
CHAPTER 2 

 

STUDY OF THE DISPERSION CHARACTERISTICS OF A 

HEXAGONAL PHOTONIC CRYSTAL FIBER 

 

        In this chapter, a solid core photonic crystal fiber (PCF) with hexagonal lattice of air 

holes is proposed and numerically investigated. Chromatic dispersion and normalized 

frequency (Veff) parameters are calculated for the PCF with the help of frequency domain 

algorithm based on finite difference time domain (FDTD) method. Also effective refractive 

index has been calculated in case of polarized as well as scalar input field. The refractive 

index of the core of the PCF is varied from 1.45 to 1.48 in order of 0.01 and effects on the 

different parameters are observed in a figurative manner. We see that negative dispersion 

has been achieved for each refractive index of the core in the S+C+L communication 

bands. Flattened dispersion is attained for diameter of air hole to pitch ratio (d/Λ) equal to 

0.78 in the same band. When increment is done in the refractive index of the core of PCF, 

the values of Veff plotted against wavelength also increase. 

2.1     GENERAL 

        There is a need of dispersion compensation in a long-distance optical data 

communication system because the input pulse broadens as it moves along the fiber and 

the data gets affected. Dispersion compensating fibers (DCFs) [111] are just the right 

candidates for minimizing the dispersion attained in the conventional fibers used for 

communication. Photonic crystal fiber (PCF) [112] has the ability to act as a prominent 

DCF due to the flexibility being offered at the time of designing of PCF. Initially Birks et 
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al. [39] gave the idea of using PCF as a dispersion compensator. In continuity a lot of 

people worked upon PCF for its dispersion compensating ability. Work on dispersion 

compensation over the S+C+L+U communication bands was presented by M. Franco et 

al. [82]. D.C. Tee et al. [84] presented a PCF which exhibits very high negative 

dispersion in all the telecommunication wavebands. The design parameters of a PCF 

include air hole diameter (d), distance between center of two consecutive air-holes also 

known as pitch (Λ) and number of rings of air holes in the cladding. The air holes in the 

cladding can be arranged in a hexagonal, circular or square configuration. It is always 

desired that a particular PCF is manufactured such that it shows an ultra-flattened large 

negative dispersion to be used in an optical communication system. For reduction in 

insertion loss and cost of installation, PCF should be smaller in length with the ability to 

compensate high positive dispersion. 

          An important parameter related to PCF is its normalized frequency (Veff), the value 

of which determines the number of modes that can propagate in a PCF. The unique 

property of PCF is, it can operate in single mode as well as multimode phenomena. The 

design of PCF based on normalized frequency has been explained by M. Nielsen et al. 

[47] in their work published in the year 2003. Analysis of cut-off conditions for mode 

propagation along with normalized frequency in PCF is conducted by N. A. Mortensen et 

al. [37]. Veff is calculated and plotted against wavelength for single mode operation of 

PCF as a part of their work in [114]. 

        The polarization properties of PCF are also an important feature, which increases the 

spectrum of applications of PCF. Birefringence (B) and dispersion parameters have been 

computed, taking into consideration the polarization behaviour of an elliptical PCF by 
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[115]. High birefringence has been obtained and represented accompanying with graph of 

effective index versus wavelength for a PCF structure by T. P. Hansen et al [87]. The 

recent works on PCF mostly emphasize on the evaluation of the birefringence parameter 

for different geometries of PCF [115]. 

2.2 THEORETICAL METHOD   

       There are several methods to study the different properties of a PCF which include 

finite element method (FEM), plane wave expansion (PWE), multi pole method (MPM), 

beam propagation method (BPM) and finite difference time domain (FDTD) technique. 

FEM and FDTD are much sought out methods among all as FEM is easier to implement 

whereas FDTD is more accurate.  

To start finding effective index, we have taken a vectorial wave equation of the form as 

given below: 
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Now, let us consider a structure uniform in the   direction. In this case, the derivative of 

relative permittivity with respect to   is zero: 
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Thus, the second term in Equation (2.1) can be written as  
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After substituting Equation (2.3) into Equation (2.1), we separate Equation (2.1) into the   

and   components. Thus, we acquire the vectorial wave equation using the electric field 

components    and   . Its   component is - 
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and its   component is 
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Now because 
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where   is the propagation constant. Thus, using Equations (2.4) and (2.5), we obtain for 

the   component - 
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and for the   component - 
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   In the equations of fields that transmits in optical waveguides, the expression 

complementary to the interaction between the  ‐directed electric field component    and 

the  ‐directed electric field component    can be written as :  
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    from Equations                 . 

 

Since these terms are small, skipping these terms for the effect, we can separate the 

vectorial wave equations for the x‐ and  ‐directed field components and minimize them to 

semi-vectorial wave equations. In the designing of optical waveguide devices, semi-

vectorial investigation by ignoring the terms for interaction are widely used, in which the 

coupling between  ‐and  ‐directed polarizations does not have to be taken into 

consideration.  

     The electric field component    is assumed to be zero in case of a quasi-TE mode, 

where the main component of the electric field representation is the electric field 

component    in the x-direction. So according to Equation (2.8), the semivectorial wave 

equation for the quasi‐TE mode can be written as: 
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which, can further be rewritten as : 
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 The    representation of wave equation derived for the quasi‐TE mode is - 
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Figure 2.1 Non-equidistant discretization for the finite‐difference method. 

 

       Now we have to obtain the finite‐difference expression for the above equation. The 

transverse distribution of field for non-discretized PCF structure for the implementation of 

finite difference technique has been shown in Figure 2.1. 

Using for                     , and       , Taylor series expansions around      , we get 
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Calculating finite difference of each term of the Equation 2.12, we get a bit long relation as 

below: 
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Converting the above relation into a simpler form, finite difference expression of Equation 

2.12 can be written as:  
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where 
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Adjusting above equation for each mesh node of fiber gives an Eigen-value equation of the 

form as follows: 

                                                                 [Mi,j] Ex = (k0 neff)
2
 Ex                                                     (2.25) 

 

Here, Mi,j is a Hermitian operator in which the indices i and j represent the arbitrary node 

points along x- and y- direction, respectively. 

     While calculating effective refractive index (β / k0) from the matrix mentioned in 

Equation 2.25, we apply analytical boundary conditions in which field decays exponentially 

at the points of discontinuity of the structure. A mathematical expression for analytical 

boundary can be given as: 

                            Ex(x,y) =    √                 Ex(x-1,y)                                      (2.26) 

 

    Implementation of the coding in Matlab software has been done as per the flow chart 

visible in Figure 2.2.  
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Figure 2.2 Flow chart to compute effective index of PCF. 

 

    We have calculated effective refractive index (neff) of PCF with the help of a frequency 

domain algorithm based on FDTD technique which is implemented in computational 

software, Matlab. Since our emphasis is on determining the values of dispersion, the 

effective index computed in our work is a measure of only the real part of the total 

effective index which in turn comprises of imaginary as well as real part. The effective 

index values of PCF are then deployed to calculate and plot dispersion curves. 
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                                             D= - 
 

 
 
            

                                                                (2.27)  

D in the Equation (2.27) is known as chromatic dispersion and is the sum of material as 

well as waveguide dispersion. The parameter c is the velocity of light in a vacuum,   is 

the wavelength of the field propagating in the fiber and Re(neff) is the real part of the neff. 

The values of Re(neff) are same as that of neff evaluated in this paper. The waveguide 

dispersion can be calculated from similar equation, from which the chromatic dispersion 

is calculated whereas material dispersion is calculated from Sellmeir’s formula. 

   The normalized frequency (Veff) for any PCF can be evaluated from : 

                                           Veff = 
  

 
Λ (   

  -     
 )

1/2
                                                       (2.28) 

In Equation (2.28), nco and neff denote the refractive index of core and effective refractive 

index of the PCF respectively. The value of Veff suggests the type of mode propagation in 

the PCF. The PCF can operate both in single mode as well as multimode condition for 

propagation of electromagnetic wave.  

2.3  DESIGN GEOMETRY AND SIMULATION RESULTS 

In our work a hexagonal lattice photonic crystal fiber is used for computation whose 

schematic cross-section is shown in Figure 2.3. The air holes are having a diameter (d), 

which is fixed at 1.8 µm. The separation between the center of two consecutive air holes, 

also known as pitch (Λ) is made equal to 2.3 µm. Four rings of air holes are embedded in 

the cladding of the PCF containing 6, 12, 18 and 24 air holes respectively starting from 

the center of the structure. The refractive index of each of the air holes is taken to be 1, as 

that of air. 
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Figure 2.3 Hexagonal lattice photonic crystal fiber with 4 rings of air holes. 

 

        Excluding the air holes, whole PCF comprising of core and cladding is assumed to 

be made of pure silica which has a refractive index of 1.45. The diameter of the cladding 

of the PCF is set to be 40 µm in dimension, although this quantity has a minimal effect on 

the computation and can be ignored since the electromagnetic modes are confined only 

upto the air hole region in our case. 
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       The new aspect of hexagonal lattice PCF which we have studied in this paper is the 

effect on dispersion values by changing the core’s refractive index (ncore) or that of PCF 

otherwise. Instead of saying the refractive index of PCF we will use only the core’s 

refractive index since the whole geometry of PCF is connected and the cladding region, 

leaving air holes is having the same refractive index as that of core. The refractive index 

of pure silica can be varied by doping of some impurity like Germanium, Gallium, 

Phosphorous etc. and then a preform can be made of the doped glass for using it to draw 

optical fiber via fiber drawing tower. We have varied the refractive index of core from 

1.45 to 1.5 with an increasing order of 0.01 and plotted the dispersion curves for each 

value of refractive index.  The dispersion curves are plotted by varying the ratio of 

diameter of air hole to the pitch (d/Λ) at each refractive index of core (ncore). The ratio of 

d/Λ is taken to be 0.78, 0.82 and 0.86 for each value of ncore and graphs have been plotted 

for the values of dispersion against wavelength. The wavelength band which is 

considered for finding out the values of effective index and thus dispersion parameters is 

taken to be S+C+L band which is used in telecommunication. As we can see in Figure 

2.4, there is observed a negative dispersion for all the values of d/Λ for each refractive 

index of the core. Dispersion flattening is visible prominently for d/Λ=0.78 from 1.50 to 

1.60 µm wavelength within a vertical range of 2.5 ps/nm-km only. We also notice from 

the above mentioned figure that as we increase the refractive index of core of PCF from 

1.45 to 1.48, there is detected a downward shift in the dispersion curves. For every 

increment in the core’s refractive index, the dispersion curves shift by about 10 ps/nm-km 

for the same value of d/Λ.  

 



66 
 

 

1.40 1.45 1.50 1.55 1.60 1.65 1.70

-90

-80

-70

-60

-50

-40

-30

-20

1.40 1.45 1.50 1.55 1.60 1.65 1.70

-120

-100

-80

-60

-40

-20

0

1.40 1.45 1.50 1.55 1.60 1.65 1.70

-100

-80

-60

-40

-20

0

1.40 1.45 1.50 1.55 1.60 1.65 1.70

-120

-100

-80

-60

-40

-20

0

D
is

p
e
rs

io
n

 (
p

s
/n

m
-k

m
)

Wavelength (m)

 d/

 d/

 d/

(a)

 d/

 d/

 d/

D
is

p
e
rs

io
n
 (

p
s
/n

m
-k

m
)

Wavelength (m)

(c)

 d/

 d/

 d/

D
is

p
e
rs

io
n

 (
p

s
/n

m
-k

m
)

Wavelength (m)

(b)

D
is

p
e
rs

io
n

 (
p

s
/n

m
-k

m
)

Wavelength (m)

 d/

 d/

 d/

(d)

 

Figure 2.4 Dispersion properties of the hexagonal PCF as a   function of wavelength with 

refractive index of core, ncore= (a) 1.45 (b) 1.46 (c) 1.47 (d) 1.48. 
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      Normalized frequency (Veff) of the PCF is calculated for all the four values of core’s 

refractive index viz. 1.45, 1.46, 1.47 and 1.48 at d/Λ=0.82. The values of Veff are plotted 

against wavelength in Figure 2.5.  
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Figure 2.5 Wavelength dependence of V parameter value for d/Λ=0.82 and ncore=1.45, 

1.46, 1.47 and 1.48. 

 

       As we can see from the figure, there is an increase in the values of Veff with increase 

in the values of ncore at each wavelength in the S+C+L communication band. The curves 
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plotted between Veff and wavelengths have a continuously decreasing slope. Also there is 

equal spacing between any two adjacent slopes of Veff. 

   At last, a graph has been devised between the values of effective refractive index versus 

wavelength for polarized and scalar electric field for each refractive index of core. The 

solid lines in the Figure 2.6 are plotted by taking the input field as polarized in either X or 

Y direction, since the values of neff are same in any polarized condition for our structure. 

When the values of neff are plotted against wavelength for an unpolarized field or we can 

say for an electric field which is scalar then we get the curves as dashed lines visible in the 

same figure as referred to in the previous statement. 

     A field can transmit in a PCF either in a polarized manner or scalar (unpolarized) 

fashion. When the field’s total intensity component is only in either X or Y direction then it 

is said to be polarized state. When the field’s amplitude is independent of both the 

directions then that field is known to be propagating in scalar condition. The effective 

refractive index can be calculated for either polarized or scalar behaviour of the wave in the 

fiber. 
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Figure 2.6 Effective index values of PCF plotted against wavelength in case of polarized as 

well as scalar input field represented by Ep and Es respectively at ncore= 1.45, 1.46, 1.47 

and 1.48. 

 

2.4 CONCLUSION 

       In conclusion, we report the simulation of a hexagonal lattice photonic crystal fiber by 

varying the refractive index of its core with the help of FDTD technique implemented in 

Matlab software. The results show that the dispersion increases in the negative direction 

with increase in the value of ncore of PCF, by an average amount of 10 ps/nm-km in S+C+L 

communication band. For a particular value of ncore, negative dispersion increases with 
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increase in d/Λ values in the same communication band. There is observed dispersion 

flattening between 1.50-1.60 µm wavelength for d/Λ =0.78 within a range of 2.5 ps/nm-km 

at each refractive index of core. The graph plotted between values of Veff against 

wavelength suggests that there is a linear relationship between Veff and wavelength and as 

we increase the ncore of PCF, the normalized frequency also increases with fixed steps. 

Lastly we have shown that the values of neff calculated in the case of scalar electric field are 

higher, than which are evaluated in the polarized field. For every ncore there is an equal 

jump in the values of neff in case of scalar field as compared to polarized one. This kind of 

PCF can be used in the applications such as dispersion flattening, dispersion compensation 

and band-pass or band-reject filters in optical communication systems. It has the potential 

to be used in multimode regime of wave propagation apart from single mode, thus making 

it to transfer more data at the same time. It can also act as polarization filter in optical 

networks by being able to detect scalar or polarized field one at a time. 


