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a b s t r a c t

We present an exactly solvable model of a hybrid quantum–classical system of a Nitrogen-Vacancy
(NV) center spin (quantum spin) coupled to a nanocantilever (classical) and analyze the enforcement
of the regular or chaotic classical dynamics onto the quantum spin dynamics. The main problem
we focus in this paper is whether the classical dynamical chaos may induce chaotic effects in the
quantum spin dynamics or not. We explore several characteristic criteria of the quantum chaos, such
as quantum Poincaré recurrences, generation of coherence and energy level distribution and observe
interesting chaotic effects in the spin dynamics. Dynamical chaos imposed in the cantilever dynamics
through the kicking pulses induces the stochastic dynamics on the quantum subsystem. We consider
a quantum system of two and three levels and show that in a two-level case, type of stochasticity is
not conforming all the characteristic features of the quantum chaos and is distinct from it. We also
explore the effect of quantum feedback on dynamics of the cantilever and the entire system.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Classical or quantum finite systems may show non-determin-
stic behavior when coupled to a stochastic bath (or other ex-
ernal randomness sources), or nonlinearity [1,2]. In such hybrid
ystems any small perturbation destroys the regular motion and
eads to unpredictable evolution of the system. In the first case,
he stochasticity appears to be external, and in the second case,
t is an intrinsic property of the system [3]. For example, in the
ase of a kicked rotator in classical regime, when the strength of
icking is increased, the regular periodic motion is destroyed and
haotic motion is observed. The chaotic behavior can be validated
y a diffusive growth in the kinetic energy [4,5] of the kicked
otator. The quantum delta kicked rotators play an important role
n understanding quantum chaos and other related effects [6]. The
xistence of quantum resonance can be seen using the quantum
icked rotators [7]. Experimentally the quantum kicked rotators
nd quantum chaos can be studied using ultracold atoms which
re driven by periodically kicked by optical pulses [8]. The effect
f the nonlinearity on a two-level system coupled with kicked
otor is already studied [9]. Dynamical chaos refers to the phe-
omenon of extreme sensitivity of phase trajectories to a tiny
isturbance. It is worth to note that in the quantum case, we do
ot have phase trajectories and the chaos is manifested in the
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Gaussian statistics of the energy spectrum [10]. The remarkable
feature of quantum chaos is the termination of classically allowed
diffusive processes leading to destruction of quantum coherence
[11,12]. In this paper our interest is in a hybrid system under the
constraint such that part of the system is classical, and the rest
is quantum. In such a quantum–classical hybrid system when the
classical part exhibits dynamical chaos, we analyze the spread of
chaos to the quantum part.

In the last few years the hybrid systems consisting of the spin
and mechanical parts named as Nano-electromechanical systems
(NEMS) generated a lot of interest [13–39]. In these systems the
spin subsystem is always described quantum-mechanically and
the mechanical subsystem (i.e., the oscillator) can be considered
either in quantum or classical (linear or nonlinear) regimes. All
these cases need special mathematical description and show the
realization of a physical features. Our interest here concerns the
case when cantilever coupled to the NV center performs nonlin-
ear oscillations. For more details about the model in question, we
refer to the earlier works [31,39,40]. In particular, we assume that
kicks of the external driving field force the classical motion of
the cantilever and the overlapping of nonlinear resonances may
induce the chaotic motion of the cantilever. The chaoticity of the
motion of the cantilever extends to the quantum spin dynamics
via the cantilever-spin coupling term. The spin of the NV center is
described by spin triplet S = 1, with ms = −1, 0, and 1. States
|−1⟩ and |1⟩ are separated by potential barrier DŜ2z ≈ h̄ω0, where

ω0 = 2.88GHz. In what follows we set h̄ = 1. Hamiltonian of the

https://doi.org/10.1016/j.physd.2022.133418
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V center has the form [37]:

ˆNV =

∑
i=±1

(
−δi |i⟩ ⟨i| +

Ωi

2
(|0⟩ ⟨i| + |i⟩ ⟨0|)

)
, (1)

where δi and Ωi are detunings and Rabi frequencies of the two
microwave (MW) transitions. In the limit of single MW field and
zero external magnetic field Bz → 0, Hamiltonian equation (1)
couples the ground state |0⟩ with bright superposition of the
excited states |b⟩ = (|−1⟩ + |1⟩)/

√
2, while dark state |d⟩ =

|−1⟩ − |1⟩)/
√
2 is decoupled and NV center reduces to an ef-

fective two-level model. In what follows we consider both two-
and three-level problems. In the case of coupling with the bright
state the Hamiltonian of the hybrid system of NV center and a
driven nonlinear oscillator is given as [38]

H
(
x, p, t

)
= HS + H0

(
x, p

)
+ HNL + εV

(
x, t
)
+ gV̂c,NV . (2)

Here ĤS =
1
2ω0σ̂z is the Hamiltonian of the NV center, The

plitting frequency is given by ω0 =
(
ω2

R +δ2
)1/2, where ωR is the

abi frequency, and δ is the detuning. The spin operator Ŝz,NV can
e written in the basis of NV center as [38]: Ŝz,NV =

1
2

(
cos(α)σ̂z +

in(α)(σ̂+ + σ̂−)
)
with tan(α) = −ωR/δ and σ̂z = |e⟩⟨e| − |g⟩⟨g|,

σ̂+ = |e⟩ ⟨g| , σ̂− = |g⟩ ⟨e|. The linear part of the oscillator is
iven by term H0 =

p2
2m +

ω2
r mx2

2 and the nonlinear part is given
y HNL = βx3+µx4, where ωr is the frequency of the oscillations,
and µ are constants of the nonlinear terms. The term

V
(
x, t
)

= V0xT
∞∑

n=−∞

δ (t − nT ) ,

V0 = f0, ε ≪ 1, (3)

describes the driven motion of the cantilever in the microwave
field of delta pulses with frequency ω = 2π/T . The key issue
is the last term V̂c,NV = x(t)Ŝz,NV in Eq. (2) which describes the
oupling between the classical cantilever and the quantum NV
pin. The distance and the coupling strength between the mag-
etic tip and NV spin depend on the magnetostriction effect [39].
ubject to the cantilever’s oscillations, x(t) can be either chaotic
r regular. In what follows, we show that classical dynamical
haos leads to the stochastic phenomenon in spin dynamics.
e consider two and three level models of the NV center and

how that in both cases chaotic dynamics of the cantilever leads
o the chaotic spin dynamics. However, being stochastic, two-
evel model does not manifest all the characteristic features of
uantum chaos. In the present manuscript our main focus is
mathematical formulation of the problem. Nevertheless, we

pecify the values of the parameters relevant to the NV cen-
ers [37]: ωr

2π = 5 MHz, ωR
2π = 0.1 − 10 MHz, δ = 1 kHz,

ass of the cantilever m = 6 × 10−17 kg, the coupling constant
g
2π = 100 kHz, the amplitude of the zero point fluctuations
a0 =

√
h̄/2mωr ≈ 5 × 10−3 m. The nonlinear constants are

order of β ≈
ω2
r m
2a0

, µ ≈
ω2
r m
2a20

. The energy scale of the problem

s defined by εV ≈ ω2
rma20 ≈ 10−9J, and the time scale is of order

f microsecond scale t ≈
π
2g microseconds. In what follows, we

xplore the spreading of classical dynamical chaos on the quan-
um system. In the quantum part of the NEMS, spin dynamics
anifest some characteristic features of the quantum chaos [41–
4], but not all of them. Therefore, we term this phenomenon
s a hybrid quantum–classical chaos. The work is organized as
ollows: In Section 2, we discuss the classical chaotic dynamics
f the cantilever. In Section 3, we present analytical results for
pin dynamics of NV center spin attached to the cantilever and
iscuss different aspects of the quantum chaos, namely, quantum
oherence, Poincaré recurrences and level statistics. Subsequently
 t

2

in Section 4 we study dynamics of a three-level NV system. Later,
in Section 5 we explore statistical average over various I0 and θ0.
n Section 6 we study about feedback effect and finally summarize
he manuscript in Section 7.

. Dynamics of the cantilever

The experimentally feasible NEMS consists of the spin of the
V center interacting with a magnetic tip (attached to the end of
he nano-cantilever). The oscillations performed by the cantilever
an be viewed as classical or quantum, depending on the simple
riteria: At temperatures T ≪ 2π h̄ωr/kB, where kB is the Boltz-
ann constant and ωr is the oscillation frequency, dynamics of a
antilever is quantum, and it exerts quantum feedback effect on
spin dynamics. Typically for ωr = 1kHz, T < 50nK. At higher

emperatures, or when the cantilever is controlled externally by
classical field, dynamics is classical. Large-amplitude nonlinear
scillations are entirely classical. Therefore in what follows, we
eglect the quantum feedback effect.
With the purpose of simplicity, the cantilever part of the

amiltonian Hp,q = H0 + HNL + V (x, t) can be rewritten in the
ction–angle canonical variables through the transformation Φ =

+ Iθ :

Φ = pdq + θdI +
(
HI,θ − Hp,q

)
dt. (4)

The canonical equations in the new variables are given as

dI
dt

= −
∂HI,θ

∂θ
= −ε

∂V (I, θ )
∂θ

T
∞∑

n=−∞

δ (t − nT ) ,

dθ
dt

=
∂HI,θ

∂ I
= ω(I) + ε

∂V (I, θ )
∂ I

T
∞∑

n=−∞

δ (t − nT ) . (5)

The presence of the delta function allows us to introduce the
Floquet map (In+1, θn+1) = F (In, θn) and integrate Eq. (5) exactly
as

In+1 = In − εT
∂V (In, θn)
∂θn

,

θn+1 = θn + ω(In+1)T + εT
∂V (In, θn)

∂ I
. (6)

From the above equation we deduce the criteria of the dynamical
chaos:

K = εI0T
⏐⏐⏐⏐dω(I)dI

⏐⏐⏐⏐ , (7)

Using action–angle variable to transform the cantilever part of the
Hamiltonian Hp,q = H0 + HNL + V (x, t), and taking average with
respect to the fast phase θ , the cubic part of HNL will be zero if we
take average with respect to fast phase θ but the quartic term in
HNL will survive, so we obtain, from here ω(I) = ∂(H0 + HNL)/∂ I ,

H0(I) = ωr I + HNL, HNL = 3πµ
(

I
mωr

)2
, and V = V0(I) cos θ ,

0(I) = V0
√
2I0/ωr . Using the system specific parameters we

define the criterion for dynamical chaos as:

K = εI0T
( 6πµ
m2ω2

r

)
. (8)

K is also known as a criterion for overlapping of the resonance.
If K < 1 the phase trajectories are distinguishable from each
other and if K > 1 phase trajectories correspond to chaotic
ehavior [42].
After the formation of dynamical chaos, the dynamical de-

cription of the problem loses the sense. The dynamics of the
antilever can be explored using a standard map In+1 = In −

sin θn, θn+1 = θn + In+1, where K quantifies the criterion for
he dynamical chaos. For further analytic insights, we utilize the
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Fig. 1. The Phase space plot of cantilever’s dynamics constructed through the recurrence relations equation (6) in (a) the regular regime K = 0.5 (Blue) where the
hase space is covered by two different phase trajectories: open hyperbolic and some part of closed elliptic, and (b) the chaotic regime at K = 10 (Gray) where the
ntire phase space is covered by a chaotic sea. Topologically different phase trajectories are bordered by separatrix line. The values of parameters are: K = ϵI0T 6πµ

m2ω2
r
,

=
ω2
r m
2a20

I0 =
m
2 x

2
0ωr , m = 6 × 10−17 Kg, x0 = a0 = 5 × 10−3 m, T = 10 µs, ωr = ω0 = 2π × 5 × 106 Hz, for chaotic case ε = 0.003 and for the regular case

= 0.0003.
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ethods of non-equilibrium statistical physics and introduce the
istribution function f (θ, I) such that i ∂ f

∂t =

(
L̂0 + εL̂1

)
, where

iouville operators L̂0 and L̂1 are defined as follows (see [42] for
more details) L̂0 = −iω ∂

∂θ
, and L̂1 = −i

(
∂V
∂ I

∂
∂θ

−
∂V
∂θ

∂
∂ I

)
. The

critical issue is the difference between the time scales of the slow
action I and fast angle θ variables. The correlation time scale in
the system is defined via ⟨⟨θ (t)θ (0)⟩⟩ = exp(−t/τc). Typically
τc < T < τD, where τD is the time spent on the substantial change
of the action variable. As we see from Eq. (5), during the interval
between the kicks T , the change of the action variable is small and
is proportional to ε. Our interest here concerns the distribution
function for the action variable, and the Fokker–Planck equation
averaged over the fast angular variable F (I) = ⟨⟨f (I, θ )⟩⟩θ . The
general structure of the Fokker–Planck equation reads [42]:

∂F (I)
∂t

= −
∂

∂ I
(A(I)F (I)) +

1
2
∂2

∂ I2
(B(I)F (I)), (9)

where A =
1
T ⟨⟨∆I⟩⟩θ , and B =

1
T ⟨⟨(∆I)2⟩⟩θ . After calculating

oefficients explicitly, we deduce the kinetic equation as

∂F
∂t

=
1
2
∂

∂ I
D(I)

∂F
∂ I
, (10)

here D(I) = πε2
∑

m,p m
2
|Vm|

2δ(mω − pΩ), Ω = 2π/T , Vm is
the Fourier component of the interaction term and m, p indices
ake into account the multiple internal resonances. The solution
f the kinetic equation reads as

I(t)⟩ = I20 + Dt, D =
1
2
εV 2T , (11)

here D is the diffusion coefficient. The dynamics of the can-
ilever is chaotic for K > 1 and otherwise K < 1 is regular
see Fig. 1). In the chaotic regime we observe a sea of phase
oints uniformly distributed over the phase space. In the regular
egime, two different phase space trajectories cover the entire
pace. For the standard map described above, if the parameter
> Kc = 0.9716, the stochastic layers start merging; thus, it will

reate a domain of chaotic motion that covers whole phase space.
s K increases, the islands’ size decreases, and only the largest of
hem can be found in the chaotic sea. Thus solution for cantilever
an be written in the discrete form xn =

√
2In/mωr cos θn, pn =

−
√
2I ω m sin θ .
n r n

3

3. Spin-1/2 system attached to the cantilever

3.1. Evolved in time wave function

Let us consider a hybrid system of Quantum NV spin attached
to a classical cantilever whose dynamics is calculated from a
standard map. From the Hamiltonian given by Eq. (2) we see that
the effect of the cantilever in the NV spin is due the interaction
term V̂c,NV . Therefore, the effective Hamiltonian of the NV center
attached to the cantilever can be written as:

Ĥn =
1
2
ω0σ̂z + gV̂c,NV , (12)

where V̂c,NV =
√
2In/mωr cos θnŜz,NV . It is important to note here

hat In and θn follow the Floquet map given by Eq. (6). By varying
he parameter K we change the characteristic of the term V̂c,NV
rom the regular to the chaotic dynamics of the cantilever and
xplore the spin dynamics in both cases. Exploiting the Floquet
heory [45] we solve the Schrödinger equation analytically and
et the state after time t = NT as

|ψ(t = NT )⟩ = ÛN
|ψ(0)⟩ , (13)

here ÛN is the time evolution operator evolving the system
fter N kicks and |ψ(0)⟩ is the initial state of the system. The
loquet map F̂n after the nth kick is F̂n = exp

(
−iĤnT

)
and the

volution operator ÛN is a time-ordered product of F̂ s
n given as

ˆN = F̂N · · · F̂n+1F̂nF̂n−1 · · · F̂3F̂2F̂1. The exact wave function
fter time t = NT can be written in the form

ψ(t = NT )⟩

=

∑
{αn}=±

{
N∏

n=2

e−iαnϕn
⟨
ϕαnn

⏐⏐ϕαn−1
n−1

⟩}
e−iα1ϕ1

⟨
ϕ
α1
1

⏐⏐ψ(0)
⟩⏐⏐ϕαNN ⟩

. (14)

ere αnϕn and
⏐⏐ϕαnn ⟩ (αn = ±) are the eigenvalues and eigen-

tates, respectively of the nth Floquet operator F̂n.
The general form of the eigenstates is quite involved (not

hown). However, in the resonant limit tan(α) = −ωR/δ ≫ 1,
e can simplify the Floquet map F̂n. The spectral decomposition
f F̂n is given as

ˆn = exp{−iϕn}
⏐⏐ϕ+

n

⟩ ⟨
ϕ+

n

⏐⏐+ exp{iϕn}
⏐⏐ϕ−

n

⟩ ⟨
ϕ−

n

⏐⏐ . (15)

ere the quasienergy ϕn is given by ϕn =
(
√
χ2
n+ω2

0)T

2 , where we
introduced the notation χ = g

√
2I /mω cos θ . The normalized
n n r n
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Fig. 2. Poincaré sections for (⟨σx⟩, ⟨σz⟩) and (⟨σy⟩, ⟨σz⟩) in the regular regime
t K = 0.5 ((a) and (b)) and chaotic regime at K = 10 ((c) and (d)) . The
arameters are m = 1, g = 1, ω0 = 1, ωr = 0.2, T = 1, α = π/2. The values
f the parameters in the real units are K = ϵI0T 6πµ

m2ω2
r
, µ =

ω2
r m
2a20

, I0 =
m
2 x

2
0ωr ,

m = 6×10−17 Kg, x0 = a0 = 5×10−3 m, T = 10µs, ωr = ω0 = 2π×5×106 Hz,
for chaotic case ε = 0.003 and for the regular case ε = 0.0003.

eigenstates are
⏐⏐ϕ+

n

⟩
= ηn |0⟩ + ξn |1⟩, and

⏐⏐ϕ−
n

⟩
= ξn |0⟩ − ηn |1⟩,

here ηn =
kn√
1+k2n

, ξn =
1√
1+k2n

, and kn =
ω0+

√
χ2
n+ω2

0
χn

.

Now let us consider that initially the system is prepared in
he state |ψ(0)⟩ = |0⟩. Therefore, the explicit form of the evolved
ave function is calculated as

ψ(t = NT )⟩

= A11{η1 exp(−iϕ1)(ηN |0⟩ + ξN |1⟩)} + A12{η1 exp(−iϕ1)(ξN |0⟩

− ηN |1⟩)} + A21{ξ1 exp(iϕ1)(ηN |0⟩ + ξN |1⟩)}

+A22{ξ1 exp(iϕ1)(ξN |0⟩ − ηN |1⟩)},

=

N∏
n=2

Gn{ϕ},

n{ϕ}[
exp(−iϕn)(ηnηn−1 + ξnξn−1) exp(−iϕn)(ηnξn−1 − ξnηn−1)
exp(iϕn)(ξnηn−1 − ηnξn−1) exp(iϕn)(ηnηn−1 + ξnξn−1)

]
. (16)

or more details of the analytical solution and normalization of
he wave function, we refer to Appendices A and B. Taking into
ccount Eq. (14)-Eq. (16) we calculate the expectation values of
he spin components ⟨σα⟩, α = x, y, z. The explicit formulas are
iven in the Appendix C.

We note that ϕn =
(
√
χ2
n+ω2

0)T

2 , where χn = g
√
2In/mωr cos θn

and (In, θn) is described by the map equation (6). Therefore,
depending on the parameter of stochasticity K , the phase ϕn can
e either non-commensurate and random or smooth and regular.
n the spirit of the work [46] we explore the interplay between
he chaotic classical (cantilever) and quantum (NV spin) dynamics
n the next section.
4

3.2. Expectation values of the NV spin components

We see from Fig. 1 that the Poincaré sections for (In, θn) clearly
distinguish the motion of cantilever in the regular and chaotic
regime. Now if we attach a NV center spin to the cantilever, we
need to check whether the Poincare sections of the spin dynam-
ics show a contrast in the regular and chaotic regimes of
the cantilever or not. For this purpose we plot the Poincaré sec-
tion of (⟨σx⟩, ⟨σz⟩) and (⟨σy⟩, ⟨σz⟩) in Fig. 2(a) and (b) when can-
tilever performs motion in regular regime and (c) and
(d) when cantilever performs motion in chaotic regime. We fail
to distinguish the effects due to regular and chaotic regions in the
Poincaré sections of the spin dynamics of the NV center.

The Poincaré sections of the spin dynamics evolve more or less
in the same manner for both the regular and the chaotic cases
(see Fig. 2). In order to delve deeper to identify the differences, we
calculate the Fourier power spectrum for observances defined as

Ix,y,z =

⏐⏐⏐⏐ ∫∞

−∞
⟨σx,y,z⟩ exp(−iωt)dt

⏐⏐⏐⏐2. The Fourier power spectrum

as shown in Fig. 3 displays differences in the regular and chaotic
regime. We see that when stochasticity parameter varies from
K = 0.5 (regular) to K = 10 (chaotic), the broadness of power
spectrum increases. It is much broader in the chaotic case as
compared to the regular case. The broadening of spectrum is a
signature of chaos which sets in our system for K > 1. We
see that the Fourier spectra of all spin components ⟨σx,y,z⟩, are
broadened. To see the behavior of spin dynamics, we plot the
time dependence of different spin components. While ⟨σx,y,z⟩

components perform fast, chaotic oscillations in chaotic regime
(see Figs. 4 (b), (d) and (f)), they show quasi-periodic oscillation
in the regular regime (see Figs. 4 (a), (c) and (e)).

3.3. Quantum coherence

Quantum coherence is the resource for performing vast num-
ber of quantum information protocols. In many-body system the
quantum coherence is the essence of entanglement and plays
an important role in understanding some physical phenomena
of quantum information and quantum optics. Relative entropy
and l1-norm measures are also a monotone of coherence [47]. By
incoherent operations one can generate coherence that quantifies
maximal entanglement [48]. The loss of coherence in a quantum
system may happen due to two different reasons: In one case
when the system is in contact with the environment or a thermal
bath, the coupling to the environment may cause decoherence,
which is a stochastic phenomenon. In the other case, the coupling
of a quantum system with a classical chaotic system, may lead to
a loss of coherence. We focus on the second case where dynamical
chaos due to the non-linearity in the classical system [49] may
result a loss of coherence. Here we explore the problem of gen-
eration of coherence for the NV spin coupled to a nanocantilever
in a regular or a chaotic regime.

In particular, we prepare the NV center initially in a mixed
state:

ρ̂(0) = p1 |0⟩ ⟨0| + p2 |1⟩ ⟨1| . (17)

The time evolved density matrix is given by evolution operator
Eq. (13) as:

ρ̂(t) = (ÛN )−1ρ̂(0)ÛN , (18)

ρ̂(t) = ρ11 |0⟩ ⟨0| + ρ12 |0⟩ ⟨1| + ρ21 |1⟩ ⟨0| + ρ22 |1⟩ ⟨1| . (19)

The elements of the time-evolved density matrix are given in the

Appendix D, where all the elements of ρ̂(t) are time-dependent.
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Fig. 3. Fourier Power spectrum density for expectation values of σx,y,z in the regular regime ((a), (c) and (e)) at K = 0.5 (Blue), and in the chaotic regime ((b), (d)
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egular case ϵ = 0.0003.
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e quantify the quantum coherence in terms of the relative
ntropy as(
ρ̂(t)|ρ̂d(t)

)
= Tr{ρ̂(t) ln ρ̂(t) − ρ̂(t) ln ρ̂d(t)}. (20)

ere ρ̂d(t) is the diagonal part of ρ̂(t). The eigenvalues of the
ensity matrix ρ(t) are:

E± =
1
2

(
ρ11 + ρ22 ±

√
ρ2
11 + ρ2

22 + 4ρ21ρ12 − 2ρ11ρ22
)
. Now,

aking into account Eq. (16), we calculate quantum coherence in
erms of relative entropy as:(
ρ̂(t)|ρ̂d(t)

)
= E+ ln E+ + E− ln E− − ρ11 ln ρ11 − ρ22 ln ρ22. (21)

The stochasticity parameter K appears in the expression of ρ(t)
as ηN , ξN which contain In and θn. The relative entropy D for
regular and chaotic cases is plotted in Fig. 5. We see that quantum
coherence in regular case is doing quasi-periodic oscillation while
in chaotic regime coherence varies abruptly. This observation
supports the fact that the chaos destroys the quantum coherence.
 e

5

3.4. Quantum Poincaré recurrence

‘‘Any phase-space configuration (I, θ ) of a system enclosed in a
inite volume will be repeated as accurately as one wishes after a fi-
ite interval of time’’. This statement is the essence of the Poincaré
ecurrence theorem and holds in the quantum case also [50].
ny time-dependent periodic Hamiltonian would reunite itself
nfinitely often over time. Suppose the system has a continuous
nergy spectrum corresponding to the classical systems, then the
uantum recurrence theorem does not hold. A quantum system
hat is bounded defined by a Hamiltonian H0 has a discrete spec-
rum when subjected to a nonresonant time-dependent periodic
otential V with V (t) = V (t + τ ) for an arbitrary period τ . For
ny initial configuration of the system, both the wave function
nd the energy reunite itself over time [51]. The time passed off
uring the recurrence is known as Poincaré recurrence time. The
uantum Poincaré recurrence means that the distance between
he initial and evolved states can become smaller than the char-
cteristic ϵ: ∥φ(t) − φ(0)∥ < ϵ. Taking Eq. (16) into account the
xplicit expression for the distance of the time evolved state from
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Fig. 4. Spin dynamics for ⟨σx⟩, ⟨σy⟩ and ⟨σz⟩ in the regular regime at K = 0.5 (see (a), (c) and (e)) and ⟨σx⟩, ⟨σy⟩ and ⟨σz⟩ in the chaotic regime at K = 10 (see

b), (d) and (f)). The parameters are m = 1, g = 1, ω0 = 1, ωr = 0.2, T = 1, α = π/2. The values of the parameters in the real units: K = ϵI0T 6πµ
m2ω2

r
, µ =

ω2
r m
2a20

,

0 =
m
2 x

2
0ωr , m = 6 × 10−17 Kg, x0 = a0 = 5 × 10−3 m, T = 10µs, ωr = ω0 = 2π × 5 × 106 Hz, for chaotic ε = 0.003 and for regular ε = 0.0003.
t
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he initial state is:

φ(t) − φ(0)∥ = 2 −

(
A∗

11η
∗

1 exp(iϕ1)η
∗

N + A∗

12η
∗

1 exp(iϕ1)ξ
∗

N +

∗

21ξ
∗

1 exp(−iϕ1)η∗

N + A∗

22ξ
∗

1 exp(−iϕ1)ξ ∗

N + A11η1 exp(−iϕ1)ηN

A12η1 exp(−iϕ1)ξN + A21ξ1 exp(iϕ1)ηN + A22 exp(iϕ1)ξN
)
. (22)

The above expression of quantum Poincaré recurrences is plot-
ed for the regular K < 1 and chaotic cases K > 1 separately
n Fig. 6(a) and (b), respectively. From these figures we see a
light difference in behavior of the system in two regimes. In the
egular case Fig. 6(a) we see a trend of quasiperiodic modulation
f the amplitude, while in the chaotic case Fig. 6(b), the distance
easure between the wave functions is the essence of a noise.
nalyses of the recurrence show the absence of the exponential
ecay of Poincaré recurrence, while the exponential decay is a
allmark of quantum chaos [52]. The effect we observe in our
ystem is non-conventional for quantum chaos. The reason for
6

he absence of the conventional quantum chaos phenomenon is
he low dimensionality of the spin space. On the other hand,
haotic dynamics of cantilever plays the role of external noise
or NV spin and has a stochastic character rather than a dy-
amical. It destroys the nature of quasiperiodic revivals in spin
ynamics, and quantum recurrence becomes a random event. The
ynamics of the quantum system is distinct from the behavior
f the regular systems. Therefore, we term this effect as hybrid
uantum–classical chaos.
One of the interesting characteristics of the hybrid quantum–

lassical chaos is the time-translation symmetry breaking (TTSB).
he Hamiltonian Ĥn equation (12), taken at different times form
set of noncommuting Hamiltonians: Ĥn. The integer n defines
iscrete moment of time tn = nT , where T is the period between
he pulses applied to the cantilever. Therefore, Ĥn is a set of
lements repeated in time Ĥn(In θn) ≡ Ĥn+k(In+k, θn+k), when
anonical variables repeat their values (In+k, θn+k) = (In, θn)
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Fig. 5. The quantum coherence in (a) the regular regime at K = 0.5 (Blue) and (b) the chaotic regime at K = 10 (Gray), for the following values of the parameters
= 1, g = 1, ω0 = 1, ωr = 0.2, T = 1, α = π/2. The values of parameters are K = ϵI0T 6πµ

m2ω2
r
, µ =

ω2
r m
2a20

I0 =
m
2 x

2
0ωr , m = 6 × 10−17 Kg, x0 = a0 = 5 × 10−3 m,

T=10 µs, ωr = ω0 = 2π × 5 × 106 Hz, for chaotic ϵ = 0.003 and for regular ϵ = 0.0003.
Fig. 6. Quantum Poincaré recurrence as a function of time (i.e. number of kicks) in (a) the regular regime at K = 0.5 (Blue) and (b) the chaotic regime at K = 10
(Gray). The parameters are m = 1, g = 1, ω0 = 1, ωr = 0.2, T = 1, α = π/2. The values of parameters: K = ϵI0T 6πµ

m2ω2
r
, µ =

ω2
r m
2a20

I0 =
m
2 x

2
0ωr , m = 6 × 10−17 Kg,

x0 = a0 = 5 × 10−3 m, T=10 µs, ωr = ω0 = 2π × 5 × 106 Hz, for chaotic ϵ = 0.003 and for regular ϵ = 0.0003.
t

S

.e., the Floquet time crystal [53,54]. On the other hand the
uantum Poincaré recurrence occurs if the distance between state
ectors is small ∥φ((n + k)T ) − φ(nT )∥ < ϵ, where ϵ is the char-
cteristic small parameter of the recurrence. The time-translation
ymmetry underlies conservation of energy, reproducibility of the
ave function and Hamiltonian. TTSB occurs if for each tn and

or every state |φ(nT )⟩ there exists an operator A for which at
east one of the two conditions Ĥn(In, θn) ≡ Ĥn+k(In+k, θn+k) and
⟨|φ(nT )|A||φ(nT )⟩ = ⟨|φ((n + k)T )|A||φ((n + k)T )⟩ is violated. In
our case operator A corresponds to the spin operator A ≡ Ŝ.
We note that the conditions Ĥn(In, θn) ≡ Ĥn+k(In+k, θn+k), and
(In+k, θn+k) = (In, θn) hold only in the regular case (elliptic trajec-
tories) and are violated in the chaotic case when invariant torus is
destroyed and dynamics is not periodic in the phase space. TTSB
occurs due to the hybrid character of quantum classical chaos,
meaning that Quantum Poincaré recurrence of the wave function
holds while the periodicity of the Hamiltonian not.

3.5. Level statistics for spin-1/2 case

The eigenvalues of the Hamiltonian Ĥn (Eq. (12)) are given
by: E(n)

1,2 = ±
1
2

√
χ2
n + ω2

0 , where χn = g
√

2In
mω0

cos θn. Each

amiltonian from the set { Ĥ } has two energy levels. We explore
n H

7

he distances between the levels:

n = E(n)
1 − E(n)

2 =

√
ω2

0 + g2
( 2In
mω0

)
cos2 θn, (23)

for each Hamiltonian and construct the distribution functions
P(Sn−S0) for regular K < 1 and chaotic K > 1 cases. Here Sn is the
separation between two energy levels and S0 corresponds to the
maximum of P(S0). We see that the level statistics is Poissonian
in the both regular K < 1 and chaotic K < 1 cases. Comparing
results of spin dynamics Figs. 3 and 4, with level statistics Fig. 7
we see that in the both cases level statistics is of Poissonian type,
while we expect it to be Gaussian in chaotic case [55]. Thus for
spin 1/2 case, in spite of the chaotic quantum spin dynamics we
do not observe statistical characteristics of quantum chaos.

4. Dynamics of a three-level NV system

We proceed to analyze a more general case and consider a
three-level NV center. The effective Hamiltonian of the NV center
for spin S = 1 attached to the cantilever can be written as:

Ĥn = ĤNV + gV̂c,NV , (24)

where ĤNV =
∑

i=±1

(
−δi |i⟩ ⟨i| +

Ωi
2 (|0⟩ ⟨i| + |i⟩ ⟨0|)

)
is the

amiltonian of the NV center [37] and V̂ =
√
2I /mω
c,NV n r
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Fig. 7. Histogram plot of level statistics of Hamiltonian Ĥn in the regular regime
t K = 0.5 (Blue) and in the chaotic regime K = 10 (Gray). A reference plot
or Poissonian statistics (Orange) is also shown. For this plot we have taken
p to 1000 kicks to get the ensemble. The parameters are m = 1, g = 1,
0 = 1, ωr = 0.2, T=1, α = π/2. The values of parameters: K = ϵI0T 6πµ

m2ω2
0
,

=
ω2
r m
2a20

I0 =
m
2 x

2
0ωr , m = 6 × 10−17 Kg, x0 = a0 = 5 × 10−3 m, T=10 µs,

r = ω0 = 2π × 5× 106 Hz, for chaotic case ϵ = 0.003 and for the regular case
= 0.0003.

os θnŜz,NV is the coupling term with the nonlinear cantilever. For
pin S = 1, Sz,NV =

1
2 (cosαSz + sinαSx), where Sx,z = σx,z(1) is

spin components for S = 1 case. For numerical calculations we
consider δ±1 = δ = 1 and Ω± = Ω = 1. Similar to the analysis of
spin-1/2 case discussed in Section 3, we calculate time-dependent
wave function for the system equation (24) using δ± = δ and
Ω± = Ω can be written as:

|ψ(t = NT )⟩

=

∑
{αn}=1,2,3

{
N∏

n=2

e−iαnϕn
⟨
ϕαnn

⏐⏐ϕαn−1
n−1

⟩}
e−iα1ϕ1

⟨
ϕ
α1
1

⏐⏐ψ(0)
⟩ ⏐⏐ϕαNN ⟩

.

(25)

Here αnϕn and
⏐⏐ϕαnn ⟩ (αn = 1, 2, 3) are the eigenvalues and eigen-

states of the nth Floquet operator F̂n, respectively. The spectral
decomposition of F̂n is given as

F̂n = exp{−iϕ1
n}
⏐⏐ϕ1

n

⟩ ⟨
ϕ1
n

⏐⏐
+ exp{−iϕ2

n}
⏐⏐ϕ2

n

⟩ ⟨
ϕ2
n

⏐⏐+ exp{−iϕ3
n}
⏐⏐ϕ3

n

⟩ ⟨
ϕ3
n

⏐⏐ . (26)

In the above equation, the quasienergy ϕn is given by ϕ1,2,3
n =

δ, 1
2 (−δ ±

√
δ2 + (2χn +

√
2Ω)2)T , where the notation χn =

√
2In/mωr cos θn is already defined in Section 3. In this case the

normalized eigenstates are
⏐⏐ϕ1

n

⟩
= −ηn |0⟩ + ξn |1⟩ + ζn |2⟩, and

ϕ2
n

⟩
= xn |0⟩ + yn |1⟩ + zn |2⟩ and

⏐⏐ϕ3
n

⟩
= un |0⟩ + vn |1⟩ + wn |2⟩.

he normalization constants of the eigenstates are defined in
ppendix E.
We prepare the system initially in the state |ψ(0)⟩ = |0⟩. The

explicit form of the evolved wave function from Eq. (25) takes the
form

|ψ(t = NT )⟩ = A11{−η1 exp(−iϕ1
1 )(−ηN |0⟩ + ξN |1⟩ + ηN |2⟩)}

+A12{−η1 exp(−iϕ1
1 )(xN |0⟩ + yN |1⟩ + zN |2⟩)}

+A13{−η1 exp(−iϕ1
1 )(uN |0⟩

+ vN |1⟩ + wN |2⟩)} + A21{x1 exp(iϕ2
1 )(−ηN |0⟩ + ξN |1⟩ + ηN |2⟩)}

+A22{x1 exp(iϕ2
1 )(xN |0⟩

+ yN |1⟩ + zN |2⟩)} + A23{x1 exp(iϕ2
1 )(uN |0⟩ + vN |1⟩ + wN |2⟩)}

+A31{u1 exp(iϕ3
1 )(−ηN |0⟩

+ ξN |1⟩ + ηN |2⟩)} + A32{u1 exp(iϕ3
1 )(xN |0⟩ + yN |1⟩ + zN |2⟩)}

+A {u exp(iϕ3)(u |0⟩ + v |1⟩ + w |2⟩)}, (27)
33 1 1 N N N

8

where the coefficients Aij are calculated from

A =

N∏
n=2

Gn{ϕ},

Gn{ϕ} =

(G11 G12 G13
G21 G22 G23
G31 G32 G33

)
. (28)

The matrix elements of Eq. (27) is defined in Appendix E.
Again, for spin-1 case we study spin dynamics and analyze the

Fourier power spectrum of operators defined as follows ISx,Sy,Sz =⏐⏐⏐⏐ ∫∞

−∞
⟨Sx,y,z⟩ exp(−iωt)dt

⏐⏐⏐⏐2, where Sx,y,z are spin components for

S = 1 case. The Fourier power spectrum for Sx and Sz components
is plotted in Figs. 8 for the regular K = 0.5 and chaotic K = 10
regimes. We clearly see from Figs. 8 that in the regular regime we
get a few sharp peaks but in the chaotic regime we see broad-
ening of the spectrum and many peaks which is a signature of
chaos. The continuously filled lower band manifests the essence
of the chaos in the spin dynamics. Spin dynamics for Sx and Sz
components for regular and chaotic cases are plotted in Figs. 9
(a)–(d). The spin dynamics clearly differentiates between regular
and chaotic case. A quasi periodic oscillation is visible when the
oscillator is in the regular regime and a chaotic oscillation for the
oscillator in the chaotic regime. Transition from the quasi periodic
to the chaotic spin dynamics while changing the stochasticity
parameter K from 0.5 to 10 is a signature of chaos. Following the
recipes used for spin-1/2 case in Section 3 we analyze the nearest-
neighbor level statistics for spin-1 case. In the three-level system,
two nearest-neighbor spacings at nth kick are given as

S1n = E(n)
2 − E(n)

3 =
1
2

(
−δ +

√
(2χn +

√
2Ω)2 + δ2

)
,

S2n = E(n)
1 − E(n)

2 =
1
2

(
δ +

√
(2χn +

√
2Ω)2 + δ2

)
, (29)

We calculate the nearest-neighbor spacing for a few kicks and
plot the distribution functions. For the calculation of level-spacing
distribution of the Hamiltonians at different kicks, we notice that
the off-diagonal entries of the Hamiltonians containing In and θn
having range [0, 2π ] with (mean ∼ 3.132 and variance ∼ 3.382)
are stochastic. In the chaotic case of S = 1, the distribution of
the off-diagonal entries form a Gaussian ensemble with a mean
of 0.49 and a variance 5.7 and level-spacing distribution is not
the same as that of Gaussian orthogonal ensemble [45] but the
effect of level repulsion is visible in this larger Hilbert space
which was absent in the spin-1/2. In Fig. 10 we show the level-
spacing distribution of regular and chaotic regimes for S = 1
case with a reference Poissonian P(S) ∝ exp (−S) and Wigner–
Dyson distributions P(S) ∝ (πS/2) exp (−π (S/2)2). We see that
the maxima of distribution functions P(Sn) in the regular case are
shifted to the area of small Sn and in the chaotic case to the finite
Sn. Although distribution functions are not strictly Poissonian or
Wigner–Dyson type, the effect of the level repulsion is attributed
to the quantum chaotic phenomena observed.

5. Statistical average over various I0 and θ0

One of the principle differences between classical and quan-
tum chaos is the sensitivity of the classical nonlinear dynamics
with respect to the slight change of the initial conditions. Typ-
ically chaotic classical phase trajectories diverge in time when
starting from the vicinity of the same region.

We want to know if classical chaos imposes certain effects on
the quantum subsystem in the case of hybrid quantum–classical
chaos. For this aim, we considered the statistical average over
many initial values I and θ .
0 0
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Results of numeric calculations are presented in Figs. 11 and
2.
As we see from the plots, quantum dynamics is less sensitive

o the averaging performed on the classical part. Chaotic K > 1
nd regular K < 1 characteristics of quantum dynamics are
reserved after averaging done over the classical cantilever.

. Feedback effect

An interesting question is the feedback of the quantum sub-
ystem on the classical dynamics. For studying this problem one
eeds to solve recurrent relations self-consistently together with
he Schrödinger equation. After transforming into the action–
ngle variables we deduce:
d |ψ⟩

dt
= −

i
h̄

(
Ĥs + g

√
2I/mωr cos θ Ŝz

)
|ψ⟩ ,

dI
dt

= −
∂HI,θ

∂θ
−
∂V̂c,NV

∂θ
= g

√
2I/mωr sin θ ⟨ψ | Ŝz |ψ⟩

ε
∂V (I, θ )
∂θ

T
∞∑

n=−∞

δ (t − nT ) ,

dθ
dt

=
∂HI,θ

∂ I
−
∂V̂c,NV

∂ I
= −

g
√
2mωr I

cos θ ⟨ψ | Ŝz |ψ⟩ + ω(I) +

ε
∂V (I, θ )
∂ I

T
∞∑

n=−∞

δ (t − nT ) . (30)

he standard procedure for solving Eq. (30) consists of two steps:
ree propagation and kick. During the free propagation, the ef-
ect of kicks is absent and vice versa. We note that our system
9

is inherently nonlinear, and nonlinearity is a part of the main
Hamiltonian. The nonlinearity in our case is not weak, and the
model is non-perturbative. While action I is an adiabatic variable,
angle θ is a fast oscillating variable such that Tθ > 2π . The
formal solution of the recurrent relations has a form of morphism
M = In, θn → In+1, θn+1, where n, n + 1 corresponds to the
values after nth and (n + 1)th kick, respectively. We have two
time scales in the problem, fast and slow. The time unit for the
evolution of I and θ is T. Meaning that on the times shorter than
t < T variables In, θn are constants. To go from In, θn to In+1, θn+1
e need at least time t = T . On the other hand we have fast
ime oscillations in the Schrödinger equation because ω0 ≫ g .
owever, these fast phase oscillations of the wave function are
istinct from the evolution of the wave function that occurs on
he larger time scale t > T due to the evolution of In, θn. Existence
f fast and slow time scales in the system allows us to tackle the
eedback problem in the following scheme: In order to obtain fast
ime evolution of the wave function valid for t < T , we solve
he first equation in Eq. (30) for a constant In, θn (for t < T ,
ariables In and θn are constant). We solve Schrödinger equation
nalytically:

d |ψ⟩

dt
= −

i
h̄

(
Ĥs + g

√
2I/mωr cos θ Ŝz

)
|ψ⟩ , (31)

here Ŝz =
1
2 (cosασz + sinα(σ+

+ σ−)). When In and θn are
onstants, an =

√
2In/mωr cos θn = V0(In) cos θn is also a constant.

After solving Schrödinger’s equation analytically, we get the
volved wave function as:

ψ⟩ =

(
Ξ1
)
, (32)
Ξ2
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Fig. 9. Spin dynamics for the components Sx and Sz for Spin-1 case in the regular regime at K = 0.5 ((a) and (c)) and in the chaotic regime at K = 10 ((b) and (d)).
he parameters are m = 1, g = 1, Ω = 1, δ = 1, ωr = 0.2, T = 1, α = π/2. The values of the parameters in the real units: K = ϵI0T 6πµ

m2ω2
r
, µ =
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r m
2a20

, I0 =
m
2 x

2
0ωr ,

= 6 × 10−17 Kg, x0 = a0 = 5 × 10−3 m, T = 10µs, ωr = ω0 = 2π × 5 × 106 Hz, for chaotic ε = 0.003 and for regular ε = 0.0003.
Fig. 10. Histogram plot of level statistics of Hamiltonian Ĥn = ĤNV + gV̂c,NV for spin-1 system (a) in the regular regime at K = 0.5 (Blue) and (b) in the chaotic
regime K = 10 (Gray). A reference plot for Poissonian statistics (Orange) and Gaussian statistics (Red) is also shown. 1000 kicks are considered. The parameters are
m = 1, g = 1, Ω = 1, δ = 1, ωr = 0.2, T=1, α = π/2. The values of parameters: K = ϵI0T 6πµ

m2ω2
0
, µ =

ω2
r m
2a20

I0 =
m
2 x

2
0ωr , m = 6 × 10−17 Kg, x0 = a0 = 5 × 10−3 m,

T=10 µs, ωr = ω0 = 2π × 5 × 106 Hz, for chaotic case ϵ = 0.003 and for the regular case ϵ = 0.0003.
⟨

here

1 =

−iang sin 1
2 t
√
a2ng2 + ω2

0√
a2ng2 + ω2

0

, (33)

and

Ξ2 = cos
1
2
t
√
a2ng2 + ω2

0 +

iω0 sin 1
2 t
√
a2ng2 + ω2

0√
a2g2 + ω2

. (34)

n 0

10
Here we introduced shorthand notation Ωn =

√
a2ng2 + ω2

0 . We
note that ω0 is a large parameter of the proposed theoretical
model and this assumption is based on the value of ω0 = 2.88GHz
for NV centers. Therefore ω0 ≫ ang and

√
a2ng2 + ω2

0 ≈ ω0.
To obtain the feedback term in the explicit form we calculate

ψ(t)| Ŝz |ψ(t)⟩ and deduce:

∫ T

⟨ψ(t)| Ŝz |ψ(t)⟩ dt =
−angω0T

2 =
−V0(In) cos θngT

. (35)

0 2Ωn 2ω0
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Fig. 11. Statistical average of spin dynamics (Spin-1/2 system) for ⟨⟨σx⟩⟩, ⟨⟨σy⟩⟩ and ⟨⟨σz⟩⟩ in the regular regime at K = 0.5 ((a), (c) and (e)) and in the chaotic
egime at K = 10 ((b), (d) and (f)). For calculating statistical average of spin dynamics (Spin-1/2 system) we have taken 15 different sets of (I0, θ0). The parameters
are m = 1, g = 1, ω0 = 1, ωr = 0.2, T = 1, α = π/2. The values of the parameters in the real units: K = ϵI0T 6πµ

m2ω2
r
, µ =

ω2
r m
2a20

, I0 =
m
2 x

2
0ωr , m = 6 × 10−17 Kg,

0 = a0 = 5 × 10−3 m, T = 10µs, ωr = ω0 = 2π × 5 × 106 Hz, for chaotic ε = 0.003 and for regular ε = 0.0003.
onsequently Eq. (30) takes the form:

n+1 = In + g
√
2In/mωr sin θn

∫ T

0
⟨ψ(t)| Ŝz |ψ(t)⟩ dt − K sin θ,

n+1 = θn + In+1 − g
cos θn

√
2mωr In

∫ T

0
⟨ψ(t)| Ŝz |ψ(t)⟩ dt. (36)

The explicit integrated feedback term Eq. (35) is plugged in
Eq. (36) and the generalized standard map is deduced in the form:

In+1 = In −
g2TV 2

0 (In)
4ω0

sin 2θn − K sin θ,

n+1 = θn + In+1 + g2T
cos2 θn
2mωrω0

. (37)

n Fig. 13 dynamics of cantilever with feedback effects in regular
egime for K = 0.5 is shown. We see two cases: g = 0.1 and
11
g = 0.01. When the interaction strength between NV spin and
cantilever is moderate (g = 0.1), we see in Fig. 13(a) a small
deviation from regular dynamics in presence of feedback. For
small interaction between NV spin and cantilever, as shown in
Fig. 13(b), feedback does not effect the dynamics of cantilever. In
Fig. 14, we compare the spin dynamics with and without feedback
effects. We see a minor change in the amplitude of oscillations in
regular and chaotic cases due to the feedback term. In case of the
regular regime, the feedback not much affect the magnetization
as compared to the dynamics without feedback term. Similarly,
the switching pattern is hardly affected in the chaotic regime.

7. Conclusions

In the present work, we studied hybrid quantum–classical
NEMS systems. The classical part comprised of a nanocantilever,
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Fig. 12. Statistical average of Fourier Power spectrum density (Spin-1/2 system) for ⟨⟨σx⟩⟩, ⟨⟨σy⟩⟩ and ⟨⟨σz⟩⟩ in the regular regime ((a), (c) and (e)) at K = 0.5 (Blue),
nd in the chaotic regime ((b), (d) and (f)) at K = 10 (Gray). For calculating Statistical average of Spin dynamics(Spin-1/2 system) we have taken 15 different sets
f (I0, θ0). The parameters used for the plot are m = 1, g = 1, ω0 = 1, ωr = 0.2, T = 1, α = π/2. The values of the parameters in the real units: K = ϵI0T 6πµ

m2ω2
r
,

=
ω2
r m
2a20
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m
2 x

2
0ωr , m = 6 × 10−17 Kg, x0 = a0 = 5 × 10−3 m, T = 10µs, ωr = ω0 = 2π × 5 × 106 Hz, for chaotic case ϵ = 0.003 and for the regular case

= 0.0003.
s
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t
i
t
s
d
a
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e
r
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nd the quantum part is the NV spin. Nanocantilever performs
onlinear oscillations in the chaotic and regular regimes. Due to
he spin-cantilever coupling, the effects of the oscillations of the
antilever are transmitted to the spin dynamics. The problem in
uestion was whether the classical dynamical chaos may induce
uantum chaos or other effects of quantum stochasticity in the
uantum dynamics of the NV spin. We studied the Poincaré
ection of spin-dynamics and explored the Fourier power spectral
ensity of the quantum dynamical observables in the chaotic
nd regular regimes. We investigated the generation of quantum
oherence for the NV center coupled to nanocantilever in the
haotic and regular regime. We also investigated the quantum
oincaré recurrence in the chaotic and regular regime. While
he Fourier spectrum analysis clearly indicates the presence of
12
tochasticity in the dynamics of quantum observables, some char-
cteristics of quantum chaos are absent. The dynamical chaos
mposed to the cantilever dynamics through the kicking induces
he stochastic dynamics on the quantum subsystem. However,
his stochastic dynamics of the classical cantilever does not man-
fest all the features of quantum chaos. We also investigated a
hree-level system for the quantum part considering NV spin as
pin-1 particle. We see that the Fourier power spectrum and spin
ynamics evince the effects of chaos. For spin-1 case we see
quasi-Gaussian distribution of nearest-neighbor level spacing

or the oscillator in chaotic regime and quasi-Poissonian level
tatistics for the oscillator in regular regime. We also explore the
ffect of quantum feedback on classical cantilever in both cases
egular and chaotic and also see the effect on spin dynamics.
eedback effect is negligible in the chaotic regime of the system.
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Fig. 13. The Phase space plot of cantilever’s dynamics constructed through the recurrence relations equation (37) with feedback in ((a) and (b)) the regular regime
K = 0.5 (Blue) where the phase space is covered by two different phase trajectories: open hyperbolic and some part of closed ellipse. The parameters for Fig. 13(a)
are m = 1, g = 0.1, ω0 = 10, ωr = 0.2, T = 1. The parameters for Fig. 13(b) are m = 1, g = 0.01, ω0 = 1, ωr = 0.2, T = 1. The values of the parameters in the real
nits: K = ϵI0T 6πµ

m2ω2
r
, µ =

ω2
r m
2a20

I0 =
m
2 x

2
0ωr , m = 6 × 10−17 Kg, x0 = a0 = 5 × 10−3 m, T = 10µs, ωr = ω0 = 2π × 5 × 106 Hz, for the regular case ε = 0.0003.
Fig. 14. Spin dynamics with feedback (Solid) and without feedback (Dashed) for ⟨σz⟩ in the regular regime at K = 0.5 (see (a)) and ⟨σz⟩ in the chaotic regime at
= 10 (see (b)). The parameters are m = 1, g = 1, ω0 = 1, ωr = 0.2, T = 1, α = π/2. The values of the parameters in the real units: K = ϵI0T 6πµ

m2ω2
r
, µ =

ω2
r m
2a20

,

0 =
m
2 x

2
0ωr , m = 6 × 10−17 Kg, x0 = a0 = 5 × 10−3 m, T = 10µs, ωr = ω0 = 2π × 5 × 106 Hz, for chaotic ε = 0.003 and for regular ε = 0.0003.
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ppendix A. Normalization condition for the wave function
epresented in Eq. (16) when Gn{ϕ} is diagonal

The eigenstates and eigenvalues of the nth Floquet operator
ave the form:

ϕ+
⟩
= η |0⟩ + ξ |1⟩ ,
n n n

13
ϕ−

n

⟩
= ξn |0⟩ − ηn |1⟩ , (38)

here

n =
1√

1 + k2n
,

ξn = −
kn√

1 + k2n
,

kn =

ω0 +

√
χ2
n + ω2

0

χn
. (39)

n = k∗
n, so ηn = η∗

n and ξn = ξ ∗
n . The normalization condition of

he wave function after N kicks, i.e., at t = NT has the form:

ψ(t = TN)|ψ(t = TN)⟩
|A11|

2
{|η1|

2(|ηN |
2
+ |ξN |

2)} + A∗

11A12{|η1|
2(ξNη∗

N

ξ ∗

NηN )} + A∗

11A21{η
∗

1ξ1 exp(2iϕ1)(|ηN |
2
+ |ξN |

2)}
A∗

11A22{η
∗

1ξ1(ξNη
∗

N − ξ ∗

NηN )} + A11A∗

12{|η1|
2(−ξNη∗

N + ξ ∗

NηN )}
|A12|

2
{|η1|

2(|ηN |
2
+ |ξN |

2)}
A∗

12A21{η
∗

1ξ1 exp(2iϕ1)(−ξNη
∗

N + ξ ∗

NηN )}
A∗

12A22{η
∗

1ξ1 exp(2iϕ1)(|ξN |
2
+ |ηN |

2)}
A∗

21A11{η1ξ
∗

1 exp(−2iϕ1)(|ξN |
2

|ηN |
2)} + A∗

21A12{η1ξ
∗

1 exp(−2iϕ1)(ξNη∗

N − ηNξ
∗

N )}
|A21|

2
{|ξ1|

2(|ηN |
2
+ |ξN |

2)} + A∗

21A22{|ξ1|
2(η∗

NξN − ξ ∗

NηN )}
A A∗

{η ξ ∗ exp(−2iϕ )(η ξ ∗
− η∗ ξ )}
11 22 1 1 1 N N N N
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+

+

G

A

A
+

A
+

A
+

A
+

⟨

+

+

+

|

=

+

+

+

+

|

=

+

−

+

−

|

+

+

+

+

|

+

+

+

+

A
=

−

+

+

+

A
=

+

+

(
+

+

A
=

−

+

+

+

A
+

+

+

−

⟨

T

⟨

A12A∗

22{η1ξ
∗

1 exp(−2iϕ1)(|ξN |
2
+ |ηN |

2)}
A21A∗

22|ξ1|
2(ηNξ ∗

N − η∗

NξN ) + |A22|
2
{|ξ1|

2(|ηN |
2
+ |ξN |

2)}.

In the particular case, A11 = A∗

22 and A12 = A∗

21 after simplifi-
cation one can get the form:

⟨ψ(t = TN)|ψ(t = TN)⟩
= |A11|

2
+ |A12|

2
+ A∗

11A21{η
∗

1ξ1 exp(2iϕ1)}
+ A∗

12A22{η
∗

1ξ1 exp(2iϕ1)} + A∗

21A11{η1ξ
∗

1 exp(−2iϕ1)}

+A12A∗

22{η1ξ
∗

1 exp(2iϕ1)}. (40)

If all kicks are identical, the off-diagonal elements of the matrix A
are zero. Therefore: |A11|

2
= 1, |A12|

2
= 0, |A21|

2
= 0, |A22|

2
= 1

⟨ψ(t = TN)|ψ(t = TN)⟩ = 1. (41)

Appendix B. Normalization condition for the wave function
represented in Eq. (16) when Gn{ϕ} is non-diagonal

We prove the normalization of the evolved wave function in
the general case of three N = 3 different kicks. The elements of
the G matrix in Eq. have the form:

G2{ϕ} =

[
exp(−iϕ2)(η2η1 + ξ2ξ1) exp(−iϕ2)(η2ξ1 − ξ2η1)
exp(iϕ2)(ξ2η1 − η2ξ1) exp(iϕ2)(η2η1 + ξ2ξ1)

]
,

(42)

3{ϕ} =

[
exp(−iϕ3)(η3η2 + ξ3ξ2) exp(−iϕ3)(η3ξ2 − ξ3η2)
exp(iϕ3)(ξ3η2 − η3ξ2) exp(iϕ3)(η3η2 + ξ3ξ2)

]
.

(43)

Therefore for A matrix we deduce

=

3∏
n=2

Gn{ϕ}, (44)

11 = exp(−iϕ2 − iϕ3)(η2η1 + ξ2ξ1)(η3η2 + ξ3ξ2)
exp(−iϕ2 + iϕ3)(η2ξ1 − ξ2η1)(ξ3η2 − η3ξ2), (45)

12 = exp(−iϕ2 − iϕ3)(η2η1 + ξ2ξ1)(η3ξ2 − ξ3η2)
exp(−iϕ2 + iϕ3)(η2ξ1 − ξ2η1)(η3η2 + ξ3ξ2), (46)

21 = exp(iϕ2 − iϕ3)(η3η2 + ξ2ξ3)(η1ξ2 − ξ1η2)
exp(iϕ2 + iϕ3)(η2η1 + ξ2ξ1)(ξ3η2 − η3ξ2), (47)

22 = exp(iϕ2 − iϕ3)(ξ2η1 + η2ξ1)(η3ξ2 − ξ3η2)
exp(iϕ2 + iϕ3)(η2η1 + ξ2ξ1)(η3η2 + ξ3ξ2), (48)

ψ(t = TN)|ψ(t = TN)⟩ = |A11|
2
|η1|

2
+ |A12|

2
|η1|

2

|A21|
2
|ξ1|

2
+ A∗

11A21{η
∗

1ξ1 exp(2iϕ1)} + A∗

12A22{η
∗

1ξ1 exp(2iϕ1)}
|A22|

2
|ξ1|

2
+ A∗

21A11{η1ξ
∗

1 exp(−2iϕ1)}

A12A∗

22{η1ξ
∗

1 exp(2iϕ1)}, (49)

A11|
2

((η2ξ1 − η1ξ2)(−η3ξ2 + η2ξ3) cos[ϕ2 − ϕ3]

(η1η2 + ξ1ξ2)(η2η3
ξ2ξ3) cos[ϕ2 + ϕ3])2

((η2ξ1 − η1ξ2)(−η3ξ2 + η2ξ3) sin[ϕ2 − ϕ3]

(η1η2 + ξ1ξ2)(η2η3 + ξ2ξ3) sin[ϕ2 + ϕ3])2, (50)

A |
2

12

14
((η2ξ1 − η1ξ2)(η2η3 + ξ2ξ3) cos[ϕ2 − ϕ3]

(η1η2 + ξ1ξ2)(η3 ξ2
η2ξ3) cos[ϕ2 + ϕ3])2

((η2ξ1 − η1ξ2)(η2η3 + ξ2ξ3) sin[ϕ2 − ϕ3]

(η1η2 + ξ1ξ2)(−η3ξ2 + η2ξ3) sin[ϕ2 + ϕ3])2, (51)

A21|
2

= ((−η2ξ1 + η1ξ2)(η2η3 + ξ2ξ3) cos[ϕ2 − ϕ3]

(η1η2 + ξ1ξ2)(−η3ξ2
η2ξ3) cos[ϕ2 + ϕ3])2

((−η2ξ1 + η1ξ2)(η2η3 + ξ2ξ3) sin[ϕ2 − ϕ3]

(η1η2 + ξ1ξ2)(−η3 ξ2 + η2ξ3) sin[ϕ2 + ϕ3])2, (52)

A22|
2

= ((η2ξ1 − η1ξ2)(−η3ξ2 + η2ξ3) cos[ϕ2 − ϕ3]

(η1η2 + ξ1ξ2)(η2η3
ξ2ξ3) cos[ϕ2 + ϕ3])2

((η2ξ1 − η1ξ2)(−η3ξ2 + η2ξ3) sin[ϕ2 − ϕ3]

(η1η2 + ξ1ξ2)(η2η3 + ξ2ξ3) sin[ϕ2 + ϕ3])2, (53)

21A∗

11

− exp(2iϕ2)((η22 + ξ 22 )(η3ξ1 − η1ξ3) cos[ϕ3] − i(η22(η3ξ1 + η1ξ3)
ξ 22 (η3ξ1 + η1ξ3) + 2η2ξ2(−η1η3 + ξ1ξ3)) sin[ϕ3])((η22 + ξ 22 )(η1η3
ξ1ξ3) cos[ϕ3] + i(η1(η22η3 − η3ξ

2
2 + 2η2ξ2ξ3)

ξ1(2η2η3ξ2 − η22ξ3

ξ 22 ξ3)) sin[ϕ3]), (54)

∗

21A11

exp(−2iϕ2)((−η2ξ1 + η1ξ2)(η1η2 + ξ1ξ2)(ξ2(−η3 + ξ3)
η2(η3 + ξ3))(η2(η3 − ξ3) + ξ2(η3 + ξ3))
( η3ξ2 − η2ξ3)(η2η3 + ξ2ξ3)

−(ξ1(−η2 + ξ2) + η1(η2 + ξ2))(η1(η2 − ξ2)
ξ1(η2 + ξ2)) cos[2ϕ3]
i(η21 + ξ 21 )(η

2
2 + ξ 22 ) sin[2ϕ3])), (55)

∗

12A22

exp(2iϕ2)((η22 + ξ 22 )(η3ξ1 − η1ξ3) cos[ϕ3] − i(η22(η3ξ1 + η1ξ3)
ξ 22 (η3ξ1 + η1ξ3) + 2η2ξ2(−η1η3 + ξ1ξ3)) sin[ϕ3])((η22 + ξ 22 )(η1η3
ξ1ξ3) cos[ϕ3] + i(η1(η22η3 − η3ξ

2
2 + 2η2ξ2ξ3)

ξ1(2η2η3ξ2 − η22ξ3

ξ 22 ξ3)) sin[ϕ3]), (56)

∗

22A12 = exp(−2iϕ2)((η2ξ1 − η1ξ2)(η1η2 + ξ1ξ2)(ξ2(−η3 + ξ3)
η2(η3 + ξ3))(η2(η3 − ξ3) + ξ2(η3 + ξ3)) + (η3ξ2 − η2ξ3)(η2η3
ξ2ξ3)((ξ1(−η2 + ξ2) + η1(η2 + ξ2))(η1(η2 − ξ2)
ξ1(η2 + ξ2)) cos[2ϕ3]
i(η21 + ξ 21 )(η

2
2 + ξ 22 ) sin[2ϕ3])). (57)

The normalization equation takes the form:

ψ(t = TN)|ψ(t = TN)⟩ = (η21 + ξ 21 )
2(η22 + ξ 22 )

2(η23 + ξ 23 ). (58)

he normalization condition holds

ψ(t = TN)|ψ(t = TN)⟩ = 1. (59)
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ppendix C. Expectation value of ⟨σα⟩, α = x, y, z

The analytical expressions for expectation values of the spin
omponents used in calculations:

σx⟩ = |A11|
2
|η1|

2(η∗

NξN + ξ ∗

NηN ) + A∗

11A12|η1|
2(−|ηN |

2
+ |ξN |

2)
A∗

11A21η
∗

1ξ1 exp(2iϕ1)(η
∗

NξN + ηNξ
∗

N )
+A∗

11A22η
∗

1ξ1 exp(2iϕ1)(−|ηN |
2

+ |ξN |
2) + A∗

12A11|η1|
2(−|ηN |

2
+ |ξN |

2)
+|A12|

2
|η1|

2(−η∗

NξN − ξ ∗

NηN )
+ A∗

12A21η
∗

1ξ1 exp(2iϕ1)(−|ηN |
2
+ |ξN |

2)
+A∗

12A22η
∗

1ξ1 exp(2iϕ1)(−η
∗

NξN − ηNξ
∗

N )
+A∗

21A11η1ξ
∗

1 exp(−2iϕ1)(η∗

NξN + ξ ∗

NηN )
+A∗

21A12η1ξ
∗

1 exp(−2iϕ1)(−|ηN |
2

+ |ξN |
2) + |A21|

2
|ξ1|

2(ηNξ ∗

N + ξNη
∗

N ) + A∗

21A22|ξ1|
2(−|ηN |

2
+ |ξN |

2)
+ A∗

22A11η1ξ
∗

1 exp(−2iϕ1)(−|ηN |
2
+ |ξN |

2)
+A∗

22A12η1ξ
∗

1 exp(−2iϕ1)(−η∗

NξN

− ηNξ
∗

N ) + A21A∗

22|ξ1|
2(−|ηN |

2
+ |ξN |

2)

+|A22|
2
|ξ |2(−ηNξ ∗

N − ξNη
∗

N ), (60)

⟨σy⟩ = |A11|
2
|η1|

2(−iη∗

NξN + iξ ∗

NηN ) + A∗

11A12|η1|
2(i|ηN |

2
+ i|ξN |

2)
+ A∗

11A21η
∗

1ξ1 exp(2iϕ1)(−iη∗

NξN + iηNξ ∗

N )
+A∗

11A22η
∗

1ξ1 exp(2iϕ1)(i|ηN |
2

+ i|ξN |
2) + A∗

12A11|η1|
2(−i|ηN |

2
− i|ξN |

2)
+|A12|

2
|η1|

2(−iη∗

NξN + iξ ∗

NηN )
+ A∗

12A21η
∗

1ξ1 exp(2iϕ1)(−i|ηN |
2
− i|ξN |

2)
+A∗

12A22η
∗

1ξ1 exp(2iϕ1)(−iη∗

NξN + iηNξ ∗

N )
+ A∗

21A11η1ξ
∗

1 exp(−2iϕ1)(−iη∗

NξN + iξ ∗

NηN )
+A∗

21A12η1ξ
∗

1 exp(−2iϕ1)(i|ηN |
2
+ i|ξN |

2)
+ |A21|

2
|ξ1|

2(iηNξ ∗

N − iξNη∗

N )
+A∗

21A22|ξ1|
2(i|ηN |

2
+ i|ξN |

2)
+ A∗

22A11η1ξ
∗

1 exp(−2iϕ1)(−i|ηN |
2
− i|ξN |

2)
+A∗

22A12η1ξ
∗

1 exp(−2iϕ1)(−iη∗

NξN + iηNξ ∗

N )

+ A21A∗

22|ξ1|
2(−i|ηN |

2
− i|ξN |

2) + |A22|
2
|ξ |2(iηNξ ∗

N − iξNη∗

N ), (61)

⟨σz⟩ = |A11|
2
|η1|

2(|ηN |
2
− |ξN |

2)
+A∗

11A12|η1|
2(ξNη∗

N + ξ ∗

NηN )
+ A∗

11A21η
∗

1ξ1 exp(2iϕ1)(|ηN |
2
− |ξN |

2)
+A∗

11A22η
∗

1ξ1 exp(2iϕ1)(ξNη
∗

N + ξ ∗

NηN )
+ A∗

12A11|η1|
2(ξNη∗

N + ξ ∗

NηN ) + |A12|
2
|η1|

2(|ξN |
2
− |ηN |

2)
+ A∗

12A21η
∗

1ξ1 exp(2iϕ1)(ξ
∗

NηN + η∗

NξN )
+A∗

12A22η
∗

1ξ1 exp(2iϕ1)(|ξN |
2
− |ηN |

2)
A∗

21A11η1ξ
∗

1 exp(−2iϕ1)(|ηN |
2
− |ξN |

2)
A∗

21A12η1ξ
∗

1 exp(−2iϕ1)(η∗

NξN + ξNηN )
|A21|

2
|ξ1|

2(|ηN |
2
− |ξN |

2)
A∗

21A22|ξ1|
2(η∗

NξN + ξ ∗

NηN )
A∗

22A11η1ξ
∗

1 exp(−2iϕ1)(ηNξ ∗

N + η∗

NξN )
A∗

22A12η1ξ
∗

1 exp(−2iϕ1)(|ξN |
2
− |ηN |)

A21A∗

22|ξ1|
2(ξ ∗

NηN + η∗

NξN ) + |A22|
2
|ξ |2(|ξN |

2
− |ηN |

2). (62)
15
Appendix D. Elements of density matrix for Eq. (19)

The elements of the reduced density matrix, analytical expres-
sions used for calculation of the coherence.

ρ11

= |A11|
2
|η1|

2
|ηN |

2
+ A∗

11A12|η1|
2η∗

NξN + A∗

11A21η
∗

1ξ1 exp (2iϕ1)|ηN |
2

+ A∗

11A22η
∗

1ξ1 exp (2iϕ1)η∗

NξN + A∗

12A11|η1|
2ηNξ

∗

N + |A12|
2
|η1|

2
|ξN |

2

+ A∗

12A21η
∗

1ξ1 exp (2iϕ1)ηNξ ∗

N + A∗

12A22η
∗

1ξ1 exp (2iϕ1)|ξN |
2

+ A∗

21A11η1ξ
∗

1 exp (−2iϕ1)|ηN |
2
+ A∗

21A12η1ξ
∗

1 exp (−2iϕ1)η∗

NξN

+ |A21|
2
|ξ1|

2
|ηN |

2
+ A∗

21A22|ξ1|
2ξNη

∗

N + A11A∗

22 exp (−2iϕ1)ηNξ ∗

N

+ A12A∗

22η1ξ
∗

1 exp (−2iϕ1)|ξN |
2

+A21A∗

22|ξ1|
2ηNξ

∗

N + |A22|
2
|ξ1|

2
|ξN |

2, (63)

ρ12

= |A11|
2
|η1|

2ηNξ
∗

N + A∗

11A12|η1|
2
|ξN |

2
+ A∗

11A21η
∗

1ξ1 exp (2iϕ1)ηNξ ∗

N

+ A∗

11A22η
∗

1ξ1 exp (2iϕ1)|ξN |
2
− A∗

12A11|η1|
2
|ηN |

2
− |A12|

2
|η1|

2ξNη
∗

N

− A∗

12A21η
∗

1ξ1 exp (2iϕ1)|ηN |
2
− A∗

12A22η
∗

1ξ1 exp (2iϕ1)η∗

NξN

+ A∗

21A11η1ξ
∗

1 exp (−2iϕ1)ξ ∗

NηN + A∗

21A12η1ξ
∗

1 exp (−2iϕ1)|ξN |
2

+ |A21|
2
|ξ1|

2ηNξ
∗

N + A∗

21A22|ξ1|
2
|ξN |

2

−A11A∗

22η1ξ
∗

1 exp (−2iϕ1)|ηN |
2

− A12A∗

22η1ξ
∗

1 exp (−2iϕ1)η∗

NξN − A21A∗

22|ξ1|
2
|ηN |

2

−|A22|
2
|ξ1|

2ξNη
∗

N , (64)

ρ21 = |A11|
2
|η1|

2η∗

NξN − A∗

11A12|η1|
2
|ηN |

2

+A∗

11A21η
∗

1ξ1 exp (2iϕ1)η∗

NξN

− A∗

11A22η
∗

1ξ1 exp (2iϕ1)|ηN |
2
+ A∗

12A11|η1|
2
|ξN |

2
− |A12|

2
|η1|

2ξ ∗

NηN

+ A∗

12A21η
∗

1ξ1 exp (2iϕ1)|ξN |
2
− A∗

12A22η
∗

1ξ1 exp (2iϕ1)ηNξ ∗

N

+ A∗

21A11η1ξ
∗

1 exp (−2iϕ1)ξNη∗

N − A∗

21A12η1ξ
∗

1 exp (−2iϕ1)|ηN |
2

+ |A21|
2
|ξ1|

2η∗

NξN − A∗

21A22|ξ1|
2
|ηN |

2

+A11A∗

22η1ξ
∗

1 exp (−2iϕ1)|ξN |
2

− A12A∗

22η1ξ
∗

1 exp (−2iϕ1)ηNξ ∗

N + A21A∗

22|ξ1|
2
|ξN |

2

−|A22|
2
|ξ1|

2ξ ∗

NηN , (65)

ρ22

= |A11|
2
|η1|

2
|ξN |

2
− A∗

11A12|η1|
2ηNξ

∗

N + A∗

11A21η
∗

1ξ1 exp (2iϕ1)|ξN |
2

− A∗

11A22η
∗

1ξ1 exp (2iϕ1)ηNξ ∗

N − A∗

12A11|η1|
2η∗

NξN + |A12|
2
|η1|

2
|ηN |

2

A∗

12A21η
∗

1ξ1 exp (2iϕ1)η∗

NξN + A∗

12A22η
∗

1ξ1 exp (2iϕ1)|ηN |
2

A∗

21A11η1ξ
∗

1 exp (−2iϕ1)|ξN |
2
− A∗

21A12η1ξ
∗

1 exp (−2iϕ1)ηNξ ∗

N

+ |A21|
2
|ξ1|

2
|ξN |

2
− A∗

21A22|ξ1|
2ξ ∗

Nη
∗

N − A11A∗

22 exp (−2iϕ1)η∗

NξN

A12A∗

22η1ξ
∗

1 exp (−2iϕ1)|ηN |
2

A21A∗

22|ξ1|
2η∗

NξN + |A22|
2
|ξ1|

2
|ηN |

2. (66)

ppendix E. Normalization constants for eigenstates of flo-
uet operator for Eq. (26) and matrix elements for Eq. (28)

The eigenstates of Floquet operator for spin-1 are defined as:
ϕ1
n

⟩
= −ηn |0⟩ + ξn |1⟩ + ζn |2⟩, and

⏐⏐ϕ2
n

⟩
= xn |0⟩ + yn |1⟩ + zn |2⟩

and
⏐⏐ϕ3

n

⟩
= un |0⟩ + vn |1⟩ + wn |2⟩, where the normalization

constants for above eigenstates are defined as:
ηn = −

1
√
2

= −ζn, ξn = 0, xn =
an√

a2n+b2n+c2n
, yn =

bn√
a2n+b2n+c2n

,

zn =
cn√

a2n+b2n+c2n
, un =

dn√
d2n+e2n+f 2n

, vn =
en√

d2n+e2n+f 2n
, wn =

fn√ , an =
2χ2

n+2
√
2χnΩ+Ω2

√
2 , bn =

δ−
√

4χ2
n+δ2+4

√
2χnΩ+2Ω2

√ ,

d2n+e2n+f 2n ( 2χn+Ω) 2χn+Ω
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c
f

G

G

n = 1, dn =
2χ2

n+2
√
2χnΩ+Ω2

(
√
2χn+Ω)2

, en =
δ+

√
4χ2

n+δ2+4
√
2χnΩ+2Ω2

√
2χn+Ω

,
n = 1.

Matrix elements of Eq. (28) are given as.

11 = exp(−iϕ1
n )(ηnηn−1 + ξnξn−1 + ηnηn−1), (67)

12 = exp(−iϕ1
n )(−ηnxn−1 + ξnyn−1 + ηnzn−1), (68)

G13 = exp(−iϕ1
n )(−ηnun−1 + ξnvn−1 + ηnwn−1), (69)

G21 = exp(−iϕ2
n )(−xnηn−1 + ynξn−1 + znηn−1), (70)

G22 = exp(iϕ2
n )(xnxn−1 + ynyn−1 + znzn−1), (71)

G23 = exp(iϕ2
n )(xnun−1 + ynvn−1 + znwn−1), (72)

G31 = exp(−iϕ3
n )(−unηn−1 + vnξn−1 + wnηn−1), (73)

G32 = exp(iϕ2
n )(unxn−1 + vnyn−1 + wnzn−1), (74)

G33 = exp(iϕ2
n )(unun−1 + vnvn−1 + wnwn−1). (75)
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