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With quenched disorder, we introduce two-dimensional active nematics suspended in an incompressible fluid.
We write the coarse-grained hydrodynamic equations of motion for slow variables, viz. density, orientation,
and flow fields. The quenched disorder is introduced such that it interacts with the local orientation at every
point with some strength. Disorder strength is tuned from zero to large values. We numerically study the defect
dynamics and system kinetics and find that the finite disorder slows the ordering. The presence of fluid induces
large fluctuation in the orientation field, further disturbing the ordering. The large fluctuation in the orientation
field due to the fluid is so dominant that it reduces the effect of the quenched disorder. We have also found that
the disorder effect is almost the same for both the contractile and extensile nature of active stresses in the system.
This study can help to understand the impact of quenched disorder on the ordering kinetics of active gels with
nematic interaction among the constituent objects.
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I. INTRODUCTION

In flocks of birds, schools of fish, cytoskeletal filaments,
migrating cells, etc., complex pattern formation, coherent mo-
tion, and the spatiotemporal changes are fascinating visual
events. Such interesting phenomena originate from the active
nature of the systems composed of living particles. In an active
system, each particle is driven by an active force and drives
the system away from the equilibrium [1]. The active sys-
tems include microorganisms like cytoskeletal filaments [2],
bacteria colonies [3], cells in tissue [4], and macroorganisms
like schools of fish [5], flocks of birds [6], etc. Theoretical
and experimental studies of active systems revealed many
emergent behaviors, such as large density fluctuations [7,8],
spontaneously flocking states [9–13], strange rheological and
structural properties [14,15], and spatiotemporal patterns that
are not seen in passive complex fluids [16,17]. The flocking
phase of elongated active objects originates from their mutual
alignment based on their head and tail symmetry. Polar objects
like birds, fish, etc., can order in polar or nematic fashion
[6,18,19], whereas apolar objects like melanocyte cells and
M. xanthus bacteria form only nematic order (active nematics)
[20,21]. Unlike polar objects, apolar objects do not distinguish
between head and tail; i.e., the alignment unit vector ν is
invariant under the transformation ν → −ν [17,22].

The physics of active nematics gel has gained significant
attention in recent years, where the growth properties and
defect dynamics are studied under various conditions, e.g., the
effect of underlying friction of the substrate and the turbulence
in the background fluid [1,19,23–28].

Inhomogeneity and disorder can play crucial roles in the
ordering of active systems; they can reduce the ordering as
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well as enhance the system dynamics according to their nature
[29–36]. In [29–31], the authors have found that the presence
of obstacles reduces the ordering and also breaks the ordered
phase if their density is high. These studies mainly address the
impact of inhomogeneities on the ordering of polar particles.
Still, quite a few studies address the effect of disorder in
apolar active particles, e.g., our previous work on dry ac-
tive nematics with quenched disorder [37]. In [19,26,27], the
authors experimentally studied the active nematic gel with
some inhomogeneity, e.g., rigid microtubules (MTs) in the the
suspension of active filaments [19], MT-based active nematic
suspension in the presence of external magnetic field [27], and
active nematic flow in the presence of submerged microstruc-
tures [26]. Motivated by these works, in this study, we have
investigated the impact of quenched disorder in wet-active
nematics (or active nematic gel). Previous studies that address
the defect kinetics in active nematic gel [21,38–41] are done
mainly for clean systems; therefore, this study provides a
thorough understanding of the effect of inhomogeneity in an
active nematic gel.

We use hydrodynamic equations of motion based on the
continuum model [6,18] to study the two-dimensional active
nematics suspended in an incompressible fluid [21,22,40,41],
with quenched inhomogeneity in the orientation field [37].
The equations are written in a coarse-grained description for
the density field ρ(r, t ), orientation field or nematic order
parameter Q(r, t ), and the velocity of the flow field v(r, t ).
A coarse-grained study of active nematic gel in the presence
of quenched disorder, h, shows that the disorder slows the
ordering kinetics in the system. The presence of fluid induces
large fluctuations in the orientation field that reduces the effect
of quenched disorder; still, large fluctuations in the orientation
field due to fluid are sufficient enough to delay the defect anni-
hilation, which results in the slow ordering kinetic. This study
can help in understanding the effect of quenched disorder and
the flow field strength in the naturally relevant systems, such
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as cytoskeletal suspensions in an incompressible fluid in the
presence of unavoidable quenched inhomogeneity.

We divide the rest of the article in the following manner.
In Sec. II, we discuss the model and the numerical details; in
Sec. III we discuss the results; and finally, we summarize in
Sec. IV.

II. MODEL AND NUMERICAL DETAILS

We write the hydrodynamic equations of motion for active
nematics with quenched disorder suspended in an incom-
pressible fluid referred to as “active nematic gel” in two
dimensions. These equations are formulated in terms of local
density field ρ(r, t ), velocity of the flow field v(r, t ), and
the nematic order parameter Qi j = S(νiν j − 1

2δi j ), where ν

is the unit director and i = 1, 2 in two dimensions. Qi j (r, t )
is uniaxially traceless and symmetric and hence has only two
independent components in two dimensions. The disorder in
the system is added to the Q equation only. For simplicity we
write the hydrodynamic equation of motion for incompress-
ible fluid, i.e., with ∇ · v = 0. The density equation is given
as

Dρ

Dt
= ∂i[Di j∂ jρ + α1ρ

2∂ jQi j], (1)

where D
Dt = [∂t + v · ∇] indicates the material derivative, and

Di j = (D0δi j + D1Qi j ) is the anisotropic diffusion coefficient
term with constant D0 and D1. The equation for the flow field
is

Dvi

Dt
= η∂2

i vi − ∂i p + ∂ jσi j, (2)

where η is viscosity, p is the pressure, and σi j is the stress
tensor. We keep the density of the fluid equal to 1. Finally,
the equation for the orientation field or the nematic order
parameter field is given as

DQi j

Dt
= λSui j + Qikωk j − ωikQk j + γ −1Hi j + H ′

i j, (3)

where λ is the flow field parameter similar to what is used
in [21,40,42] (the larger the value of λ, the stronger will be
the effect of the fluid), and ui j = 1

2 (∂iv j + ∂ jvi ) and ωi j =
1
2 (∂iv j − ∂ jvi ) are the symmetrized rate of strain tensor and
vorticity, respectively. The molecular field Hi j embodies the
relaxational dynamics of the nematic phase (with γ as the
rotational viscosity) and can be obtained from the variation
of the Landau–de Gennes free energy of a two-dimensional
nematic, Hi j = − δF

δQi j
, with

F
K

=
∫

dA[
1

4
(ρ − ρc)trQ2 + 1

4
ρ(trQ2)2 + 1

2
|∇Q|2], (4)

where K is an elastic constant with dimension of energy,
ρc is the critical density for isotropic-nematic transition,
so that in ordered steady-state scalar order parameter, S =√

1 − ρc

ρ
. The quenched disorder is introduced as random

field in the free energy density F = −Q : (hh − I
2 ). We

define quenched disorder as H ′
i j = (hih j − h2

0
1
2δi j ), where,

hi = h0(cos φ, sin φ) with h0 as the disorder strength and

φ(r) is a uniform random angle between (0, 2π ) with mean
zero, quenched in time and space correlation 〈φ(r)φ(r′)〉 =
δ(r − r′).

Finally, the stress tensor in Eq. (2) σi j = σ r
i j + σ a

i j is
the sum of elastic stress due to nematic elasticity, σ r

i j =
−λSHi j + QikHk j − HikQk j , and σ a

i j = α2ρ
2Qi j is the active

stress. Activity yields a curvature-induced active current ja =
α1ρ

2∇ · Q in Eq. (1). The ρ2 dependence of the active stress
and current is appropriate for systems where activity arises
from pair interactions among the filaments via cross-linking
motor proteins [43]. The sign of α2 depends on whether
the active particles generate contractile (α2 > 0) or extensile
(α2 < 0) stresses, while we always keep α1 > 0.

Equations (1)–(3) are written in dimensionless units by
rescaling all lengths by the length of the particle and time by
the collision time and are of the same form as derived from the
microscopic rule-based model in [44], with fluid flow [40,41]
and an additional term due to quenched disorder as in the dry
case [37].

The random field introduced in our current model is sim-
ilar to the random field in the XY model (RFXY model)
[45]. Hereafter we refer to our model as random field wet
active nematics or RFWAN when h0 �= 0, and clean-wet ac-
tive nematics (clean-WAN) for h0 = 0. We keep the activity
moderate so that the system does not get into the high tur-
bulence regime, and the effect of quenched disorder remains
relevant.

To perform the numerical integration of Eqs. (1)–(3) we
construct a two-dimensional L × L square lattice with pe-
riodic boundary conditions and discretize the space and
time derivatives using an explicit Euler scheme (�x = 1.0
and �t = 0.1). Initially, we start with random homogeneous
density with mean ρ0 = 0.75 > ρc, random orientation, and
homogeneous flow field.

Parameters in Eqs. (1)–(3) are α1 = 0.2, 0.3, |α2| =
2α1, D0 = 1.0, D1 = 0.5, γ = 1.0, η = 2.0. We study the
ordering kinetics of RFWAN for different values of disor-
der strength h0 ∈ [0.0, 0.2] and flow field parameter λ =
0.1, 10, 20, and 100. One simulation time is counted after
update of Eqs. (1)–(3) for all lattice points. Also, the data in
Sec. III B are averaged over 15 independent configurations of
φ. We check the stability of the code for the chosen set of
parameters by calculating the fluctuation in the velocity field
v(r, t ) from its mean value, i.e., �v. In a �v vs t plot, we
observe that �v show small fluctuation as t → ∞; see Fig. 14
in Appendix C.

III. RESULTS

To characterise the system properties we calculate
the magnitude of the nematic order parameter (NOP)

defined as |Qi j | = 1
2

√
Q2

11 + Q2
12, where, Q11 = −Q22 =∑

sin 2θ (r, t ) and Q12 = Q21 = ∑
cos 2θ (r, t ); here θ (r, t )

is the orientation field. We discuss the results in four subsec-
tions: first, we study the defect dynamics for different system
parameters; second, we study the system kinetics; third, we
study the effect of flow field; and finally we study the the
scaling properties of the system.
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FIG. 1. Snapshots of NOP at different simulation times for α2 >

0 [(a), (c)] and α2 < 0 [(b), (d)], for disorder strengths h0 = 0.0
[(a), (b)] and h0 = 0.2 [(c), (d)]. +1/2 defects are marked in red
circles and −1/2 defects are marked in green squares in the rightmost
snapshots. See Supplemental Material [46] for movie.

A. Defect dynamics

In two-dimensional active nematics, when the system is
allowed to equilibrate, the ordering in the system takes place
via the creation and annihilation of the topological defects
of equal and opposite topological charges, i.e., ±1/2-defect
pairs [21]. +1/2 defects are asymmetric comet-like structures
that act like motile particles and move convectively along the
axis of asymmetry. In contrast, −1/2 defects have symmetric

trefoil structures that only diffuse in the system. Further, the
value of NOP is zero at the core of the defects; therefore, while
approaching the ordered state, the defect pairs get annihilated.
A brief comparison of wet active nematics with its passive
counterpart is given in Appendix A. In our previous study for
the dry-RFAN, we find that a finite disorder in the system
slows the dynamics of the +1/2 defects that result in slow
coarsening [37]. We find the same observation in the presence
of fluid also, where, with the finite disorder (RFWAN), we
see more pair of defects [see Figs. 1(c) and 1(d)] than the
clean case or clean-WAN [see Figs. 1(a) and 1(b)]. Further,
the effect of disorder is the same for both contractile (when
α2 > 0) and extensile (when α2 < 0) nature of active stresses,
σ a [see Eq. (2)]. Figures 1(a)–1(d) show the snapshots of Qi j

at different simulation time. We can see the defect pairs and
their annihilation as the simulation time increases. The defect
annihilation is fast for h0 = 0.0 [Figs. 1(a) and 1(b)] compared
to case when h0 = 0.2 [Figs. 1(c) and 1(d)], which suggests
that in the presence of quenched disorder, we observe slow
defect dynamics that can result in slow ordering. Further, we
see almost the same number of defect pairs for both α2 > 0
and α2 < 0 without the disorder [Figs. 1(a) and 1(c)] and with
disorder [Figs. 1(c) and 1(d)]. We find the same observation in
the correlation length vs time plot (discussed later). Therefore,
we study the system’s response only for α2 > 0 in the further
results and discussion.

B. Kinetics

To understand the effect of quenched disorder on the order-
ing kinetics, we calculate the correlation length for the order
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FIG. 2. Correlation length LQ vs t [(a), (b)] and Lρ vs t [(c), (d)] for different h0. Plots in left panels [(a), (c)] are for contractile case with
α2 = 0.4, whereas right panels [(b), (d)] show the plots for extensile case with α2 = −0.4. Also the value of flow field parameter λ = 0.1.
Insets: Correlation length LQ,ρ (t ) vs t/ ln(t ) on log-log scale.

044603-3



SAMEER KUMAR AND SHRADHA MISHRA PHYSICAL REVIEW E 106, 044603 (2022)

0 1000 2000 3000 4000
t

20

40

60

80

100

L
Q

(t
)

h
0
=0.0

h
0
=0.10

h
0
=0.175

h
0
=0.20

1000 2000 3000 4000 5000
t

20

40

60

80

100

L
�(

t)

FIG. 3. Correlation length LQ(t ) vs t (left) and Lρ (t ) vs t for different strengths of disorder h0 and fixed flow field parameter, λ = 100.

parameter field, LQ(t ), and density field, Lρ (t ), and plot it
for different strength of disorders, h0. The correlation length
[LQ,ρ (t )] is defined as the length of the first zero crossing of
the correlation function, CQ,ρ (r, t ) (see Sec. III D). Figure 2
(main panels) shows the plots of correlation lengths LQ,ρ (t )
vs time t for different strengths of disorder, h0. We see that as
time increases, correlation length increases for a fixed strength
of disorder. Further, we observe that the correlation length (or
the size of the ordered domain), for a fixed time, decreases
as we increase the strength of the quenched disorder in the
system. The impact of disorder is similar for both contractile
(α2 > 0) and extensile (α2 < 0) cases, which is robust for
other values of activity, i.e., α1 = 0.3 (see Fig. 11 in Ap-
pendix B). This observation is different from what is observed
for scalar active particles suspended in an incompressible
fluid, where the growth of L(t ) is faster for extensile stress
than that of contractile stress [47]. Further, in Fig. 2 (insets),
we show the plot of LQ,ρ (t ) vs t/ ln(t ) (where t/ ln(t ) is the
logarithmic correction [48]) on log-log scale. The correlation
length grows as LQ,ρ (t ) ∼ [t/ ln(t )]1/z, where the dynamic
growth exponent [48] z 
 2.0 for h0 = 0.0 and increases in
range (3.0 > z > 2.0) as we increase the value of h0. It again
conveys that the quenched disorder in a two-dimensional wet
active nematics slows the ordering. In addition to the above
analysis, we did a brief comparison between wet active and
passive nematics and find the order parameter field follows the
same growth law for both passive and active cases, whereas in

the passive nematics no growth is found for density field (see
Fig. 10 in Appendix A).

Up to here, we have analyzed the effect of quenched dis-
order in RFWAN with a fixed flow field parameter (λ = 0.1).
Now, we explore the response of fluid and the effect of disor-
der for various strength of flow controlling parameters or the
flow field parameter (λ) in the system.

C. Effect of fluid in RFWAN

To study the effect of fluid on the growth properties for
different strengths of disorder in the system, we calculate the
correlation length LQ,ρ (t ) for different strengths of disorder
h0 and flow aligning parameter λ = 100.0. The flow field
parameter λ controls how the director field rotates in a shear
flow and affects the flow and rheology of the systems. In
Fig. 3, we show the plot of LQ,ρ (t ) vs t for different strengths
of quenched disorder (h0). We again find that in the presence
of disorder, correlation length (at time t) decreases as we
increase h0. Still, the effects of the quenched disorder are
reduced more for λ = 100.0 than for the former case when
λ = 0.1 (see Fig. 2). Further, in Fig. 4, we plot the correlation
length [LQ(t )] for a fixed disorder strength (h0 = 0.1), and
different values of λ. In this plot, we observe that the size of
the ordered domain at a fixed time decreases as we increase
λ. This effect can be understood by calculating the probability
distribution function P(�θ ) for different values of flow field
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FIG. 4. Correlation length LQ(t ) vs t on linear scale (left) and log-log scale (right), for different λ and fixed h0 = 0.1 for α2 = 0.4.
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FIG. 5. (a) Probability distribution function P(�θ ) vs angle fluctuation �θ for different values of λ = 0.1, 20.0, and 100.0. Data on the
x axis are in units of π/2. We fix the strength of quenched disorder, h0 = 0.1 and α2 = 0.4. Data are generated when the system reaches
the steady state and averaged over 10 independent snapshots of orientation field [θ (r, t )]. (b) Trajectories of topological defects for λ = 0.1
(circles), λ = 20.0 (squares), and λ = 100.0 (triangles). Filled data symbols are for +1/2 defects and open symbols represent −1/2 defects.
Data are generated for h0 = 0.0 and α2 = 0.4. Color bars shows the simulation time t/1000.

parameter (λ), where �θ is the angle fluctuation in the orien-
tation field (θ ) from its mean (θ0). Figure 5(a) shows the plot
of P(�θ ) vs �θ for three different values of λ = 0.1, 20.0,
and 100.0 and fixed h0 = 0.1. From this plot, we observe that
the fluctuation in the orientation field increases as we increase
the value of the flow field parameter. Also, for λ = 100.0, we
observe two distinct peaks that imply uncorrelated domains.
Therefore, we do not observe a homogeneous ordered phase in
the steady state for a large values of flow field parameter. This
tells us that with an increase in the value of λ, the local orien-
tation itself gets randomized, which causes large fluctuations
in the nematic order parameter Q, hence reducing the growth
dynamics. This effect can be seen in the defect dynamics in
Fig. 5(b), which shows the trajectories of ±1/2 defects for
three different values of λ = 0.1, 20.0, and 100.0. We see that
for λ (= 0.1 and 20.0), the trajectories of defects are smooth,
whereas for λ = 100.0, the trajectory is distorted. Further, for
λ = 0.1, the defects attract each other from the early time, but
for higher values, i.e., λ = 20.0 and 100.0, the defects initially

move away from each other and later on come closer so that
they can annihilate each. Therefore, for the large values of
flow field parameter, the defect annihilation becomes slow,
which results in the slow ordering kinetics. Therefore, since
the quenched disorder is associated with the nematic order
parameter field in the system, its effect is no longer significant,
and the local fluctuation dictates the dynamics in the nematic
order parameter due to the fluid. Therefore, we conclude that
the quenched disorder negatively affects the growth kinetics in
an active nematic gel. Still, the effect reduces as we increase
the flow field parameter in the system.

D. Correlation functions and scaling properties

We study the ordering kinetics and scaling proper-
ties of RFWAN for different disorder strengths (h0). We
calculate the two point correlation functions for orien-
tation and density fields, CQ,ρ , defined as CQ(r, t ) =
〈Q(0, t ) : Q(r, t )〉, where a : b = ai jbi j , and local density
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FIG. 6. (a) Two point orientation correlation function CQ(r, t ) vs distance r(t ) and (b) density correlation function Cρ (r, t ) vs distance
r(t ) for different strength of quenched disorder (h0). All data are taken for λ = 0.1 at t = 5000 and averaged over 15 independent ensembles.
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FIG. 7. Scaled two point correlation function, CQ(r/LQ(t ), t ) vs scaled distance r/LQ(t ) for h0 = 0.0 (a), h0 = 0.1 (b), h0 = 0.15 (c),
and h0 = 0.2 (d). Insets: CQ vs r at different simulation time. Data are taken for λ = 0.1 and averaged over 15 independent realizations and
1k = 1 × 1000.

ρ, Cρ (r, t ) = 〈δρ(0, t )δρ(r, t )〉, where δρ(r, t ) = ρ(r, t ) −
ρ0 is the deviation of the local density from the mean ρ0. Fig-
ure 6 shows the plot for CQ,ρ (r, t ) vs r for different strengths
of quenched disorder, h0, and fixed at simulation time t . From
these plots we observe that the correlation among the particles
decreases with distance. The decrease in CQ,ρ (r, t ) is fast for
large values of h0 compared to small values. The fast decay
in correlation function with distance is due to the slow defect
annihilation in the presence of quenched disorder.

We again plot CQ,ρ (r, t ) vs r at different simulation time t
for different values of quenched disorder strengths h0 in Fig. 7
[inset panels (a)–(d)]. We observe that the correlation in the
orientation field CQ(r, t ) and density field Cρ (r, t ) increases
with time. Further, we scale the distance as r → r/L(t ), where
L(t ) is the correlation length, and plot CQ(r/LQ(t ), t ) vs
scaled distance r/LQ(t ) in Fig. 7 [main panels (a)–(d)]. We
see that, for clean-WAN, the system shows dynamic scaling
up to the distance equal to the correlation length and scaling
not found for r > L(t ) [see Fig. 7(a)]. But, this behavior grad-
ually disappears when we increase the strength of quenched
disorder, and the system shows good dynamic scaling at larger
distance r > L(t ) for h0 = 0.2; see Fig. 7(d). To confirm that
this behavior is not due to the system-spanning or the finite-
size effect, we check the scaling properties for early time, i.e.,
t = 2500, and we again find that the system shows dynamics
scaling for r > L(t ) only in the presence of finite disorder (see
Fig. 12 in Appendix B). Also, the behavior remains consistent
for larger activity too, i.e., when α1 = 0.3 (see Fig. 13 in Ap-
pendix B). Therefore, these results suggest that, in RFWAN,

scaling becomes better as we increase the strength of the
quenched disorder h0, which is surprising and different from
the dynamic scaling properties observed in RFAN [37], where
the system shows good dynamic scaling for all the values of
quenched disorder.

IV. DISCUSSION

We numerically studied the two-dimensional active nemat-
ics with quenched disorder suspended in an incompressible
fluid. The quenched disorder is introduced in the orienta-
tion field, and we call it random field wet active nematics
(RFWAN). Results from the numerical simulation suggest that
in RFWAN, finite disorder slows down the defect annihilation,
resulting in slow coarsening in the system. The effect of the
quenched disorder is similar for both the contractile and ex-
tensile nature of the active stresses in the system. Further, the
presence of fluid induces large fluctuations in the orientation
field, due to which the defect annihilation slows. The disorder
is introduced such that each particle feels quenched noise of
fixed strength in its orientation; therefore, large fluctuations
in the nematic order parameter due to the fluid reduces the
disorder’s effect. We also find that the system shows dynamics
scaling only for large value of quenched disorder strength,
which is a surprising result and can be a potential problem
to explore.

This study reveals that although the fluid in which apolar
active particles are suspended reduces the quenched disorder’s
impact, it also disturbs the local ordering and consequently
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FIG. 8. Figure shows the snapshots at different time t for nematic order parameter Q when α1 = 0.2 (top panel) and α1 = 0.0 (bottom
panel). In the case when α1 is nonzero or the active case, defects have typical topological structure where +1/2 defect is asymmetric (red circle
with stick) and moves along the stick, and the −1/2 defects have trefoil structure (inside green square) that only diffuses. In contrast, when
α1 = 0.0 or the passive case, there is no visible topological structure to the −1/2 and +1/2 defect pairs (inside black circles), and hence the
direction on motion cannot be identified. All the snapshots are generated for clean case (i.e., h0 = 0.0). Axes of every snapshot are in range
[0,512]. See Supplemental Material [46] for movie.

delays the coarsening. This work also encourages us to see the
effect of fluid on the ordering of polar flocks in the presence
of quenched disorder.
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APPENDIX A: ACTIVE VERSUS PASSIVE WET NEMATICS

To make a comparison between the active and passive cases
of wet nematics, we show the snapshots of nematic order
parameter Q(r, t ) (see Fig. 8) and the density field ρ(r, t )
(see Fig. 9). In Fig. 8 (top panel), when α1 = 0.2 we observe

t

0.75

0.74

0.66

0.8

FIG. 9. Figure shows the snapshots at different time t for the density field ρ when α1 = 0.2 (top panel) and α1 = 0.0 (bottom panel). In the
case when α1 is nonzero or the active case, defects have typical topological structure where +1/2 defect is asymmetric (red circle with stick)
and moves along the stick, and the −1/2 defects have trefoil structure (inside green square) that only diffuses. In contrast, when α1 = 0.0 or
the passive case, there are no topological defects and the density field does not evolve with time. All the snapshots are generated for clean case
(i.e., h0 = 0.0). Axes of every snapshot are in range [0,512]. See Supplemental Material [46] for movie.
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FIG. 10. Figure shows the correlation length plots LQ(t ) (left) and Lρ (t ) (right) vs time for passive (when α1 = 0.0; solid lines) and active
(when α1 = 0.2; dashed lines) cases for disorder strength h0 = 0.0 and h0 = 0.2.
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FIG. 11. LQ(t ) vs t for α1 = 0.3 (a) and α1 = −0.3 (b) for different values of h0.
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FIG. 12. Scaled two point correlation function CQ(r/LQ(t ), t ) vs scaled distance r/LQ(t ) for h0 = 0.0 (a), h0 = 0.1 (b), h0 = 0.15 (c),
and h0 = 0.2 (d). α1 = 0.2. Data shown here are for up to time = 2000.
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FIG. 13. Scaled two point correlation function CQ(r/LQ(t ), t )
vs scaled distance r/LQ(t ) for h0 = 0.0 (a) and h0 = 0.2 (b) for
α1 = 0.3.

that the ±1/2 topological defects are distinguishable based
on their topological structure. +1/2 defects have asymmetric
comet-like structure and move along the axis of asymme-
try, whereas −1/2 defects have trefoil structure and show
diffusive motion only. In contrast when α1 = 0.0, in Fig. 8
(bottom panel), topological defects are indistinguishable; i.e.,
they are point-like defects. Further, we do not see density
growth for α1 = 0.0 as can be seen when α1 = 0.2 (see
Fig. 9). These structural differences lead to different defect
annihilation mechanisms in passive and active wet nematics.
We again show the correlation length LQ,ρ (t ) plots for active
and passive cases in Fig. 10. We see that the nematics order
parameter follows almost the same growth law for both pas-
sive and active wet nematics (see Fig. 10, left). In contrast,
there is no growth in the density field for the passive case (see
Fig. 10, right).

APPENDIX B: CORRELATION LENGTHS FOR α1 = 0.3
AND SCALING PROPERTIES

In Fig. 11, we show the plot of correlation length LQ(r, t )
vs time t for activity α1 = 0.3. From this plot, we observe
that the observation drawn from Fig. 2, which shows that
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FIG. 14. Fluctuation in velocity field [v(r, t )] �v vs t for differ-
ent strengths of quenched disorder, h0.

in RFWAN, the disorder’s response is similar for both the
contractile and extensile nature of the active stress in the
system, is also valid for higher activity in the system.

Figure 12 shows the plot of the early time scaling proper-
ties which again confirms that the dynamic scaling improves
as we increase the strength of quenched disorder in the system.
Further, Fig. 13 shows that this behavior is also consistent for
higher activity in the system.

APPENDIX C: NUMERICAL STABILITY CHECK

We check the stability of the code for the chosen set of
parameters by calculating the fluctuation in the velocity field
v(r, t ) from its mean value, i.e., �v = 〈v〉 − v0, where 〈v〉 =√

〈v2
x + v2

y 〉r and v0 is the mean value of velocity field. In

Fig. 14, we plot �v vs t for different strengths of quenched
disorder h0, and observe that �v show small fluctuation as
t → ∞. This implies that the system is stable for the chosen
set of parameters.
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