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approximately 1,80,000 death counts (https://www.who.int/
en/news-room/fact-sheets/detail/burns). In India, over ten 
lakhs of people suffer from burns every year [3]. The major-
ity of burn injuries occur in children with the most com-
mon causative factors including flames or exposure to the 
hot liquid [4]. After severe burning rapid diagnosis, appro-
priate initial burn resuscitation and treatment are required, 
unavailability of that can cost the life of the patient. Both 
physical suffering like edema, inflammation, and emotional 
suffering including post-traumatic stress disorder (PTSD) 
and depression, are associated with burn injuries. Burn 
injury is classified into three types based on the severity of 
the injury, among them third-degree burns known as full-
thickness burns are the most severe causing the maximal 
damage by penetrating to the deeper body tissues. As the 
full-thickness burn injury penetrates deeper tissues, it sen-
sitizes the nociceptors, further leading in the development 
of neuropathic pain. [5]. The neuropathic pain is mainly 
attributed to direct stimulation of nociceptors located in the 
two distinguished layers of skin namely the epidermis and 
dermis. In the peripheral nervous system, pain signal travels 

Introduction

According to the International Association for the Study 
of Pain (IASP), pain is “an unpleasant sensory and emo-
tional experience associated with, or resembling that 
associated with, actual or potential tissue damage” [1]. It 
is a protective phenomenon that alarms the living system 
against any potential tissue damage. Burn injury is one of 
the most critical conditions worldwide which can lead to 
death of the patient [2]. It is the fifth most common cause 
of non-fatal childhood injuries. According to WHO, an 
estimated 11  million burn injuries occur worldwide with 
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Abstract
Burn injuries are among the highly prevalent medical conditions worldwide that occur mainly in children, military veter-
ans and victims of fire accidents. It is one of the leading causes of temporary as well as permanent disabilities in patients. 
Burn injuries are accompanied by pain that persists even after recovery from tissue damage which puts immense pressure 
on the healthcare system. The pathophysiology of burn pain is poorly understood due to its complex nature and lack 
of considerable preclinical and clinical shreds of evidence, that creates a substantial barrier to the development of new 
analgesics. Burns damage the skin layers supplied with nociceptors such as NAV1.7, TRPV1, and TRPA1. Burn injury-
mediated co-localization and simultaneous activation of TRPA1 and TRPV1 in nociceptive primary afferent C-fibers which 
contributes to the development and maintenance of chronic pain. Burn injuries are accompanied by central sensitization, 
a key feature of pain pathophysiology mainly driven by a series of cascades involving aberrations in the glutamatergic 
system, microglial activation, release of neuropeptides, cytokines, and chemokines. Activation of p38 mitogen-activated 
protein kinase, altered endogenous opioid signaling, and distorted genomic expression are other pathophysiological factors 
responsible for the development and maintenance of burn pain. Here we discuss comprehensive literature on molecular 
mechanisms of burn pain and potential targets that could be translated into near future therapeutics.
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across the Aδ and C fibers and reaches the relay center of 
the pain pathway, the spinal cord [6]. From the dorsal horn 
of the spinal cord, the signal travels to the supraspinal brain 
regions where it gets interpreted. Both peripheral stimuli 
and descending pathways from the CNS are responsible 
for the magnitude of impulse transmission (Fig. 1 [7]. This 
series of events result in persistent hypersensitivity to a ther-
mal and mechanical noxious stimulus. At present, it remains 
a challenge to manage burn injury-induced pain due to the 
unavailability of effective treatment devoid of severe side 
effects [2]. Moreover, poor understanding and complexity 
of burn injury-induced pain pathophysiology also creates a 
substantial barrier to the drug development. In this review, 
we have discussed the detailed insights into the cellular and 
molecular mechanisms associated with burn injury-induced 
chronic pain and the near future therapeutic targets for the 
treatment of the same.

Role of ion channels in pathophysiology of 
burn injury-induced pain

TRPV1 and TRPA1 crosstalk in burn injury-induced 
chronic pain

Two well-known transient receptor potential (TRP) cation 
channels namely TRPV1 (vanilloid 1) and TRPA1 (ankyrin 
1) are responsible for the detection of various noxious heat 
stimuli. In burn injury TRPV1 is one of the most studied 
transient receptors which is activated by a temperature above 
43 °C and additionally through the diverse forms of noxious 
stimuli that lead to the development of thermal hyperalge-
sia[8]. Studies have found that the enzymatic oxidation at 
the burn injury site releases endogenous ligands that stimu-
late TRPV1 which result in exhibiting thermal allodynia 
[9]. Even though TRPV1 nociceptors are activated by heat, 
it is not the sole player in heat-induced hypersensitivities. 
In a recent study double knockout of TRPV1 and TRPM3 
in a mice model only showed moderate impairment in heat 
responses. In a mice model, it was established that, TRPV1, 

Fig. 1  PNS to CNS processing of burn induced pain. Peripheral 
stimulus (burn) causes damage to the nociceptors underlying the layers 
of skin which initiate a series of cellular cascades. This in turn trans-
mits the signals to DRG and reaches the dorsal horn of spinal cord. 

Further the signal reaches to the higher brain regions via ascending 
pathways. Pathogenesis of chronic pain occurs due to the imbalance in 
excitatory and inhibitory spinal and supraspinal circuits
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TRPM3, and TRPA1 triple knockout (TKO) resulted in 
absence of response to acute noxious heat stimuli which was 
mandatory for avoiding burn injury-induced pain [9, 10]. 
Although the TKO mice showed a certain degree of insensi-
tivity toward noxious heat stimuli, still normal nociceptive 
responses to mechanical and cold stimuli were intact. This 
proves that TRPA1 is yet another TRP channel having an 
essential role in burn injury. A selective TRPA1 antagonism 
has also been reported to completely hinder Ca2+ influx in 
sensory neurons in response to noxious heat stimuli. TRPV1 
and TRPA1 nociceptors are widely co-expressed on noci-
ceptive primary afferent C-fibres. TRPA1 receptors are acti-
vated by bradykinin which is one of the important peptide 
released as a result of burn injury mediated by G-protein-
coupled receptors [11]. Two important pathways involved 
in regulating the activity of TRPA1 by bradykinin are B2 
receptor and phospholipase C (PLC) pathway [12]. Ther-
mal hyperalgesia occurs when bradykinin directly sensitizes 
nociceptors in the dorsal root ganglion (DRG) neurons [13]. 
Phosphorylation of the protein kinase C (PKC), as well as 
presence of low pH and capsaicin, facilitates bradykinin-
sensitized activation of TRPV1 nociceptors [14]. Linoleic 
acid is the most abundant polyunsaturated fatty acid found 
in human tissue. After a burn injury, the enzymatic oxida-
tive pathway (e.g., cytochrome P450) and the linoleic acid 
metabolites lead to activation of TRPV1 and TRPA1 noci-
ceptors [9], which ultimately results in thermal and mechan-
ical allodynia (Fig. 2). Targeting these nociceptors and their 
trafficking to neuronal membrane through dual agonist and 
antagonists, siRNA-based therapies, could provide a better 
alternate to the management of burn injury induced chronic 
pain (Table 1). However, the intactness of normal nocicep-
tive responses that protect us from tissue damage should be 
considered while testing such therapies.

Nav1.7 channel-mediated mechanisms of burn pain

Voltage-gated sodium channels (VGSCs) plays an important 
role in the transmission of action potential post-application 
of nociceptive stimulus [15]. Nav1.7, Nav1.8, and Nav1.9 
are preferentially expressed in primary somatosensory affer-
ents specialized to sense noxious stimuli [16]. Among all 
these sodium channels, Nav1.7 is known to have a criti-
cal role in pain signaling  [17–19].Mitigation of pain may 
be accomplished by the loss of sodium channel subtypes, 
especially Nav1.7 expressions. The sodium channels are 
essentially linked to peripheral neurons and are associated 
with human monogenic pain disorders. Nav1.7 is expressed 
not only on the unmyelinated axons of DRG neurons but 
also on its cutaneous terminals, indicating that both the ini-
tiation and conduction of action potential are dependent on 
Nav1.7 channel activation. Small hairpin RNA attenuates 

mechanical and thermal pain by knocking down Nav1.7 in 
L5-DRG neurons in the burn injury animal model[15]. Also, 
the complete deletion of Nav1.7 in sensory neurons has 
resulted in impaired thermal nociception in various behav-
ioural tests. When the inactivation of Nav1.7 channels was 
first found to cause insensitivity to pain in 2006 [20], a new 
field of research emerged focusing on Nav1.7 blockers as a 
potential analgesic but this area needs further exploration to 
establish this as a translational therapeutic target. Preclini-
cal studies and clinical trials have shown that tetradotoxin 
(TTX) has an analgesic effect and it is under clinical trial for 
cancer-related neuropathic pain [21]. A report has suggested 
that TTX inhibits thermal hyperalgesia and mechanical allo-
dynia after full-thickness burn injury in rodents [22].

Deciphering the immune system hoisting the 
burn mediated chronic pain

Inflammation as a critical mediator of burn injury-
induced pain

Burn injury is accompanied by inflammation, triggering a 
series of inflammatory events which aggravate the pain in 
patients [23]. Various types of cytokines are released from 
the injured tissue site, which reaches the systemic circula-
tion and travels toward the CNS. Some of the cytokines 
plays a major role in activating nociceptive sensory neurons 
thus developing and maintaining chronic pain. Among such 
cytokines, the most important one is Interleukin-6 (IL-6) 
which is popularly known to induce mechanical hyperal-
gesia and central sensitization after thermal injury [24]. In 
a burn injury rat model, the administration of intrathecal 
antisense oligodeoxynucleotide against glycoprotein 130 
(gp130) showed decreased mechanical allodynia[25–27]. 
Blocking the release of IL-6 further attenuates the progres-
sion of thermal and mechanical hypersensitivity in rodents 
[28]. Another pro-inflammatory cytokine, IL-1β is highly 
expressed in nociceptive sensory neurons of DRG after 
peripheral nerve injury and was also reportedly increased in 
the plasma of burn patients [29]. IL-1β stimulates the pro-
duction of substance P in glial and neuronal cells. Along 
with TNF-α, IL-1β hinders the synaptic transmission and 
promotes neuronal excitability in lamina II of the spinal 
cord [30]. TNF-α amplifies spontaneous excitatory postsyn-
aptic current frequency whereas, IL-6 diminishes spontane-
ous inhibitory postsynaptic current frequency while, IL-1β 
performs both these actions. Mechanisms behind these 
responses are that IL-1β and TNF-α enhance NMDA- and 
AMPA-induced excitatory currents, on the other hand, IL-6 
and IL-1β diminish glycine- and GABA-induced inhibitory 
currents [31]. IL-10 is an anti-inflammatory cytokine having 
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various tissue damages or infections. NLRP3 is of particu-
lar interest because it plays a key role in the pathophysiol-
ogy of autoimmune, inflammatory, and metabolic disorders 
[36]. The activation of the NLRP3 inflammasome leads 
to the secretion of caspase-1 (commonly known as inter-
leukin-1 converting enzyme), which converts interleukin 
(IL)-1β into its active form [37]. Peripheral administration 
of IL-1β leads to mechanical and thermal hypersensitivity 
[38]. Thus, NLRP3 inhibition might provide a potential and 
novel therapeutic strategy to treat burn pain.

an inhibitory effect on the production of other inflamma-
tory mediators including TNF-α [32]. For determining burn 
trauma and infections, the proportion of TNF-α and IL-10 
in the plasma is taken into consideration [33].The response 
of nociceptive neurons can directly be altered by these 
inflammatory cytokines like TNF-α, IL-1β, IL-6, and IL-17. 
[34]. The frequency of C-fiber action potential is rapidly 
increased on administering the injection of these cytokines 
into the knees of the rat. [35]. This in turn leads to the sensi-
tization of neurons transmitting pain signals.

Multi-protein complexes known as inflammasomes 
include nucleotide-binding oligomerization domain-like 
receptor protein (NLRP)-NLRP1, NLRP3, NLRC4, and 
Interferon-inducible protein (AIM2), which aggregate after 

Fig. 2  Cellular mechanisms of burn induced pain. TRPV1 activates 
at a temperature above 43 °C, also by oxidized linoleic acid metabolites 
which are released after burn injury. Bradykinin produced after burn 
injury activates TRPV1 by PLC and PKC. TRPA1 are co-expressed 
with TRPV1. These two channels lead to increased pain transmission. 
Voltage-gated sodium channel (VGSCs) Nav 1.7 has a significant role 
in the induction of thermal nociception by the influx of sodium ions. 
From various elastogenic cells, fibulin-5 is secreted. After burn injury, 

its downregulation increases the expression of p-eIF2α, p-PERK 
which activate TRPV1 channel that ultimately results in the initiation 
of thermal injury evoked pain. Burn injury also activates P38 MAPK. 
The MAPKs signaling increases pain transmission through neuronal 
excitability. Burn injury results in the activation of the NMDA receptor 
followed by the opening of non-selective cation channels and lowers 
the pain threshold, followed by increased pain transmission
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in the production of colony-stimulating factor-1 (CSF-1) 
which further induces microgliosis and promotes the mani-
festation of pain [42]. All these changes can be reversed by 
administering CSF-1 inhibitor into the spinal cord. Inves-
tigations have shown that phosphorylation of p38 MAPKs 
is highly specific to spinal microglia, and is responsible for 
pain hypersensitivity and mechanical allodynia [43, 44]. 
Pain and related hypersensitivities have also been shown 
to be attenuated by inhibiting ERK 1/2 pathway and Rho-
associated protein kinases (ROCK). Metalloproteinase-9 
(MMP-9) is another factor which upon inhibition has 
shown to decrease microgliosis and mechanical allodynia. 

Microglial activation during burn pain

Microglial cells play an important role in the development 
of chronic pain by stimulating the release of IL-1β, IL-6, 
TNF-α, and BDNF, as a result of the inflammatory vicious 
cycle [39, 40]. These mediators participate in developing 
the central sensitization and pain symptoms. Microglia also 
expresses receptors associated with pain signaling such as 
AMPA, mGlu, and purinergic receptors [41]. Burn injury 
results in the damage of the peripheral nerve which further 
leads to the activation of neurons, releasing pro-inflamma-
tory mediators. Damage to primary afferent neurons results 

Table 1  Pharmacological targets for the management of burn pain
Target Description Functions Activation factors Manifestations References
I) TRPV1 
Channel

Calcium permeable ion 
channel belongs to the 
TRP category

TRPV1 is responsible for detection 
of various type of noxious stimuli 
and in pain transmission

Temperature > 43°C, Endog-
enous and Exogenous physi-
cal & chemical stimuli

Thermal 
hyperalgesia

[9, 13]

Oxidized linoleic acid 
metabolites (OLAMs)

Thermal and 
mechanical 
allodynia

II) TRPA1 
Channel

TRPA1 is a member of 
the transient receptor 
potential channel family, 
a protein that is encoded 
by the TRPA1 human 
gene

TRPA1 is co-expressed with 
TRPV1 on C-fibers which plays an 
important role in pain conduction

Bradykinin, Hyperalgesia [9, 11, 13, 
67]

Oxidized linoleic acid 
metabolites (OLAMs)

Thermal and 
mechanical 
allodynia

III) Fibulin-5 Fibulin-5 is a glycopro-
tein that is encoded by 
FBLN5 human gene

Fibulin-5 has an important role 
in fibers formation, also helps in 
wound healing by stimulating type 
I collagen expression and granula-
tion tissue formation

After thermal injury Down-
regulation of Fibulin-5 
secreted by elastogenic cells, 
activation of TRPV1 occurs

Burn injury 
induced Inflam-
matory pain.

[56, 57, 
59]

IV) P38 
MAPK

P38 MAPK is member 
kinase family important 
for proinflammatory 
cytokines production in 
response to stress stimuli

MAPKs signaling has an impor-
tant role to regulate inflammatory 
feedback

Burn injury activates MAPK. 
This activation is negotiated 
by PKA and PKC

Pain Mediation [49, 50, 
52, 53, 
88, 95]

V) Substance 
P(SP)

SP is a Neuropeptide SP acting as a neurotransmit-
ter, a potent vasodilator and as a 
neuromodulator

Substance P with glutamate 
respond to noxious stimuli

Transmission of 
pain signal to 
CNS

[73, 74]

VI) Cal-
citonin 
gene-related 
peptide

CGRP belongs to the 
peptide of the calcitonin 
peptide family

CGRP has a role in the transmis-
sion of nociception. Also, in the 
formation of new vessels like in 
case of inflammation or wounds 
healing process

CGRP gene expression is 
regulated by the MAPK 
signaling pathway

Pain transmission 
in CNS

[78][59]

VII) Nav1.7 Nav1.7 is one of the major 
VGSC which is encoded 
by the SCN9A human 
gene

Plays a crucial role in action 
potentials generation and transmis-
sion. Thus, important for electrical 
signaling by most excitable cells

Action potential caused by 
noxious stimuli

Burn-induced 
hypersensitivity

[17, 19]

VIII) 
µ-opioid 
recep-
tors (MORs)

The µ-opioid recep-
tors (MOR) are a class of 
GPCR opioid receptors

Mu opioid receptors (MOPRs) has 
the crucial role for modulation of 
pain and analgesia

Endogenous and exogenous 
opioids activate MORs. After 
burn injury reduced MOR 
expression occurs due to 
PKC activation which down-
regulates the MOR mRNA 
expression

Analgesia [81, 83]

IX)Gluta-
matergic 
signaling

NMDA Receptor, Kainate 
Receptor, and AMPA 
Receptor belong to this 
family

Involvement and activation of Cal-
cium-permeable AMPA/KA recep-
tors induce spinal sensitization

By the activation of NMDA 
receptor results to the entry 
of cation ions and lowers the 
pain threshold

Induce spinal 
sensitization and 
allodynia

[60, 69, 
70, 106]
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umbilical cord mesenchymal stem cells that modulate the 
inflammatory response [55]. The tissue repairing process is 
enhanced in some animal models by the effect of TSG-6 
on pro-inflammatory cytokine cascades. After burn injury, 
the protective and anti-inflammatory effect of this protein 
is regulated by inhibiting the stimulation of the P38 MAPK 
signaling pathway [56]. Though inhibition of P38 MAPK 
has been shown to exert relief in burn pain in different mod-
els, but for the ongoing role of P38 MAPK in mechanical 
hypersensitivity, it is hard to state the development role, also 
sufficient evidence has not been obtained from clinical tri-
als for treating pain. Many attempts to achieve marketing 
authorization for a p38 MAPK inhibitor for the treatment of 
pro-inflammatory diseases, like rheumatoid arthritis (RA), 
and chronic pain failed at the state of clinical trials, mostly 
due to selectivity and/or toxicity issues.

Fibulin-5 a new player in burn injury mediated 
nociception

The extracellular matrix (ECM) is necessary for tissue 
homeostasis, embryonic growth, and physiological remod-
elling, which is composed of structural proteins, glyco-
proteins (matricellular proteins), tissue growth factor, etc. 
Recently the fibulin family has attained special interest 
for its comprehensive role in cellular physiology, also has 
a necessary role in the stabilization of macromolecular 
ECM complexes [57]. Fibulin-5 is a 66-kDa glycoprotein 
secreted by various cells type including vascular smooth 
muscle cells, fibroblast and endothelial cells. Fibulin-5 
contributes to the formation of elastic fibers by binding to 
structural components including tropoelastin and fibrillin-1, 
and to cross-linking enzymes, aiding elastic fiber assembly 
which further contributes in the wounds and injury [58]. 
The elevated Fibulin-5 in the granulation tissue after full-
thickness injury in mice negotiates endothelial cell adhesion 
by ligation of integrin and promotes collagen expression in 
dermal wounds [59]. Thus fibulin-5 is a novel promoter of 
wound healing that stimulates type-I collagen expression 
and granulation tissue formation [60]. According to a new 
study, Fibulin-5 overexpression in the DRG tissue of burn 
injured mice reduces the inflammatory response and, as a 
result, relieves pain. Interestingly, it also inhibits TRPV1 
channel function and the CREB/CGRP signaling pathway 
by downregulating eIF2 phosphorylation. [61]. Screening of 
novel pharmacological compounds that can upregulate the 
fibulin-5 expression can provide a new direction for dual 
targeting by promoting would healing and mitigating pain 
hypersensitivities.

Minocycline, a tetracycline derivative antibiotic has proven 
to decrease burn pain by inhibiting the microglial cells, 
thereby downregulating the production of proinflammatory 
cytokines [42, 43]. A recent report has suggested that burn-
induced microglial activation occurs due to motor neurons 
residing ventral horn of the spinal cord [46]. Toll-like recep-
tors (TLRs) family is also known to have an important role 
both in burn pain and innate immune response. Microglial 
activation is associated with TLR-4 -dependent signalling 
[47]. Studies have shown that TLR-4 knockdown in mouse 
model has shown to attenuate thermal hyperalgesia and 
mechanical allodynia [47]. Moreover, the administration of 
TLR4 antagonists in mice has been reported to reverse ther-
mal hyperalgesia and mechanical allodynia [48]. Although 
the microglia represent a quality target for the management 
of burn pain, its surveillance role in CNS must be taken into 
consideration which could be altered after its blockade.

Role of P38 mitogen-activated protein kinase in 
burn-induced pain

The P38 mitogen-activated protein kinase (MAPK) plays a 
key role in the induction of proapoptotic genes after burn 
injury which manifest inflammatory responses [49]. It is 
considered as stress-induced kinase which upon activa-
tion facilitates gene transcription of proteins which leads 
to peripheral and central sensitization. P38 MAPK is not 
only involved in the development but also in the mainte-
nance phase of chronic pain. In response to burn injury P38, 
MAPK is immediately activated in the spinal dorsal horn 
along with ERK1/2 phosphorylation [50]. The activated 
P38 MAPK expression is generally localized to lamina II 
neurons of the spinal dorsal horn, microglia, and oligo-
dendrocytes [51]. Pain and related hypersensitivities are 
attenuated by inhibition of the ERK 1/2 pathway and Rho-
associated protein kinase (ROCK). Protein kinases such as 
MAPK-APK-2/3 are phosphorylated by P38 MAPK result-
ing in the amplification of intracellular inflammatory sig-
nalling (Fig. 2). Tactile allodynia often accompanies a burn 
injury and is triggered by AMPA/kainite receptor activation. 
Investigations on P38 MAPK have reported its important 
role in AMPA/kainite receptor-mediated pain behaviour. 
In vivo treatment with P38 MAPK inhibitors has been 
shown to prevent the development of tactile allodynia in 
burn injury mice model [43]. Burn injury induces signifi-
cant thermal and mechanical hyperalgesia which is attenu-
ated by administeringp38 MAPK inhibitor [45, 52]. In burn 
injured mice, topical application of p38 MAPK inhibi-
tor decreased the levels of inflammatory markers such as 
IL6, IL1β in the plasma and skin further preventing [53]
organ failure. [54]. TNF-stimulated gene 6 protein (TSG-
6), a potent anti-inflammatory protein is secreted by human 
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future studies recruiting glutamate receptors so that a better 
understanding can be developed for the pathophysiology of 
burn pain.

Neuropeptides signaling associated with 
burn injury-induced pain

Different studies reveal that neuropeptides can participate in 
different types of inflammatory responses which are associ-
ated with normal wound healing. In case of burn injury, neu-
ropeptides including substance P and calcitonin gene-related 
peptide (CGRP), are secreted from central and peripheral 
neuron terminals [80]. These two peptides directly act on 
venules to produce vasodilation, which results in the spread-
ing of edema. Substance P is synthesized in DRG and from 
there it travels towards peripheral sensory neurons and 
enhances vascular permeability [81]. Substance P is known 
to exert neuro-modulatory effects on nociceptive processing 
as it can mediate the activation of the NMDA receptor. In 
lamina I neurons of the spinal cord, substance P plays an 
important role in the processing and transmission of pain 
[82]. The release of glutamate and substance P can lower 
the pain threshold resulting in hyperalgesia. Moreover, sub-
stance P activates phospholipase C exacerbating excitatory 
response to glutamate actions in dorsal horn neurons in the 
spinal cord and thereby facilitating pain signal transmis-
sion [83]. Substance P also causes NMDA-mediated inward 
currents in DRG neurons and enhances long-term potential 
generation [84]. In non-neuronal immune cells, substance 
P exhibit a critical role in the expression of chemokine and 
their migration. These factors have also been observed as 
mediators of persisting pain [85]. On other hand, the CGRP 
plays a role in angiogenesis by affecting human endothe-
lial cells in case of inflammation or wound healing. CGRP 
expression in neurons is found to be vital for transmitting 
nociceptive signals from the parabrachial nucleus to the 
central nucleus of the amygdala [86]. The Expression of 
CGRP is around 40–50% in DRG neurons and mostly in the 
C fibers. The nerve endings of the sensory neurons releases 
CGRP, leading to vasodilation and neurogenic inflamma-
tion. TTX-resistant Na+ channels are expressed on small- to 
medium-sized nociceptive primary afferent neurons which 
are predominantly affected by the inflammatory mediators 
and are of great importance as CGRP repeatedly binds to the 
small to medium sized DRG neurons. It has been observed 
that the resistant effect of tetrodotoxin (TTX) on sodium 
current density is also enhanced by the effect of CGRP in 
sensory neurons [87]. In burn patients, basal levels of these 
two neuropeptides are observed to be significantly higher 
than in the control subjects [88]. These growing pieces of 
evidence suggest the significant role of substance P and 

Glutamatergic signaling and central 
sensitization during burn pain

Glutamate is the major excitatory neurotransmitter across 
the neurons of the dorsal horn of the spinal cord. The release 
of glutamate occurs in response to nociceptive stimulation 
and tissue or nerve injury[62, 63]. The glutamate and its 
receptor have a significant role in the integration and percep-
tion of nociceptive signals. Glutamate acting via the NMDA 
receptor system induces central sensitization which is a pri-
mary feature of chronic pain [64, 65]. It has been found that 
following a burn damage, glutamate receptors are overex-
pressed. Taking this thing into account, inhibition of NMDA 
receptors will mitigate burn injury-induced hyperalgesia and 
central sensitization [66]. Gabapentin is also reported to act 
by inhibiting the presynaptic NMDA receptors involved in 
the central sensitization during chronic pain[67, 68]. Gab-
apentin has established efficacy in the reduction of burn-
induced hyperalgesia and allodynia in animal and human 
experimental burn models [68, 69]. Human burn models 
also result in an area of surrounding hyperalgesia and allo-
dynia that can be suppressed with oral gabapentin but not 
placebo [72]. Both the animal and human experimental 
burn models confirm that following a burn injury, there is 
a resultant development of secondary tactile allodynia and 
hyperalgesia qualities often attributed to neuropathic pain 
[71]. The recommended dose for the management of burn 
pain is 300 mg tds with titration if necessary up to 3600 mg/
day. Children start at 10 mg/kg with titration 40–50 mg/kg 
[66, 67]. Selective NMDA antagonists are usually preferred 
as it reduces pain and shows lesser side effects. Inhibition 
of glutamate release in animal models has been shown to 
attenuate hyperalgesia and allodynia from noxious stimuli. 
Moreover, burn injury-mediated development of secondary 
hyperalgesia is reduced by AMPA receptor inhibition[74, 
75]. Similar to the NMDA receptor, activation of AMPA/
kainate receptors enhances burn pain behavior, while antag-
onists reduce the noxious stimulation[76]. Additionally, 
studies have shown to diminish secondary hyperalgesia and 
central sensitization in burn models by CNQX or NBQX 
AMPA/kainite antagonists [77]. The mGlu receptors are 
also involved in the later phase of nociceptive responses 
as an increase in their expression is observed post-burn 
injury [78]. In contrast, numerous studies are indicating that 
group 2 mGlu receptors activation reduces hypersensitiv-
ity to thermal stimuli. These receptors along with vesicular 
glutamate transporters can cause significant changes in the 
downstream effects of glutamate and thus, modulate pain 
accordingly. In a clinical study the wind-up phenomenon 
in burn injury-induced pain disappeared 15 min after ket-
amine (NMDA antagonist) administration, but it reappeared 
after 45 min [79]. Henceforth, there is a need of conducting 
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Role of melatonin and BDNF signaling in 
burn pain

In case of burn injury, oxidative stress has been markedly 
reported due to the synthesis of reactive oxygen species and 
free radicals. Melatonin being an indoleamine molecule 
is known for its free radical scavenging and anti-oxida-
tive properties as it restores the glutathione levels in cell 
by crossing morphophysiological barriers including skin. 
Melatonin may also suppress the free radical generation by 
facilitating the synthesis of adenosine triphosphate. Thus, 
melatonin is a potential candidate for providing protective 
effects against oxidative damage caused by burn injury. 
Furthermore, melatonin has been found to regulate pain 
perception via its receptors MT1/MT2 and simple diffu-
sion [91, 92]. In CNS, epithalamus, thalamus, and dorsal 
horns of the spinal cord are the main regions where MT1 
and MT2 receptors are majorly expressed [101]. Mela-
tonin antinociceptive effects are achieved by modulating 
the burn pain signaling across the descending pathway 
and also by decreasing BDNF levels [102]. MT2 mediates 
the inhibition of cyclic adenosine monophosphate (AMP) 
accumulation and the downregulation of intracellular Ca2+ 
diacylglycerol, and arachidonic acid. BDNF is an important 
modulator within the CNS and spinal BDNF signaling has 
been found to regulate nociceptive transmission and central 
sensitization [99, 100]. During chronic pain, the increased 
expression of BDNF in the spinal cord is observed [103]. 
It has also been demonstrated that BDNF is produced by 
spinal microglia in chronic pain conditions. Any insult to 
peripheral sensory neurons leads to ATP release which fur-
ther mediates P2 × 4R activation, ultimately resulting in the 
production of BDNF [104]. Tropomyosin receptor kinase B 
(TrkB) in the spinal cord is activated by BDNF causing the 
elevated intracellular flow of Cl− ions [105]. This results in 
potentiation of synaptic GluN2B-NMDAR currents and fir-
ing of action potential in lamina I neurons of the spinal cord. 
Also, an increase in BDNF production along with other 
inflammatory mediators has been reported upon activation 
of p38 MAPK [106]. Henceforth, there is a need for further 
evaluation of the melatonin receptors along with a better 
understanding of the role of BDNF in anti-nociception.

Future therapeutic targets for burn pain

After burn injury, altered expression of various genes is 
observed in the DRG neurons. Transcriptome analysis has 
suggested the involvement of neuropeptide Y (Npy), CCK 
2 receptor (Cckbr), etc. genes in burn injury-induced pain. 
The up-regulation of Npy in pain models is responsible for 
the enhanced transmission of the nociceptive signal to the 

CGRP in increased pain perception as well as in peripheral 
sensitization which can be served as a potential target for the 
treatment of burn injury.

Opioid receptor signaling in burn-induced 
chronic pain

Mu-opioid receptors (MORs), a member of the endogenous 
opioid system, have a crucial role in the modulation of pain 
and analgesia [89]. Unlike other amino acid and monoamine 
neurotransmitters, opioid peptides and their conjugate 
receptors are expressed throughout pain pathways. Studies 
have suggested the presence of opioid receptors specifically, 
MORs and delta-opioid receptors (DORs), on unmyelin-
ated peptidergic DRG neurons [90]. Peripheral injuries are 
known to induce spinal long-term potentiation often result-
ing in hyperalgesia and tactile allodynia [91]. In such cases, 
MOR agonists have not only been found to inhibit synap-
tic transmission but also to attenuate spontaneous ongoing 
pain [92]. Similarly, in the dorsal horn of the spinal cord, 
decreased levels of MORs were observed in rats with burn 
pain [93]. A possible explanation for this could be that the 
burn injury led to activation of PKC followed by the release 
of intracellular Ca2+ as well as initiation of intracellular 
cascades including heteromers formation, receptor inter-
nalization which cause down-regulation of surface MOR 
expression [94, 95]. In a burn injury-induced pain model, 
Zhang et al. studied the spinal antinociception induced by 
endogenous mu-opioid receptor (MOR) agonists. [49]. 
Their results showed that the phosphorylation levels of 
extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 
mitogen-activated protein kinase (p38 MAPK) in ipsilat-
eral spinal cord tissues were significantly up-regulated after 
burn injury. Intrathecal injection of endorphins selectively 
inhibited the activation of p38 MAPK post burn injury. Fur-
ther studies found that repeated application of the specific 
p38 MAPK inhibitor SB203580 dose-dependently inhibited 
burn-injury induced pain [49]. As opioids possess enormous 
side effects thus it’s better to opt for recent approaches such 
as targeting peripheral opioid receptors [96]. Furthermore, 
targeting MORs in DRG by peripherally restricted agonists 
have been reported to cause analgesic effect without any 
neurological side effects [97, 98]. Such therapies could be 
developed for the management of burn pain with effective 
methodological approaches.
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during burn-induced chronic pain. Distinct opioid signalling 
is observed in burn pain patients accompanied by altered 
genomic profiling, fibulin-5 expression and melatonin sig-
nalling. These series of events promote the central sensiti-
zation that finally contributes towards the pathophysiology 
of burn-induced chronic pain. We also discussed various 
kinases and proteases that are involved in burn-induced 
pain. Further, we highlighted the pros and cons of target-
ing peripheral opioid receptors for the management of burn 
pain. In a nutshell, we conclude that there are several new 
players which plays an important role in the development 
and maintenance of burn injury-induced chronic pain. 
Future in-depth studies are required to carry these targets 
from preclinical to clinical setup so that burn pain can be 
treated effectively without causing any serious side effects 
and toxicities in patients.
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