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Machine Translation (MT) has come a long way in recent years, but it still suffers from data scarcity issue
due to lack of parallel corpora for low (or sometimes zero) resource languages. However, Transfer
Learning (TL) is one of the directions widely used for low-resource machine translation systems to over-
come this issue. Creating parallel corpus for such languages is another way of dealing with data scarcity,
yet costly, time-consuming and laborious task. In order to avoid the above listed limitations of parallel
corpus formation, we present a TL-based Semi-supervised Pseudo-corpus Generation (TLSPG) approach
for zero-shot MT systems. It generates the pseudo corpus by exploiting the relatedness between low
resource language pairs and zero-resource language pairs via TL approach. It is further empirically ascer-
tained in our experiments that such relatedness helps improve the performance of zero-shot MT systems.
Experiments on zero-resource language pairs show that our approach effectively outperforms the exist-
ing state-of-the-art models, yielding improvement of þ15:56;þ8:13;þ3:98 and þ2 BLEU points for
Bhojpuri!Hindi, Magahi!Hindi, Hindi!Bhojpuri and Hindi!Magahi, respectively.
� 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Machine Translation (MT), an automatic translation system for
conversion of one language into another, gains worldwide atten-
tion in the Natural Language Processing (NLP) research communi-
ties for its contributions (Sutskever et al., 2014). Statistical
Machine Translation (SMT) and Neural Machine Translation
(NMT) are two most widely used architectures by MT for language
translation. Unlike traditional MT systems (Abercrombie, 2016;
Hurskainen and Tiedemann, 2017), SMT is a log-linear framework
consisting of language and translation models (Koehn, 2009),
whereas NMT is an end-to-end neural network-based encoder-
decoder model that predicts the likelihood of a sequence of words
using a probabilistic approach. The encoders generate context vec-
tors for input sentences and decoders decode these vectors to gen-
erate target sequences. Bahdanau et al. (2014) introduced an
attention mechanism in encoder for putting more weights on the
words that contained better context vectors of sentences
(Bahdanau et al., 2014). Based on the attention mechanism, many
improvements have been introduced in NMT, such as Transformer
(Vaswani et al., 2017), BART (Lewis et al., 2020) and mBART (Liu
et al., 2020) in the recent years.

Both MT models require a huge parallel corpus. NMT has
achieved success in dealing with the need of huge parallel
resources by introducing various techniques such as back-
translation (Edunov et al., 2018), domain adaptation (Chu and
Wang, 2018), and fine-tuning (Dabre et al., 2019). NMT covers
many scopes of translation for High Resource Languages (HRLs)
and Low Resource Languages (LRLs). Here, HRLs are the language
pairs available in huge amounts to train the model (e.g., Ger-
man$English and French$English). In comparison, LRLs are the
language pairs in which training data is insufficient for better
learning the context between sentences (e.g., Nepali$Hindi, Mar-
athi$Hindi). Insufficient training data works as obstacles for
NMT in improving the LRLs’ translation quality, leading to
context-missing and rare word problems. Some techniques intro-
duced by Sennrich et al. (2016) and Fei et al. (2021) handled such
issues.

The problems faced by MTs become more challenging when the
availability of training data is almost none or zero. We call such
kinds of issues a Zero-Resource Problem (ZRP) as described in
Fig. 1. Techniques to translate such zero-resource language pairs
are known as Zero-Shot Translation (ZST). Some examples of
zero-resource language pairs are Magahi$Hindi, Bhojpuri$Hindi
and Russian$Hindi (Ojha et al., 2020). Creating parallel corpora
for such languages is time-consuming and expensive process due
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Table 1
Relatedness features between languages.

Languages Language Family Script Word Order

Bhojpuri Indo-Aryan Devanagari S-O-V
Hindi Indo-Aryan Devanagari S-O-V
Magahi Indo-Aryan Devanagari S-O-V
Nepali Indo-Aryan Devanagari S-O-V

Note:- S: Subject, O: Object, V: Verb.

Table 2
Sentence examples.

Languages Sentences

Bhojpuri u Apana celA ke xaraxa buJa gailana.
Hindi Axi meM parameSvara ne AkASa Ora pqWvI kI sqRti kI.
Magahi jirI sA bolalUz wo alabala bake lagalA.
Nepali gretara noedA vestako kAlo bAxala Gatne nAma liiraheko CEna.

Note:- All the languages are represented via WX (Diwakar et al., 2010).
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to manual involvement of many language experts. Several works
have been done on the NMT that support the translation of zero-
resource language pairs- e.g., multilingual and pivot-based transla-
tions (Firat et al., 2016; Johnson et al., 2017; Lu et al., 2018; Liu
et al., 2020). Multilingual models usually generalize in a better
way due to inclusion of multiple languages (Dabre et al., 2020).
However, sometimes this is not valid for morphologically rich lan-
guages due to differences in morphological complexity. Pivot-
based MT is also one of the traditional approaches for producing
translation of zero-resource language pairs. However, training
the model via pivot-based approach leads to fluency issues
(Nasution et al., 2017). To address above listed problems of ZST,
we propose a Transfer Learning-based Semi-supervised Pseudo-
corpus Generation (TLSPG) approach for translation of zero-
resource languages that uses semi-supervised learning to exploit
similarities between low and zero-resource language pairs.

The proposed TLSPG approach is motivated by the work of
Kumar et al. (2020) built on the hybrid architecture of SMT and
NMT. TLSPG generates the pseudo corpus by leveraging the relat-
edness between low and zero-resource language pairs and learns
the context of sentences in a semi-supervised way using Transfer
Learning (TL). Unlike multiple HRLs and LRLs in multilingual-
based ZST, we use only a single LRLs parallel corpus to develop
an MT system for zero resource languages. We demonstrate the
experiments on Nepali (NE)$Hindi (HI), Bhojpuri (BHO)$Hindi
(HI) and Magahi (MAG)$Hindi (HI) language pairs. In our experi-
ments, Nepali$Hindi is used to generate the zero-resource lan-
guage pairs (Bhojpuri$Hindi and Magahi$Hindi) by leveraging
their relatedness via TL. All the demonstrated languages are mainly
spoken in South Asian countries. Applications of ZST can be sup-
ported in different fields such as smart healthcare (Mutal et al.,
2019; Skianis et al., 2020), military and defence (Klavans et al.,
2018), finance (Ghaddar and Langlais, 2020) and e-commerce
(Calixto et al., 2017). For instance, use of developed model can be
Fig. 1. Zero Resource Problem in MT.
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helpful in removing the communication barrier between medical
practitioners and local language speakers in a healthcare domain
(Stickland et al., 2021).

Based on sharing common characteristics described in Table 1,
Bhojpuri, Magahi, Nepali and Hindi are considered related lan-
guages. Moreover, sentence examples given in Table 2 demonstrate
relatedness between above considered languages based on com-
monality in writing script, word ordering, and language family.

Specifically, the contributions of this paper are summarized as
follows:

� Propose TLSPG approach for ZST to overcome parallel data lim-
itation of existing NMT models.

� Unlike the existing multilingual-based ZST models (Firat et al.,
2016; Johnson et al., 2017; Liu et al., 2020), proposed approach
leverages the relatedness of single LRLs pair as a semi-
supervised TL technique to improve the performance and vali-
dates through empirical analysis.

� Moreover, perform statistical significance analysis and measure
robustness through training the model on different subsamples
of synthetically generated data and comparing with the other
state-of-the-art techniques available in the literature.

The rest of the paper is organized as follows: Closely related works
are reviewed in Section 2. Problem formulation and proposed
model are discussed in Section 3. Experimental data set and setup
are given in Section 4. Obtained results and respective analysis are
given in Section 5. Finally, Section 6 concludes this work.

2. Related Work

In this section, we closely review the existing ZST systems
shown in Table 3. Firat et al. (2016) proposed a finetuning algo-
rithm for multiway, multilingual NMT model to translate zero-
resource language pairs (Firat et al., 2016). Johnson et al. (2017)
fed all training data into a single NMT engine and trained the
model (Johnson et al., 2017). In the work of Sestorain et al.
(2018), authors demonstrated a zero-shot system consisting of
reinforcement and dual learning.

In the work of Lakew et al. (2018), authors have suggested a
multilingual NMT on a zero-shot direction based on monolingual
data and demonstrated that the self-learning technique improves
the efficiency of multilingual zero-shot directions by using bilin-
gual parallel corpora for training. Lu et al. (2018) demonstrated a
multilingual encoder-decoder NMT architecture with an explicit
neural interlingua for performing direct ZST (Lu et al., 2018).
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Pham et al. (2019) designed a setup by setting a ‘‘Chain” of lan-
guages for 12 language pairs on the standard IWSLT 2017 multilin-
gual benchmark (Pham et al., 2019). Hokamp et al. (2019)
presented a multilingual MT system for ZST on 110 unique transla-
tion directions trained on WMT 2019 shared parallel task datasets
and evaluated by creating gold sets for zero-shot pairs in TED talks
multi-parallel datasets (Hokamp et al., 2019).

Gu et al. (2019) addressed the degeneracy issue by quantita-
tively analyzing the mutual information between the language of
the source and decoded sentences (Gu et al., 2019). Arivazhagan
et al. (2019b) performed a zero-shot experiment on 103 languages
trained on 25 billion examples (Arivazhagan et al., 2019b).
Arivazhagan et al. (2019a) proposed an auxiliary loss forcing the
model to learn the source language invariant representations that
improve generalization (Arivazhagan et al., 2019a). Al-Shedivat
and Parikh (2019) focused on ZST generalization and proposed a
consistent agreement-based learning approach for zero-shot trans-
lation (Al-Shedivat and Parikh, 2019). Zhang et al. (2020) demon-
strated the feasibility of back-translation to allow for massively
ZST and conduct the experiments on the multilingual dataset
(Zhang et al., 2020).

Kumar et al. (2020) proposed a bilingual based ZST system for
Bhojpuri$Hindi and Magahi$Hindi language pairs (Kumar et al.,
2020). It is based on an unsupervised domain adaptation approach.
Liu et al. (2020) presented mBART - a sequence-to-sequence
denoising auto-encoder pre-trained on large-scale monolingual
corpora in many languages using the BART objective (Liu et al.,
2020). Lakew et al. (2021) proposed a novel zero-shot NMT
approach, which includes three stages: initialization, augmenta-
tion, and training for constructing a self-learning cycle of zero-
shot pair (Lakew et al., 2021).

As discussed above, most of the existing methods for ZST are
mainly outcomes of the multilingual NMT model and specifically
trained on the combinations of HRLs and LRLs to improve the qual-
ities of the translation of zero-shot languages. The insufficient
availability of parallel corpora acts as a hindrance in developing
the ZST systems. In comparison with existing methods, our pro-
posed approach based on TL works on leveraging the relatedness
of LRLs pairs without any help of HRLs, shows the drastic improve-
ment for zero-shot language pairs.
Table 3
Comparative overview of the closely related existing models.

Papers Types of MT Techniques

Bilingual Multilingual Finetuning Pivot

Firat et al. (2016) U U

Sestorain et al. (2018) U

Johnson et al. (2017) U

Lakew et al. (2018) U U

Lu et al. (2018) U

Pham et al. (2019) U

Hokamp et al. (2019) U

Gu et al. (2019) U

Arivazhagan et al. (2019b) U

Arivazhagan et al. (2019a) U U U

Al-Shedivat and Parikh (2019) U U

Zhang et al. (2020) U U U

Kumar et al. (2020) U

Liu et al. (2020) U U

Lakew et al. (2021) U U U

Note: EN: English, ES: Spanish, DE:German, FR: France, RU: Russian, PT: Portuguese, JA
Bhojpuri, MAG: Magahi, BE: Belarusian, UK: Ukrainian, CS: Czech, NL: Dutch, FI: Finnish, K
Slovak, GRU: Gated Recurrent Unit, LSTM: Long Short-Term Memory, RNN: Recurrent N
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3. Transfer Learning-based Semi-supervised Pseudo-corpus
Generation

This section discusses the framework of our proposed model to
handle the ZRP. We propose a framework based on transfer learn-
ing and name it as Transfer Learning-based Semi-supervised
Pseudo-corpus Generation (TLSPG) approach. It consists of three
modules: Transformer-based Semi-supervised Learning (TSL),
Moses-based Semi-supervised Learning (MSL) and TL-based
pseudo-corpus generation. TSL and MSL modules pretrain the
model for zero-resource language pairs based on a semi-
supervised learning. TL-based pseudo-corpus generation module
generates the parallel aligned corpus for zero-resource language
pairs via pre-trained TSL and MSL modules. Then synthetic parallel
corpus is generated by merging the parallel corpus of related
languagewith pseudo-corpus generateddata and training the trans-
lation model via Transformer or Moses based translation system.

3.1. TSL

TSL is a semi-supervised transfer learning approach based on
training the NMT model via transformer architecture. We train
the transformer with five number of encoder and decoder stacks.
In order to fill the gap of training language pair in ZST, TSL takes
zero-resource related language pair as input to train the trans-
former. Before training, TSL pre-processes the training sentences
via sentencepiece unsupervised tokenizer and converts the sen-
tences into subword tokens. To train the model, generated sub-
word tokens are added to positional encoding in the forms of
subword embedding and given as input to encoder and decoder
layers as shown in Fig. 2. TSL computes the attention in Trans-
former as follows:

attn ¼ softmax
QKTffiffiffiffiffi
dk

p
 !

V ; ð1Þ

where Q ;K;V and dk represent query, key, value and dimension of
the key generated from input sequences, respectively.

The cross-entropy loss function Lr used to train the transformer-
based NMT model is defined below:
Training model Zero-resource Language pairs

Neural

GRU ES!FR
LSTM ES$FR, ES$RU, RU$FR
LSTM PT!ES, ES!JA, EN${BE, RU, UK}

RNN and Transformer IT$RO
LSTM FR$RU, ES$ZH, ES$FR

Transformer EN$RO, DE$IT, EN$NL, NL$IT, DE$RO, NL$RO
Transformer CS, DE, FI, GU, KK, LT, RU, TR, ZH, FR (88 directions)
Transformer DE!IT, DE!NL, AR!RU, AR!ZH, RU!ZH
Transformer DE!FR, BE!RU, Yi!DE, FR!ZH, HI!FI, RU!FI
Transformer DE$FR

LSTM ES$DE, ES$FR, DE$FR
Transformer OPUS-100
Transformer BHO$HI, MAG$HI

mBART NL$EN, AR$EN, NL$DE
Transformer AZ$EN, BE$EN, GL$EN, SK$EN

: Japanese, ZH: Chinese, GU: Gujarati, HI: Hindi, IT: Italian, RO: Romanian, BHO:
K: Kazakh, LT: Lithuanian, TR: Turkish, AR: Arabic, AZ: Azerbaijani, GL: Galician, SK:
eural Network.
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Lr ¼ �
X

ðXr ;Yr Þ2Dr

p̂ðXr ;YrÞlog10PðYr jXrÞ; ð2Þ

where Xr and Yr are source and target sentences belonging to zero-
shot related training language pairs Dr , respectively. Moreover,
p̂ðXr ;Yr Þ is the gold distribution of Xr . The softmax function used to
convert the predicted subword embeddings into probabilities is
defined as follows:

pðYtÞ ¼ expðYtÞXM
j¼1

expðYjÞ
; ð3Þ

where, M denotes the total number of unique words known by the
model for the generated subword vector Yt at time step t.

The decoder decodes the predicted target probabilities and
passes them to the beam search (Fig. 2). Beam search gives the best
predicted target-side subword tokens. Then detokenization is per-
formed on predicted target-side subword tokens, and the model
predicts the target sequences. For prediction, we give the zero-
resource test sentence as input to the model. Finally, we get the
ZST model as an output of the TSL approach.

3.2. MSL

MSL is a semi-supervised TL approach rely on training a phrase-
based SMT system via Moses (Koehn et al., 2007) framework. In
order to fill the gap of training language pairs in ZST, MSL takes
related language pairs as input to train Moses as shown in Fig. 3.
Before training, MSL preprocesses the training sentences via Moses
tokenizer and limits the sentences up to 80 length. MSL, a Moses-
based (log-linear) framework relies on two modules: language and
translation. KenLM (Heafield, 2011) trains the language model on
the target side monolingual corpus of related language pairs.
Translation model consists of phrase translation and distortion
probabilities. For translation, MSL uses GIZA++ (Och and Ney,
2003) for training on related language parallel corpus. We train
Fig. 2. TSL for zero-resource language pair.
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overall MSL on Moses decoder. The decoder decodes the predicted
target tokens. Then detokenization is performed on tokenized
sequences and final target sequences are predicted. MSL computes
the best target translation ebest for a source input sentence f as
follows:

ebest ¼ argmaxepðejf Þ
¼ argmaxepðf jeÞ pLMðeÞ;

ð4Þ

where pLMðeÞ and pðf jeÞ are language and translation models,
respectively.

A phrase-based log-linear MSL model decomposes pðf jeÞ into
pð�f I1j�eI1Þ as given in the following (Koehn, 2009):

pð�f I1j�eI1Þ ¼
YI
i¼1

/ð�f ij�eiÞ dðstarti � endi�1 � 1Þ; ð5Þ

where, I is the number of phrases �f i broken from f ;/ is phrase trans-
lation probability, dð:Þ is distortion probability, starti is the position

of the first word of the source input phrase that translates to the ith

target phrase and endi is the position of the last word of that source
phrase.

Finally, in order to test the model, we give the zero-resource
test data as input for prediction and get Moses-based ZST model
as an output.

3.3. TL-based pseudo-corpus generation

In this section, we discuss the pseudo-corpus generation
method based on the pre-trained TSL and MSL models. Pseudo-
corpus generation module with TLSPG approach is demonstrated
in Fig. 4. TLSPG first applies the pretrained TSL or MSL model on
target-side monolingual data of zero-resource language pairs to
generate the predicted source-side monolingual sentences. Then
both the target-side monolingual sentences of zero-resource lan-
guage pairs and predicted source-side monolingual sentences are
aligned parallelly in the direction of Source!Target. TLSPG merges
the generated aligned parallel data with Source!Target parallel
corpus of related language pairs to create synthetic Source!Target
parallel corpus for zero-resource language pairs.

3.4. Model Training

In this section, we discuss the training of the final ZST model.
We train the final ZST via the Transformer and the Moses models.
For Transformer, we define the cross entropy loss function to train
ZST model as follows:

LZST ¼ �
X

ðXsyn ;YsynÞ2Dsyn

p̂ðXsyn ;YsynÞlog10PðYsynjXsynÞ; ð6Þ

where, Xsyn and Ysyn represent source and target synthetic generated
parallel sentences belonging to synthetic generated training corpus
Dsyn, respectively. Moreover, p̂ðXsyn ;YsynÞ is the gold distribution of Xsyn.

For Moses, we use the same objective function defined in Eq. (4)
for synthetic generated corpus. In order to get final ZST model, we
train the translation model on pseudo generated corpus with fol-
lowing variations:

A Transformer model training on TSL generated corpus archi-
tecture: We train the Transformer on TSL-based generated syn-
thetic corpus with five layers of encoder and decoder to train
the Source!Target ZST model.

B Moses training on MSL generated corpus architecture: We
train the Moses on MSL-based generated synthetic corpus with
6-gram KenLM language model to train the Source!Target ZST
model.
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C Transformer training on MSL generated corpus architecture:
We train the Transformer on MSL-based generated synthetic
corpus with five layers of encoder and decoder to train the
Source!Target ZST model.

D Moses training on TSL generated corpus architecture: We
train the Moses on TSL-based generated synthetic corpus with
6-gram KenLM language model to train the Source!Target
ZST model.

4. Data and Experimental Setup

In this section, we discuss the datasets and the experimental
settings required to execute the models and analyze the results.
4.1. Data Preparation

We evaluate our proposed model on two language pairs (four
translation directions): Hindi!Bhojpuri, Bhojpuri! Hindi, Hin-
di!Magahi and Magahi!Hindi. Since, all the used language pairs
have zero training data, we employ the model training on Nepa-
li$Hindi parallel corpus for semi-supervised TL learning. Training
and development dataset for Nepali-Hindi parallel corpus are
obtained from WMT 2019 similar language shared task (Barrault
et al., 2019), Opus (Tiedemann, 2012), and TDIL1. In addition, the
LoResMT20202 shared task provided a monolingual corpus as well
as the development and test sets for the Ojha et al. (2020). Table 4
summarises data statistics. All datasets are preprocessed using Sen-
tencePiece3 tokenizer. The proposed model learns 5000 merge oper-
ations and restricts the source and target vocabulary to the most
frequent 5000 tokens for the Transformer architecture.
4.2. Experimental Setup

This part discusses the experimental settings required to train
the TLSPG and baseline models in the following:
1 http://www.tdil-dc.in/index.php?lang=en
2 https://sites.google.com/view/loresmt/loresmt-2020
3 https://github.com/google/sentencepiece
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4.2.1. TLSPG
For TSL, we use the NMT model based on Transformer architec-

ture. Transformer has been trained and evaluated on the open-
source Fairseq toolkit (Ott et al., 2019). We have trained the model
on the default parameters of Kumar et al. (2020) as described in
Table 5, for better comparison. For MSL, we use Moses4, a phrase-
based statistical MT model. We apply GIZA++ and KenLM to train
the translation and language models of Moses, respectively. More-
over, GIZA++ is employed for phrase alignment based on the Markov
model. We also use Mert for minimum error rate training, i.e., to
tune the model. We train the KenLM on the different setups of 1
to 6-gram and consider 6-gram in our experiments for a critical anal-
ysis of models. In the pseudo-corpus generation module, Trans-
former and Moses are trained on the same settings as described in
TSL and MSL models.

4.2.2. Baselines
We use mBART (Liu et al., 2020), a state-of-the-art multilingual

and zero-shot MT approach to compare our proposed TLSPGmodel.
We employ the NE$HI component of the multilingual NMT
method from the pre-trained mbart:cc25 (Liu et al., 2020) model
to directly evaluate it on BHO$HI and MAG$HI test sets in
zero-shot conditions due to similarity among NE$HI, BHO$HI
and MAG$HI language pairs. In addition to mBART, we also com-
pare our model performance with the work done by Kumar et al.
(2020) on the same training and test dataset.

5. Results and Analysis

We evaluate our model on three metrics: BLEU (Papineni et al.,
2002), chrF2 (Popović, 2015), and TER (Snover et al., 2006). To com-
pute each metric, we use SacreBLEU (Post, 2018) tool. From the
obtained scores of each metric listed in Table 6 on different models,
we see that the proposed approach outperforms the existing state-
of-the-art models in all three metrics with wider margin. The
reported scores of each metric also show a lot of co-relation
between each other. We can conclude that the Moses-based sys-
tem performs better than Transformer. The similarity (relatedness)
4 http://www.statmt.org/moses/



Table 4
Description of corpus statistics.

Languages Types Sentences

NE$HI** Training 136991
Development 3000

HI* Training 473605
BHO* Training 91131
MAG* Training 148606

BHO$HI** Development 500
Test 500

MAG$HI** Development 500
Test 500

* Monolingual data.
** Parallel data.

Table 5
Experimental setup used to train the TSL model.

Parameter Value

Model Transformer
Encoder and Decoder layers 5

Encoder embedding dimension 512
Decoder embedding dimension 512

Encoder attention heads 2
Decoder attention heads 2

Dropout 0.4
Attention dropout 0.2

Optimizer Adam
Learning rate scheduler inverse sqrt

Learning rate 1e-3
Minimum learning rate 1e-9

Adam-betas (0.9, 0.98)
Number of epochs 100
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factors shared by Bhojpuri, Magahi, Nepali and Hindi account for
the Moses-based system’s superior performance over a
transformer-based approach. Because of their similarities, the
source language (Bhojpuri, Magahi and Nepali) and target language
(Hindi) in our case follow similar sentence structures. As a result,
Moses generates the phrases having the same structure in both
languages and performs phrase translations. Therefore, phrase
translation enhances performance in a Moses-based system.

5.1. Impact of TSL and MSL

Without using the pseudo-corpus generation approach, TSL and
MSL in TLSPG get an improvement of þ15 and þ30 BLEU on
BHO!HI respectively,þ9 andþ13 BLEU on MAG!HI, respectively,
þ2 and þ1 BLEU on HI!BHO respectively, and þ2 and þ1 BLEU on
Table 6
Experimental results for different language pairs.

Language Pairs Scores mBART Kumar et al. (2020)

Bhojpuri!Hindi BLEU 2.63 19.5
chrF2 0.46 -
TER 1.000 -

Magahi!Hindi BLEU 3.50 13.71
chrF2 0.43 -
TER 1.000 -

Hindi!Bhojpuri BLEU 0.16 2.54
chrF2 0.08 -
TER 1.000 -

Hindi!Magahi BLEU 0.19 3.16
chrF2 0.07 -
TER 1.000 -

A: Transformer model training on TSL generated corpus architecture.
B: Moses training on MSL generated corpus architecture.
C: Transformer training on MSL generated corpus architecture.
D: Moses training on TSL generated corpus architecture.
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HI!MAG respectively compared to mBART model. One of the pos-
sible reasons behind improvement is the high relatedness between
the language pairs.

5.2. Impact of TLSPG

Our proposed method, TLSPG, gets an improvement of
þ32:43;þ18:34;þ6:36 and þ4:96 BLEU points for BHO!HI,
MAG!HI, HI!BHO and HI!MAG, respectively compared to
mBART model. We see that our proposed approach outperforms
the state-of-the-art models with a wide margin. This shows that
relatedness can play a major role in improving the ZST systems.
Apart from these improvements, we also noticed a large variation
of BLEU between X!HI and HI!X (where X are BHO and MAG).
Such a large variation of BLEU while changing the language direc-
tion depends on the complexity of the languages described in the
next section.

5.3. Relatedness between languages

In this part, we perform some empirical analysis on the related-
ness factor of languages to analyze the large improvement in score.
We use a corpus based approach, SSNGLMScore (Mundotiya et al.,
2021), to measure the similarity (relatedness) between languages.

5.3.1. Cross-lingual similarity between languages using SSNGLMScore
We use the similarity metric given by Mundotiya et al. (2021),

called as SSNGLMScore, to measure the relatedness between the
languages, defined as follows:

SSG;H ¼
Xn
H¼1

ScoreðGðHÞÞ; ð7Þ

where SS stands for Scaled Sum of n-gram language model scores.

MSSG;H ¼ SSG;H �minðSSLM;TLÞ
maxðSSLM;TLÞ �minðSSLM;TLÞ ; ð8Þ

where, LM and TL represent language model and test language,
respectively. Moreover, G 2 LM(Nepali, Bhojpuri, Hindi, Magahi)
and n is the total number of sentences in the test language H 2 TL
(Nepali, Bhojpuri, Hindi, Magahi). We train the G using a 6-gram
KenLM model on monolingual corpus described in Table 4. Each
language model G is tested on each language H and scores are
reported.

Table 7 lists the cross-lingual similarity scores of Bhojpuri,
Magahi, Nepali and Hindi with each other. The values in Table 7
indicate how closely languages are related to one another. It
MSL TSL A B C D

32.78 17.80 19.44 35.06 19.49 32.94
0.53 0.56 0.58 0.57 0.59 0.57
0.459 0.656 0.609 0.549 0.595 0.565
16.67 12.58 14.94 20.54 16.14 21.84
0.44 0.43 0.46 0.43 0.49 0.48
0.601 0.725 0.662 0.652 0.654 0.618
1.16 2.61 3.78 4.77 2.56 6.52
0.16 0.15 0.17 0.24 0.16 0.25
1.313 0.995 0.971 0.803 0.982 0.780
1.17 2.89 3.18 3.50 2.39 5.15
0.16 0.14 0.17 0.22 0.15 0.24
1.376 1.027 1.023 0.850 1.025 0.896



Table 7
SSNGLMScore.

Score BHO MAG NE HI

BHO - 0.3015 0.2823 0.2996
MAG 0.3015 - 0.3635 0.3366
NE 0.2823 0.3635 - 0.4845
HI 0.2996 0.3366 0.4845 -

Table 8
Entropy and Type-to-Token Ratio.

Languages Entropy Type-to-Token Ratio

Hindi 5.1474 0.0361
Nepali 5.6140 0.1221

Bhojpuri 4.9658 0.0527
Magahi 5.1480 0.0531
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empirically justifies the relatedness between languages that show
highly co-relation with the results described in Table 6. This relat-
edness between languages aids the performance of our proposed
Fig. 5. Comparison between BLEU score and subs

Fig. 6. Comparison between BLEU score and sub
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model for zero-resource languages, as shown in Table 6. We see
the performance of Hindi!Bhojpuri is close to Hindi!Magahi.
The models for Hindi!Bhojpuri and Hindi!Magahi are built by
applying a transfer learning approach on Hindi!Nepali language
pair. Moreover, based on Table 8, Nepali is morphologically more
complex than Bhojpuri and Magahi. The initial pair of translations
for Hindi!Bhojpuri and Hindi!Magahi was Hindi!Nepali, with
Nepali as the target language, which decreases MT performance
(Mi et al., 2020). The complexity between languages hurts the
transferable parameters of Bhojpuri and Magahi. Hence, the BLUE’s
differences between Hindi!Bhojpuri and Hindi!Magahi are very
close. The reason for the better score of Bhojpuri!Hindi than
Magahi!Hindi is the out-of-vocabulary difference between
amples of training data for Bhojpuri!Hindi.

samples of training data for Magahi!Hindi.



Table 9
Experiments on using LSTM instead of Transformer.

Language Pairs Metrics LSSL Alstm Clstm Dlstm

Bhojpuri!Hindi BLEU 16.7 18.41 17.21 29.43
chrF2 0.54 0.57 0.56 0.55
TER 0.661 0.611 0.601 0.569

Magahi!Hindi BLEU 11.0 12.28 15.10 18.41
chrF2 0.41 0.46 0.48 0.48
TER 0.695 0.662 0.657 0.622

Hindi!Bhojpuri BLEU 2.52 2.91 2.51 5.48
chrF2 0.12 0.15 0.11 0.19
TER 1.061 0.975 0.991 0.7889

Hindi!Magahi BLEU 2.91 2.99 2.28 5.09
chrF2 0.16 0.16 0.15 0.19
TER 1.121 1.027 1.029 0.899

ALSTM: LSTM model training on LSSL generated corpus architecture
CLSTM: LSTM training on MSL generated corpus architecture
DLSTM: Moses training on LSSL generated corpus architecture.
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Magahi and Bhojpuri with Nepali. Thus, we analyze out-of-
vocabulary in the following Section.
5.4. Impact of out-of-vocabulary

Out-of-vocabulary is the collection of words present in test data
but absent in training data. Reason for the better score of Bho-
jpuri!Hindi than Magahi!Hindi is more out-of-vocabulary pre-
Table 10
Adequacy and fluency scales.

Scales Adequacy

1 none
2 little meaning
3 much meaning
4 most meaning
5 all meaning

Table 11
Human evaluation summary.

Model BHO!HI

A NS-1 AA 4.02
AF 3.00

NS-2 AA 3.98
AF 2.78

Agreement KA 0.725
KF 0.690

B NS-1 AA 3.36
AF 2.70

NS-2 AA 3.39
AF 2.64

Agreement KA 0.812
KF 0.750

C NS-1 AA 4.08
AF 3.42

NS-2 AA 3.96
AF 3.06

Agreement KA 0.752
KF 0.612

D NS-1 AA 3.37
AF 2.73

NS-2 AA 3.40
AF 2.63

Agreement KA 0.800
KF 0.750

Note- AA: Average Adequacy, AF: Average Fluency, KA: Inter-evaluator agreement Kappa c
NS-1: Native Speaker-1, NS-2: Native Speaker-2.
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sent in Magahi test data than that of Bhojpuri test data. Since we
use Nepali!Hindi as training data because of its relatedness with
Bhojpuri!Hindi and Magahi!Hindi language pairs, we compute
the out-of-vocabulary ratio between the source languages such
as between Nepali and Bhojpuri, and between Nepali and Magahi.
For this, we perform the set operations on training data of Nepali
with test data of Bhojpuri and Magahi. Out-of-vocabulary ratio of
Bhojpuri is 45.79% and Magahi is 69.98% concerning Nepali. We
find that Magahi has 3.16 times more out-of-vocabulary words
compared to Bhojpuri. Therefore, this is the reason behind the
better BLEU score of Bhojpuri!Hindi compared to Magahi!Hindi
despite Magahi being more similar to Nepali than Bhojpuri.
5.5. Impact of language complexity

Our studies primarily include morphologically diverse lan-
guages. To correlate our findings with the morphological richness
of languages, we have used corpus-based complexity scales.
5.5.1. Word-entropy of languages
The average information content of words is represented by

Entropy (Bentz and Alikaniotis, 2016). This metric would be higher
for languages with a wider variety of word forms, i.e., languages
that learn more details into word structure rather than a phrase
or sentence structure.
Fluency

incomprehensible
disfluent
non-native
good
flawless

MAG!HI HI!BHO HI!MAG

3.05 2.18 3.48
2.12 2.16 3.12
3.05 2.32 3.78
2.98 2.04 3.56
0.950 0.730 0.687
0.987 0.710 0.642
3.91 2.04 3.12
2.92 2.04 2.34
4.02 1.96 4.24
3.02 1.92 2.16
0.672 0.725 0.540
0.720 0.680 0.610
3.70 2.00 2.85
3.28 2.09 2.18
3.64 2.22 2.34
3.19 2.26 2.08
0.800 0.512 0.462
0.600 0.575 0.587
3.00 2.32 2.40
2.79 2.42 1.96
3.34 2.14 2.56
2.61 2.14 2.10
0.745 0.637 0.437
0.712 0.650 0.512

oefficient for adequacy, KF : Inter-evaluator agreement Kappa coefficient for fluency,
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Let C be a text drawn from a vocabulary Z ¼ fv1;v2; . . . ;vkg of
size k. Furthermore, let word type probabilities are distributed
according to pðvÞ ¼ Prðv 2 CÞ for v 2 Z. The average information
content of the word types is calculated by Shannon (1948) method
as follows:

HðCÞ ¼ �
Xk
j¼1

pðv jÞ log2ðpðv jÞÞ: ð9Þ

Entropy with higher values indicates language having high lexical
richness as shown in Table 8. Translation direction for Hindi!Bho-
jpuri and Hindi!Magahi is from low to high lexical rich language.
Thus, high lexical richness of target language compared to source
language degrades the model’s performance for Hindi!Bhojpuri
and Hindi!Magahi compared to Bhojpuri !Hindi and Maga-
hi!Hindi as shown in Table 6. According to Table 8, Magahi and
Hindi have entropy scores of 5:1480 and 5:1474, respectively, indi-
cating that Magahi is morphologically close to Hindi. Because this
Table 12
Examples of translated sentences

Languages Sentences

Bhojpuri (SRC) e waraha se kenxra sarakAra xvArA anuxAna aura yojanA se
xiSA meM baxalAva kaIla gaIla ha.

Hindi (TRG) isa prakAra, kenxra sarakAra se anuxAnoM Ora yojanAoM se
kI xiSA meM baxalAva kiyA gayA hE.

Language pairs Models Translated Sentences

Bhojpuri!Hindi A e. prakAra se keMxra sarakAra xvArA anuxAna
alaga kara-aMwaraNa ke xiSA meM baxalAva

B e pUra se kena xa ra sarakAra xa vArA anuxAn
se alaga kara-aMwaraNa kI xiSA meM baxalAv

C e. waraha se keMxra sarakAra xvArA anuxAna
alaga kara-aMwaraNa ke xiSA meM baxalAva

D e usakI se ken xa ra sarakAra xa vArA anuxAn
se alaga kara-aMwaraNa ka yA kI xiSA meM b

Languages Sentence

Magahi (SRC) biratena-BArawa paraxyogikI BagIxArI hamanI ke saMjukwa x
samqxXi ke mUla AXAra he.

Hindi (TRG) britena-BArawa prOxyogikI BAgIxArI hamAre saMyukwa xqR
samqxXi kA mUla AXAra hE.

Language pairs Models Translated Sentences

Magahi!Hindi A biratena-BArawa paraxyogikI BagIxArI hamanI
mOjUxA Au BAbI pIDZI kyA samqxXi kyA mUl

B biratena-BArawa paraxa yogikI ke ka yA saMju
hamanI BAbI A mOjUxA pIDa ka yA samqxa X

C biratena-BArawa paraxyogikI BagIxArI hamanI
mOjUxA Ane vAlI BAbI pIDZI kI samqxXi ke m

D biratena-BArawa para xa yogikI BagIxArI hama
ka yA mOjUxA A BAbI pIDa ka yA samqxa Xi k

Language Sentence

Hindi (SRC) makAna mAlika re apanI hI musIbawoM meM PaMsA hE.
Bhojpuri (TRG) makAna mAlika re apanahI musIbawana meM Pazsala hava.

Language pairs Models Translated Sentences

Hindi!Bhojpuri A Gara mAlika re APnA nE samasyAmA PazsAekA
B makAna mAlika re apanI nE musIbawoM meM
C makAna mAlika re APno nE musIbawamA PaM
D makAna mAlika re apanA nE musIbawoM meM

Language Sentence

Hindi (SRC) mEM sawsaMga meM bETA WA, mEM sUpa kA hakaxAra hU
Magahi (TRG) hama sawasaMga meM baiTala halI,hama supa ke hakaxAra h

Language pairs Models Translated Sentences

Hindi!Magahi A ma sawsafgamA baseko Wiez, ma supako haka
B ma sawa saMga basirahekA Wie, ma sUpa hak
C ma sawsafgamA basiraheko Wiez, ma supako
D hama pa safa meM bETA Wiyo, hama sUpa kA

Note-1: The scripts of Hindi, Bhojpuri and Magahi language are represented in WX-notat
speaker.
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score is not statistically significant, we also compute the Type-to-
Token Ratio (TTR) described in the next section, which reveals a
substantial difference between Hindi and Magahi. We assess
Type-to-Token Ratio at the word level to determine morphological
complexity (Mundotiya et al., 2021).

5.5.2. Type-to-Token Ratio of languages
To calculate morphological complexity, we consider the ratio of

word types over word tokens (Kettunen, 2014). The spectrum of
word forms is expanded by using productive morphological mark-
ers. As a result, higher TTR value implies higher morphological
complexity. Given a text C drawn from a vocabulary of word types
Z = fv1;v2; . . . ;vkg, the measure is written as follows:

TTRðCÞ ¼ kXk
j¼1

f ðqjÞ
; ð10Þ
AXAriwa sahAyawA se alaga kara-aMwaraNa ke

AXAriwa sahAyawA se hatakara kara-aMwaraNa

A1 F1 A2 F2

aura yojanA se AXAriwa sahAyawA se 3 4 3 3
kaIla cale jAla hEM.
a aura yojanA se AXAriwa sahAyawA 4 4 4 3
a yA kaIla gaIla ha.
aura yojanA se AXAriwa sahAyawA se 4 3 3 3
kaIla gayIla hE.
a aura yojanA se AXAriwa kI sahAyawA 4 3 4 3
axalAva kaIla gaIla ha.

qsti Au hamanI ke mOjUxA Au BAbI pIDZI ke

ti Ora hamArI mOjUxA waWA BAvI pIDZI kI

A1 F1 A2 F2

ke saMjuk wa xqsti Au hamanI kyA 4 3 3 3
a AXAra hE.
ka BagIxArI hamanI qsa ka yA meM A 3 3 4 2
i kA mUla AXAra yaha.
ke saMjuk wa xqsti Ane kI hamanI yaha 3 3 3 3
Ula AXAra he.
nI ka yA saMjuka wa xqsa ti A hamanI 4 3 3 2
a yA mUla AXAra he.

A1 F1 A2 F2

Can. 2 2 2 2
PaMsA Ca. 4 3 3 2
sA Ca. 2 2 2 2
PaMsA. 3 2 2 2

z.
I.

A1 F1 A2 F2

xAra Cu. 2 2 3 2
axAra hUz. 2 2 2 2
hakaxAra Cu. 2 2 2 2
hakaxAra hUz. 3 2 2 2

ion. Note-2: Ai: Adequacy score by ith native speaker, Fi: Fluency score by ith native
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where, f ðqjÞ is the token frequency of the jth type.
According to Table 8, Bhojpuri and Magahi are more morpho-

logically complex than Hindi, supporting the linguistic claim made
for these languages. In Hindi! Bhojpuri and Hindi!Magahi, the
translation direction is from low to high significant complex lan-
guage. The high complexity of target languages leads the model
to be uncertain in learning the representation of vectors. Thus,
the score of Hindi!Bhojpuri and Hindi!Magahi are less than Bho-
jpuri!Hindi and Magahi!Hindi.

5.6. Scalability test

To perform a scalability test, we randomly subsample the syn-
thetic parallel training corpus of Bhojpuri!Hindi and Maga-
hi!Hindi 5 times, discarding nearly half of the data at each step.
Byte-pair embedding segmentation is learned on the total training
corpus via sentencepiece. We set the frequency threshold for sub-
word units to 10 in each subcorpus. Results of trained model for
each subsample on Bhojpuri!Hindi and Magahi!Hindi are shown
in Figs. 5 and 6. The consistent improvement on each subsample
concludes that our model is robust with different data size. In
Fig. 5, we see that variant B and D of TLSPG approach are showing
near about the same performance up to 30000 data size (number of
training sentences). After 30000 data size, variant B outperforms all
the models for the Bhojpuri!Hindi language pair. The variants A
and C go constant after 75000 sentences. In Fig. 6, variants B and
D show constant improvement up to 135000 data size. After
135000 data size, variant D outperforms all the models for Maga-
hi!Hindi language pair. The variants A and C show consistent
improvement. Hence, variants B and D perform better on both
the language pairs.

5.7. Using LSTM in-place of transformer in TLSPG

In addition to the above analysis, we have also conducted a
study by replacing some components of the proposed approach.
This replacement shows how the approach gets affected without
the particular part. Here, we have replaced the Transformer part
of the TLSPG approach with Long Short Term Memory (LSTM)
architecture. We have performed experiments on four models:
LSSL (replacing transformer in TSL), Alstm (replacing transformer
in variant A), Clstm (replacing transformer in variant C) and Dlstm (re-
placing transformer in variant D). Results on all the four models are
listed in Table 9. We have observed that replacing the transformer
with LSTM hurts the performance of all the models. This study
shows the effectiveness of the transformer in the proposed TLSPG
approach.

5.8. Human evaluation

We have performed human evaluation on the translated sen-
tence produced by all the four variants of TLSPG for Bho-
jpuri$Hindi and Magahi$Hindi language pairs. We have
randomly selected 100 sentences from each language pair and
evaluated adequacy and fluency scores by two native language
speakers for each language pair based on the five-point scales as
listed in Table 10. We have reported four types of scores- Average
Adequacy (AA), Average Fluency (AF), Kappa coefficient for ade-
quacy (KA) and Kappa coefficient for fluency (KF) on selected sen-
tences in Table 11. Kappa coefficient helps in computing the
inter-evaluator agreement between the judgement of different
native speakers (Cohen, 1960). Based on the agreement computed
for KA and KF between the two native speakers, we have observed
that more than 60% of the judgements are similar for both Bho-
jpuri!Hindi and Magahi!Hindi language pairs. After going
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through AA and AF values, we have also seen that translated sen-
tences contain sufficient semantic information of source sentences.
Moreover, we have also included some examples of sentences on
different variants of the TLSPG approach with their adequacy and
fluency scores in Table 12 for better readability.

6. Conclusions

In this work, we have proposed TLSPG, a transfer learning-based
semi-supervised pseudo-corpus generation approach for zero-shot
translation systems. We have demonstrated the effectiveness of
the proposed model on Bhojpuri $Hindi and Magahi$Hindi lan-
guage pairs in four different directions. The proposed approach
outperformed the state-of-the-art models with þ15:56 on Bho-
jpuri!Hindi, þ8:13 on Magahi!Hindi, þ3:98 on Hindi!Bhojpuri
and þ2 on Hindi!Magahi language pairs, respectively. We have
also conducted various experiments using corpus-based
approaches and human evaluations to support the performance
of our model. Moreover, we have also evaluated the scalability test
to show the robustness of the proposed model on different data
sizes.

In the future, we will expand our approach to adversarial tech-
niques for data augmentation and other zero-resource and extre-
mely low-resource languages. We would also like to expand our
approach to applications-based systems such as barrier-less com-
munication between local speakers (e.g., Bhojpuri and Magahi)
and medical practitioners in the healthcare domain. Furthermore,
the developed model could also be adopted for mobile health
applications exploiting low-resource environments in developing
countries (Chib et al., 2015).
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