List of Figures

1.1	A schematic representation of a network with community structure	2
3.1	Example of $\eta^{1.0}$ ego network	43
3.2 3.3	Mutual interest in the relationship between two persons	45
3.4	algorithm's inclination towards accuracy	59
5.4	variation of accuracy contribution	60
3.5	Safe zone predicted with different metrics corresponding to α and β ranges in Strike data set	62
3.6	Safe zone predicted with different metrics corresponding to α and β ranges	02
3.7	in Karate data set	63
5.1	in Football data set	64
3.8	Safe zone predicted with different metrics corresponding to α and β ranges in Dolphin data set	65
4.1	Communities identified with FuzAg algorithm on an example graph	79
4.2	MCDM ranking acquired by each algorithm in Dolphin, Football, Karate and Strike networks with variation of accuracy contribution. Higher scores	
4.3	indicate tendency of algorithm's inclination towards accuracy Normalized mutual information (NMI) values obtained on LFR bench-	96
4.4	mark graph disjoint community	97
	ation of parameter ψ on Dolphin, Football and Karate networks	98
4.5	Fuzzy modularity resulted (a) by considering constant $\psi = 0.25$ for hardening membership degree to form crisp overlapping communities, and (b)	
	by considering various constant ψ values for hardening membership degree on Dolphin network	100
5.1	Effect of cognitive avoidance in PSO	107
5.2	Multiple featured network representation of instances with attributes. A person is connected with respect to an attribute to other if both have entries	
	1 in the table	109

List of Figures xiv

5.3	Convergence comparison of PSO-CATV with PSO-TVIW, PSO-TVAC and jDE	121
5.4	Comparison of communities predicted with PSOCA and other variants of	123
6.1 6.2	1	139 140
6.3	AUC, Precision, RS and Time on LFR2 networks with 1000 nodes	141
6.4	AUC values of predicted missing links for different sizes of probe set	142
6.5	Precision values of predicted missing links for different sizes of probe set.	143
6.6	RS values of predicted missing links for different sizes of probe set	144
7.1	1 1	164
7.2	Regression Line dominance with Simple Linear Regression (SLR) analy-	1 / /
7.2	1 1	165
7.3	<u>e</u>	166
7.4	Negative shifting of RL	167
7.5	on LFR benchmark graphs. NMI, ARI, Purity and F-measure are accuracy	
		176
7.6	Comparison of effectiveness of AVI, AVU and ANUI with other metrics	. / (
7.0	•	177
7.7	Characteristics of AVI, AVU and ANUI on LFR benchmark graphs. Characteristics of AVI, AVU and ANUI are shown in (a), (b) and (c) respectively.	
7.8	Characteristics of AVI, AVU and ANUI on real-world networks. Charac-	101
7.0		182
7.9		185
7.10	• •	188
7.11	- · · ·	189
7.12	Many-to-many solution quality comparison in CEC2005 functions f9-f14.	190
7.13	One-to-many comparison of community detection algorithms in terms of NMI values	191
7.14	One-to-many comparison of community detection algorithms in terms of Coverage values	192
A .1	Angular displacement in CPS and CNS	224
A.2		225