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Ordering through learning in two-dimensional Ising spins
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We study two-dimensional Ising spins, evolving through reinforcement learning using their state, action, and
reward. The state of a spin is defined by whether it is in the majority or minority with its nearest neighbors. The
spin updates its state using an ε-greedy algorithm. The parameter ε plays a role equivalent to the temperature
in the Ising model. We find a phase transition from long-ranged ordered to a disordered state as we tune ε

from small to large values. In analogy with the phase transition in the Ising model, we calculate the critical ε

and the three critical exponents β, γ , ν of magnetization, susceptibility, and correlation length, respectively. A
hyperscaling relation dν = 2β + γ is obtained between the three exponents. The system is studied for different
learning rates. The exponents approach the exact values for a two-dimensional Ising model for lower learning
rates.
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I. INTRODUCTION

The two-dimensional Ising model [1] is a prototype model
which has been used to study various magnetic systems. The
model has proven to be helpful in understanding the basic
features of magnetic materials. Nonmagnetic systems such as
the lattice gas model for a liquid gas phase transition [2,3] can
also be mapped to the Ising model. Several studies have inves-
tigated the Ising model theoretically and numerically [4–7].
Prior numerical investigations of the model have predomi-
nantly been done using Maxwell-Boltzmann statistics and the
Metropolis-Hastings algorithm. However, the system can be
studied alternatively: where a spin learns from its experience
and also from its neighbors. Although in previous studies,
the Ising model with memory is explored with some time-
dependent coupling (kernel) in the Hamiltonian [8,9], these
models can be solved only for specific kernels. This paper
aims to investigate a many-body spin system where the spin
acts as an agent that learns from its experience.

In the current paper, we develop an algorithm for the
two-dimensional Ising spin system using a reinforcement
learning (RL) approach [10–12]. RL is a branch of machine
learning [13–15]. It is based on choosing suitable actions to
maximize reward (appreciation) in a particular problem where
the agent learns from its experience [16,17]. Previously, RL
has been studied in many areas, such as game theory [18],
operations research [19], information theory [20], statistics,
etc. In recent years, an RL framework has been used to model
interacting systems as well [16,17,21,22]. Our study uses RL
to study two-dimensional Ising spins. Here, the particles take
action by considering the state of neighbors. To do so, we have

*pranayb.sampat.phy16@itbhu.ac.in
†ananyaverma.phy18@itbhu.ac.in
‡riyagupta.phy18@itbhu.ac.in
§smishra.phy@iitbhu.ac.in

used Q learning [15], which is a basic form of reinforcement
learning where an agent uses Q values (also called action
values) to optimize its actions iteratively. The objective is to
optimize a value function suited to a given environment.

We are introducing a way to study the many-particle inter-
acting system, where we do not require a Hamiltonian, hence
this can be applied to systems where the Hamiltonian is not
known. The dynamics of the spins evolve through their states,
actions (whether or not to change their orientation), and the
reward associated with each action. The reward associated
with the actions incentivizes the spin to align with the majority
within its four nearest neighbors on the square lattice. At each
step, spins learn from their previous actions and update the
reward associated with their actions. This is done using the
ε-greedy algorithm [23], either to flip or retain its spin at
each step. ε plays a role analogous to that of temperature in
models which employ the Metropolis-Hastings algorithm to
simulate the Ising model [5]. The observables we are calcu-
lating are the measure of ordering and fluctuations present in
the system, hence they can be compared with the physical ob-
servables such as magnetization, susceptibility, and the Binder
cumulant. We find a transition from long-range ordered (finite
magnetization) to a disordered state (zero magnetization) by
tuning ε from small to large values. We studied systems of
different sizes and learning rates, performed finite-size scal-
ing [24], and extracted the critical exponents β, γ , and ν.

The rest of the paper is divided in the following manner.
Section II gives the details of the algorithm we introduced to
study the system using reinforcement learning. In Sec. III we
discuss our main results and calculation of various observ-
ables. Section IV discusses the finite-size scaling, and finally,
we conclude our study in Sec. V.

II. LEARNING MODEL FOR TWO-DIMENSIONAL
ISING SPIN

We consider a two-dimensional system of Ising spins
(S = ±1) on a square lattice of size L × L with a periodic
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FIG. 1. Schematic block diagram of the model. The agent here is the spin with its own Q matrix. The state of the spin [Si(t )] is defined by
whether it is in the majority or minority. The spin can be in either of the states. The action is taken according to the ε-greedy algorithm, that
balances both exploration and exploitation. During exploitation, the spin’s action is chosen as the action with a minimum Q value, whereas in
exploration, the spin can either be flipped or left unchanged without any bias. Based on the action, an updated state and cost are provided. The
Q matrix is updated according to Eq. (2). The spin uses the updated state and Q matrix and goes through the same process in a loop until a
steady state is reached.

boundary condition in both directions. Previously, the Ising
model is exactly solved in one and two dimensions or nu-
merically studied using the Metropolis-Hasting algorithm [5].
In the Metropolis-Hastings algorithm, the temperature en-
ters through the Boltzmann probability distribution P ∝
exp(−βE ), where E is the local energy of the state and
β = 1

KBT is the inverse temperature [2,3]. The ratio of inter-
action strength and temperature controls the degree of spin
fluctuation. The system shows a transition from long-ranged
ordered to disordered state in two dimensions on increasing
temperature or decreasing interaction strength.

In this study, at each time step, we select a spin and define
its state as Si(t ) = +1 if the spin is in the majority of its
nearest neighbors (aligned with two or more nearest-neighbor
spins) and Si(t ) = −1 if it is in the minority (aligned with less
than two nearest-neighbor spins). Each spin has its own Q ma-
trix corresponding to its states and actions (Qi[Si(t ), ai(t )]).
The actions ai(t ) of a spin are of two types: exploration
(choosing a random action) and exploitation (choosing actions
based on already learned Q values).

To prevent the action from always taking the same path
and possibly overfitting, we will introduce another parameter
called ε to handle this during training. Instead of just select-
ing the optimal learned Q-value action, the spin sometimes
explores the action space further. A higher ε value results in
the spin taking actions with a greater cost on average. The
action ai(t ) is taken using the ε-greedy algorithm [23] for the
parameter ε as given below:

ai(t ) =
{

argminQi[Si(t ), ai(t )], probability 1 − ε,

random action, probability ε.
(1)

Thus, for large ε values, the system performs more random
exploration. We further define the cost function ci(t ) = 0 or 1,
if the chosen action leads the spin to its majority or minority,
respectively. The Q matrix is updated iteratively with the
following equation as given in Ref. [15],

Qi[Si(t ), ai(t )] ← Qi[Si(t ), ai(t )]

+ α[ci(t ) − Qi[Si(t ), ai(t )]], (2)

where α is the learning rate. We studied the system for dif-
ferent learning rates α = 0.0001, 0.001, 0.05, and 0.1. The
parameters ε and α control the exploration and exploitation,
respectively. A function of (ε, α) will control the amount
of fluctuations present in the spin degrees of freedom. For
each realization, we fixed α and varied ε as a temperature-
like parameter in MCMC. The details of the RL scheme are
explained in Fig. 1. The scheme given in Fig. 1 is repeated for
all the spins one by one, and a time step is defined as an update
of all the spins at once. The total run time of the simulation is
t = 1.2 × 107, and averaging is performed after a simulation
step of τ = 1.18 × 107. The system is studied for various
sizes from L = 16 to 96. A total of 80 different realizations are
produced, and averaging is performed to improve the quality
of the data. Each realization was initiated with a random dis-
tribution of up and down spins on the two-dimensional square
lattice, and all the values of the Q values were set as 0. The
system is studied for various values of randomness parameter
ε ∈ (0, 1).

III. RESULTS

We define the magnetization order parameter M(ε) =
〈 | ∑N

i=1 Si (t )|
N 〉, for different ε, where 〈· · · 〉 implies the average

value over time in the steady state and across multiple realiza-
tions. We show the plots for only two values of α = 0.0001
and 0.05. The results (data) for other values of α are given in
Table I.

In Figs. 2(a) and 2(b), we plot the M(ε) vs ε for different
system sizes L for α = 0.0001 and 0.05, respectively. For
all L, M(ε) remains close to 1 (majority of spins ordered
in the same direction) for small values of ε and approaches
zero (random arrangement of spins on the lattice) as ε is
increased. Thus, there is a phase transition from ordered
M � 1 to disordered state as a function of ε. We further
calculate the fluctuations in M, or the susceptibility, defined
as χ (ε) = 〈M(ε)2〉 − 〈M(ε)〉2, for different L, where 〈· · · 〉
have the same meaning as defined previously. The plot of
χ (ε) vs ε is shown in Figs. 2(c) and 2(d), for different system
sizes L. We determine εc(L) by calculating the location of
the maximum of susceptibility χmax(L). εc(L) decreases to
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TABLE I. Obtained values of εc, critical exponents ν, γ , β, LHS and RHS of hyperscaling relation among the three exponents for different
values of learning rate, α.

α εc ν γ β dν 2β + γ

0.0001 0.1692 ± 0.001 0.9894 ± 0.00042 1.7253 ± 0.01679 0.1127 ± 0.00456 1.9788 ± 0.00084 1.9507 ± 0.02592
0.001 0.1689 ± 0.001 0.9499 ± 0.00167 1.6562 ± 0.02982 0.1003 ± 0.00456 1.8998 ± 0.00343 1.8568 ± 0.06334
0.05 0.1718 ± 0.001 0.6958 ± 0.00153 1.2117 ± 0.00058 0.1167 ± 0.01437 1.3916 ± 0.00306 1.4451 ± 0.0310
0.1 0.17095 ± 0.001 0.7934 ± 0.00315 1.3739 ± 0.00494 0.1193 ± 0.01227 1.5869 ± 0.00632 1.6125 ± 0.02949

lower ε for larger L. We also calculated χmax(L) for different
system sizes and found that it increases with increasing L.
To further characterize the phase transition, we calculate the
fourth-order moment of the mean magnetization M(ε), the
Binder cumulant (BC), defined as U (ε) = 1 − 〈M(ε)4〉

3〈M(ε)2〉2 . In
Figs. 2(e) and 2(f), we show the variation of U (ε) vs ε for
different L. U (ε) remains close to 2/3 in the ordered state for
small ε and smoothly decays to zero in the disordered phase
for large ε. We then performed a finite-size analysis of the
data to characterize the critical behavior in the thermodynamic

limit, from the finite-size (L) data shown in Figs. 2(a) and 2(b),
Figs. 2(c) and 2(d), and Figs. 2(e) and 2(f).

IV. FINITE-SIZE ANALYSIS

We use a finite-size scaling (FSS) analysis to understand
the dependence of the three quantities M(ε), χ (ε), and U (ε)
on the system size L × L. We assume that the FSS forms for
these quantities are the same as those for a system of a two-
dimensional Ising model in previous studies [5],

M(ε, L) = L−β/νM(ε − εc)L1/ν, (3a)

FIG. 2. Variation of (a) and (b) M, (c) and (d) χ , and (e) and (f) U vs ε for α = 0.0001 and α = 0.05, respectively.
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FIG. 3. Variations of (a), (b) εc(L) vs L, with insets showing the best fit to Eq. (4) and εc (marked as a red cross on the y axis). [εc =
0.1692 ± 0.001, ν = 0.9894 ± 0.000 42] and [εc = 0.1718 ± 0.001, ν = 0.6958 ± 0.001 53] for α = 0.0001 and α = 0.05, respectively. (c),
(d) χmax(L) vs L on a log-log scale. The lines in each are the best fits to the form ∼Lγ /ν , where γ = 1.7253 ± 0.016 79 and 1.2117 ± 0.000 58
for α = 0.0001 and 0.05, respectively.

χ (ε, L) = Lγ /νχ (ε − εc)L1/ν, (3b)

U (ε, L) = U (ε − εc)L1/ν, (3c)

where M, χ , and U are the scaling functions for the mean
magnetization, susceptibility, and the Binder cumulant, re-
spectively. The exponents ν, γ , and β are the exponents for
the correlation length, susceptibility, and magnetization, re-
spectively, for the standard Ising model [24]. We are going
to describe below the FSS analysis of our results within the
numerical accuracy of our data using the RL model. We plot
εc(L), the location of the maximum of susceptibility χmax(L),
as a function of system size in Figs. 3(a) and 3(b) for α =
0.0001 and 0.05, respectively. Further, we assume that the
pseudocritical point for different system size L is

εc(L) = εc + c1L−1/ν, (4)

where εc ≡ εc(L → ∞). In the insets of plots in Figs. 3(a)
and 3(b), the lines shows the fit of εc(L) with respect to 1/L
and three parameters εc, c1, and ν are obtained from the fitting.
The values of these three parameters we found are [εc =
0.1692 ± 0.001, c1 = 0.3925, ν = 0.9894 ± 0.000 42] and
[εc = 0.1718 ± 0.001, c1 = 1.2430, ν = 0.6958 ± 0.001 53]
for α = 0.0001 and α = 0.05, respectively. We further plot
the χmax(L) versus system size L in Figs. 3(c) and 3(d) on
a log - log scale. In a finite system of size L, χmax(L) ∼
L−z, where z = γ /ν. This way, we extracted the exponent
γ . The power-law fit to the plot gives z = 1.7438 ± 0.0164
and z = 1.7417 ± 0.0047 for α = 0.0001 and α = 0.05, re-
spectively. Using the values of ν from Figs. 3(a) and 3(b),
the exponent γ = 1.7253 ± 0.016 79 and 1.212 ± 0.0006 for
α = 0.0001 and 0.05, respectively. We further calculate the β

exponent for the magnetization. At the critical εc, we calculate
the root mean square of magnetization Mrms =

√
M(εc)2 ∼

L−β/ν [24]. The power-law fit provides the exponent β/ν.
We found that β = 0.1127 ± 0.0046 and 0.1167 ± 0.014 37
for the two values of the learning rate α = 0.0001 and 0.05,
respectively. Table I shows the values of the three exponents
from our calculation for different α values and the exact values
of these exponents for the standard two-dimensional Ising
model are in given in Table II. The exponents obtained for α =
0.05 differ from the previous study of the two-dimensional
Ising model theory [25–28]. But as we lower the learning
rate α, the exponents converge to the exact values for the
two-dimensional Ising model. Hence, a slower learning rate
converges the RL model to the two-dimensional Ising model.
Altogether, our RL method is able to predict the phase tran-
sition similar as from the other methods and shows similar
phase transition characteristics.

We further check the hyperscaling relation between the
three exponents. The hyperscaling relation among the three
exponents is dν = 2β + γ , which is obtained from the scaling
hypothesis of the underlying scaling functions, and implies

TABLE II. Values of critical exponents ν, γ , β, obtained from
two-dimensional Ising model theory [25–28].

Critical exponents Two-dimensional Ising model theory [25–28]

ν 1
β 0.125
γ 1.75

054149-4



ORDERING THROUGH LEARNING IN TWO-DIMENSIONAL … PHYSICAL REVIEW E 106, 054149 (2022)

FIG. 4. Scaling collapse of (a) and (b) M(ε), (c) and (d) χ (ε), and (e) and (f) U (ε), by plotting according to Eqs. (3a)–(3c) for α = 0.0001
and α = 0.05, respectively.

that all the observables can be calculated by the partition func-
tion of the system. d = 2 is the dimensionality of space. We
then substitute the values of the exponents we found in our RL
study. The left-hand side of the relation dν and right-hand side
of the relation 2β + γ are reported in the sixth and seventh
columns of Table I. We also observe that the accuracy of the
hyperscaling relation improves on lowering the learning rate
α. Hence again model converges to the two-dimensional Ising
model for smaller α.

We also show the plots of the scaling collapse of data for
magnetization M, susceptibility χ , and Binder cumulant U
using the values of the three exponents found in our study
for α = 0.0001 and 0.05. In Figs. 4(a) and 4(b), we plot the
MLβ/ν vs (ε − εc)L1/ν using Eq. (3a), and find a good collapse
of data. We further plot the scaled susceptibility χL−γ /ν vs
[ε − εc(L)]L1/ν in Figs. 4(c) and 4(d) using Eq. (3b) and find
a good collapse of data for different system sizes. Similarly,

we plot the U vs scaled ε, (ε − εc)L1/ν , in Figs. 4(e) and 4(f)
using Eq. (3c) and again find a good scaling collapse of data.
The scaling collapse of data also improves by lowering the
learning rate. We also find the scaling collapse for other α

values (data not shown).

V. DISCUSSION

In this paper, we used an RL framework to investigate Ising
spins in two dimensions with a periodic boundary condition in
both directions. Each spin can have two characteristic states
and it can switch between these states using an action selected
using the ε-greedy algorithm. We find that if the spins get
rewarded for staying in the majority, then the system shows
a phase transition from a disordered to ordered state on de-
creasing ε. Hence, ε plays a role similar to the temperature
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in the Metropolis Monte Carlo for a two-dimensional Ising
model.

We further characterize the phase transition by calcu-
lating the critical point and different critical exponents for
magnetization, susceptibility, and correlation length β, γ ,
and ν, respectively. Data show a scaling collapse for scaled
magnetization, susceptibility, and the Binder cumulant. We
observe the exponents match with the exact exponents for
a two-dimensional Ising model for a lower learning rate α.
Hence our RL model converges to the two-dimensional Ising
model for lower learning rates.

Our current study provides a reinforcement learning ap-
proach to study the spin system. It can be further used for
other many-particle interacting systems, where the form of

the Hamiltonian is not known. The rudimentary nature of this
approach makes it adaptable to study many-particle complex
systems [16,21,29,30].
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