄ ∈ S̄2. From the graphs, notice that for any x ∈ [0, 1],

F(x̄) ⊕ α dist(x, S̄1) � F(x) for all x̄ ∈ S̄1

and F(x̄) ⊕ α dist(x, S̄2) � F(x) for all x̄ ∈ S̄2.

Hence, by Definition 27 of WSM, S̄1 = [0, 0.6641] and
S̄2 = [0.7560, 1] are the sets of WSM for (45) with the
data in Table 2. Thus, the points belonging to S̄1 and S̄2 are
preferable points for the investment.

6.2 Application 2

As a second application, we use the concept of WSM to find
the weak efficient solutions of the following linear program-
ming problem with interval-valued objective function:

min
x∈S′ F(x), (46)

where F is a linear IVF on R
n and S′ is a polyhedral subset

of Rn . The above problem is extensively studied by sev-
eral authors, for instance, see (Ishibuchi and Tanaka 1990;
Inuiguchi and Kume 1991; Ida 2003), and the references
therein. The real-world applications of (46) are shownby sev-
eral authors. For instance, Steuer (1981) used (46) to study
feedmix and blending problems. Wu et al. (2006) proposed
a method for the planning of waste management system for
the region of Hamilton, Ontario, Canada with the help of the
tools of (46).

Inspired by all these real-life applications of (46), we find
out the weak efficient solutions of (46) with the help of the
studied concept ofWSM. Since interval-linear programming
problem (ILPP) (46) has been solved by many researchers,
we are providing a theory, to find the set of weak sharp min-
ima of ILPP.

Theorem 12 Let F = [F(x), F(x)] be a linear IVF on R
n.

Then, the set of weak efficient solutions of (46), where S′ is a
polyhedral set in Rn, is identical to the set of WSM of F over
S′.

Proof Let S̄ be the set of weak efficient solutions of (46).
Then, every x̄ ∈ S̄ minimizes F(x) over S′. Therefore, every
x̄ ∈ S̄ minimizes F(x) and F(x) as well. Hence, S̄ is the
solution set of both the linear programming problems

min
x∈S′ F and min

x∈S′ F . (47)

Therefore, by Theorem 3, we have

S̄ is a set of WSM of both F and F over S′

�⇒ S̄ is a set of WSM of F over S′ by Remark 8.

Next, if x̄ belongs to the set of WSM of F, then by Defini-
tion 27 of WSM, x̄ is also a weak efficient solution of (47),
which completes the proof. ��

In the next theorem (Theorem 13), we use the concept of
WSM to solve the following IOP, need not to be an ILPP:

min
x∈S F1(x), (48)

where S is a closed convex subset of Rn and F1 is proper,
extended, convex and gH -lsc IVF on R

n . Note that it is not
always an easy task to solve IOP (48) by finding WSM of F1

or by some other methods. In this case, we use perturbation
to investigate the weak efficient solution of IOP (48). In the
perturbation, we consider a different IOP (49), whose weak
efficient solution is known or easy to find:

min
x∈S F2(x), (49)

where F2 is a proper extended IVF on Rn . Now we consider
a perturbed IOP:

min
x∈S {F1(x) ⊕ ε � F2(x)}, (50)

where ε is nonnegative real number.

Theorem 13 Let F1, F2 and S be as in (50). Let S̄(ε) ⊆ S̄
be the set of weak efficient solutions of perturbed IOP (50)
and S̄ be the set of WSM of F1 over S. Then, S̄(ε) ⊆ S̄F2 ,

where S̄F2 is the set of weak efficient solutions of IOP (49).
Moreover, if F2 is gH-locally Lipschitz continuous on R

n,
then S̄F2 = S̄(ε).

Proof Suppose x̄ ∈ S̄(ε). Then, for any y ∈ S, we have

F1(x̄) ⊕ ε � F2(x̄) � F1(y) ⊕ ε � F2(y). (51)
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Fig. 2 Objective function of
(45) and the locations of the sets
of WSM of (45)
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Since S̄ ⊆ S, then (51) holds for any ȳ ∈ S̄. Thus,

F1(x̄) ⊕ ε � F2(x̄) � F1(ȳ) ⊕ ε � F2(ȳ)

�⇒ ε � F2(x̄)

� ε � F2(ȳ) because S̄ is a set of WSM of F1

�⇒ F2(x̄) � F2(ȳ) because ε > 0.

Thus, x̄ ∈ S̄F2 . Since x̄ ∈ S̄(ε) is arbitrarily chosen, we
get the result.

Conversely, let x̄ ∈ S̄F2 . In order to show x̄ ∈ S̄(ε), we
prove that

F1(x̄) ⊕ ε � F2(x̄) � F1(ȳ) ⊕ ε � F2(ȳ) for ȳ ∈ S̄ (52)

and

F1(x̄)⊕ ε �F2(x̄) ≺ F1(y)⊕ ε �F2(y) for y ∈ S \ S̄. (53)

Note that S̄ is a set of WSM of F1 over S and x̄ ∈ S̄F2 ,
therefore (52) holds. To establish (53), let x ∈ S \ S̄, thus
x �= x̄ . Then, we have

ε � F2(x̄) � ε � F2(x̄)

�⇒ ε � F2(x̄) � ε � F2(x̄) �gH ε � F2(x) ⊕ ε � F2(x)

�⇒ ε � F2(x̄) � εK‖x̄ − x‖ ⊕ ε � F2(x)

because F is gH -local Lipschitz continuous

�⇒ ε � F2(x̄) ≺ α‖x̄ − x‖ ⊕ ε � F2(x), where εK < α

�⇒ F1(x̄) ⊕ ε � F2(x̄) ≺ α‖x̄ − x‖ ⊕ F1(x̄) ⊕ ε � F(x)

�⇒ F1(x̄) ⊕ ε � F2(x̄) ≺ F1(x) ⊕ ε � F(x)

because S̄ is a set of WSM of F1.

Therefore, x̄ ∈ S̄(ε). Since x̄ is arbitrarily chosen, S̄F2 ⊆
S̄(ε), and hence we get the desired result. ��

7 Conclusion and future scopes

In this article, the conventional concepts of support func-
tion and subdifferentiability have been extended for IVFs
(Definitions 25 and Definition 26). Also, some important
characteristics of the gH -subdifferential set like nonempti-
ness (Lemma 13), boundedness (Theorem 8), convexity and
closedness (Theorem 5) have been presented. Subsequently,
we have provided a few necessary results (Lemma 8, Theo-
rem4 andLemma9) based on the support function of a subset
of I (R)n . It has been reported that the gH -subdifferential set
of a gH -differentiable convex IVF is a singleton set contain-
ing the gH -gradient (Theorem 6). The relationship between
gH -directional derivative and the support function of gH -
subdifferential set of convex IVF has been also established
(Theorem7). Further, we have introduced the notion ofWSM
for convex IVFs (Definition 27) to solve IOP (1). With the
help of the proposed concepts of gH -subdifferentiability and
support function, a primal characterization (Theorem 10) and
a few dual characterizations (Theorem 11) of WSM have
been presented to solve constrained IOP (27) and uncon-
strained IOP (28). Two applications of the proposed study
have been given. In the first application, the sets of WSM of
MRPIOP (45) has been given. In the second application, we
provide a relationship between the WSM and weak efficient
solutions of linear and nonlinear IOPs (Theorems 12 and 13).

In future, we shall apply proposed theory on WSM to
derive necessary and sufficient conditions under which a
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global error bound may exist for a convex inequality system
as follows:

Hλ(x) � 0, λ ∈ � and x ∈ C, (54)

where � is an index set, and for each λ ∈ �, Hλ : X ⊆
R
n → I (R) is gH -lsc, convex, proper, and the set C is

closed convex subset of X . By a global error bound for the
inequality system (54), we mean the existence of a constant
β > 0 such that

β dist (x, �) � dist(x,C) ⊕ Hλ+(x) for each λ ∈ � and x ∈ X ,

(55)

where � = {x : x ∈ C and Hλ(x) � 0} and Hλ+(x) =
max{0,Hλ(x)}. For the sake of convenience, we define
H(x) = sup {Hλ(x) : λ ∈ �} for each x ∈ X . Note that
if a constant β̄ > 0 exists such that

β̄ dist (x,�) � dist(x,C) ⊕ H+(x) for all x ∈ X , (56)

where �̄ = {x : x ∈ C and H(x) � 0} and H+(x) =
max{0,H(x)}, then (55) holds for β > 0. The following
observation can be useful to solve the problem. If we define
an IVF F : X → I (R) such that

F(x) = dist(x,C) ⊕ H+(x),

then F has � as a set of WSM with modulus β̄ > 0, which
is equivalent to the condition in (56).

Immediately in the next step we shall try to give some
numerical algorithms tofindWSMof an IVF. It iswell known
that algorithms in optimization to solve real-world problems
have huge reputation (Lee and Geem 2005; Faramarzi et al.
2020; Abd Elaziz et al. 2017; Abualigah et al. 2021;Moham-
mad Hasani Zade and Mansouri 2021; Abualigah 2020). For
instance, the arithmetic optimization algorithm (AOA) and
Aquila optimizer (AO) proposed in Abualigah et al. (2021)
and Abualigah et al. (2021) have been proved useful to solve
some real-life problems. However, some real-life problems
may have uncertainties in the given data, for instance see
Sahoo et al. (2012), Dey et al. (2020), Das et al. (2016).
Hence, to solve these kind of problems, we shall try to extend
AOA and AO for IVFs.
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A Proof of Lemma 1

(i). Let A = [a, a],B = [b, b], and C = [c, c]. We have

r ≤ a and r ≤ a. (57)

Similarly, by A � B �gH C, we have

a ≤ min
{
b − c, b − c

}
and a ≤ max

{
b − c, b − c

}
. (58)

• Case 1. Let min
{
b − c, b − c

} = b − c and max{
b − c, b − c

} = b − c. Then, from (57) and (58), we
get

c + r ≤ b and c + r ≤ b.

Hence, C ⊕ [r , r ] � B.

• Case 2. When min
{
b − c, b − c

} = b − c and max{
b − c, b − c

} = b − c. Proof contains similar steps as
in Case 1.

(ii). Let A = [a, a] and B = [b, b]. Then,
{
(1 − λ) � A ⊕ λ � B

}
�gH A

=
{
(1 − λ) � [a, a] ⊕ λ � [b, b]

}
�gH [a, a]

= [(1 − λ)a + λb, (1 − λ)a + λb
]�gH [a, a

]

because λ ∈ [0, 1]
=
[
min

{
λb − λa, λb − λa

}
,max

{
λb − λa, λb − λa

}]

= λ �
{
A �gH B

}
.
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