List of Tables

2.1	Contingency table I. Here, each n_{ij} denotes the number of nodes in common between communities C_i and $R_j : n_{ij} = C_i \cap R_j $	26
2.2	Contingency table II	27
3.1	Accuracy metric values in various datasets having ground truth communities	52
3.2	Quality metric values for datasets having ground truth communities	54
3.3	Quality metric values for datasets whose ground truth are unavailable	56
3.4	MCDM ranking score obtained with 75% accuracy and 25% quality	58
3.5	Summary of complexity of community detection algorithms	67
4.1	Time complexity comparison of proposed FuzAg with GAFCD, FMM/H2, CFGC and MDP	83
4.2	Real-world networks used in the experiments	85
4.3	Range of number of communities (k) for GAFCD, FMM/H2 and CFGC	
	on each network	86
4.4	Best quality metrics' values with $(k/iter)$ for disjoint communities pre-	0-
	dicted over 100 runs	87
4.5	Mean (top) and standard deviation (bottom) of quality metrics' values for	
	disjoint communities predicted over 100 runs of each algorithm-part I	89
4.6	Mean (top) and standard deviation (bottom) of quality metrics' values for	
	disjoint communities predicted over 100 runs of each algorithm-part II	90
4.7	Mean, Standard deviation, best with $(k/iter)$ fuzzy modularity for over-	
	lapping crisp communities	91
4.8	Mean and standard deviation and best with $(k/iter)$ of accuracy metrics'	
	values for disjoint communities	92
4.9	Comparison of execution time (seconds) required for 100 runs	93
4.10	MCDM ranking score obtained with 75% accuracy and 25% quality	95
5.1	Benchmark functions	115
5.2	Initial range and Optima	116
5.3	Comparison of PSO and PSOCA	117
5.4	Comparison of PSO-CATV with PSO-TVIW, PSO-TVAC and jDE part I .	118
5.5	Comparison of PSO-CATV with PSO-TVIW, PSO-TVAC and jDE part II	119

List of Tables xvi

6.1	Comparison of CLP-EB, CLP-EP, and CLP-ES in terms of accuracy quantified by AUC	136
6.2	Comparison of CLP-EB, CLP-EP, and CLP-ES in terms of accuracy quantified by Precison	
6.3	Comparison of CLP-EB, CLP-EP, and CLP-ES in terms of Ranking Score (RS)	
6.4	W-values obtained with Wilcoxon rank test for AUC, Precision and RS values on four networks	138
7.1	Combination of AVI, AVU and ANUI with indication of clustering quality and accuracy.	179
7.2	Summary of high MCDM scores in the curve and meaning in terms of	
	RITA and bias of algorithms	186
7.3	Average of accuracy metrics and quality metrics values	186