List of Figures

Figure 1. 1 Different solid waste generation and utilization in ISP	4
Figure 1. 2 Typical iron ore beneficiation circuit	6
Figure 1. 3 Fly and bottom ash generation process (Earth and Industry, 2015)	10
Figure 1. 4 SEM micrograph of (a) iron ore slime and (b) bottom ash	11
Figure 1. 5 Particle size analysis graph of (a) iron ore slime and (b) bottom ash	13
Figure 1. 6 Bottom ash utilization status in the world	18
Figure 2. 1 Photographs and SEM images of (a,b) Iron ore slime; (c,d) FBC bottom ash;	
(e,f) PCC.	29
Figure 2. 2 XRD pattern for iron ore slime, FBC and PCC bottom ash	30
Figure 2. 3 Particle size graph of iron ore slime and both bottom ashes	31
Figure 2. 4 Proctor test graph of (a) PCC bottom ash, (b) FBC bottom ash	33
Figure 2. 5 Stress-Strain Diagram for bottom ash of different sources	34
Figure 2. 6 Comparison of shear strength evolves for both FBC and PCC bottom ash	. 34
Figure 2. 7 CBR Test graph of FBC and PCC bottom ash	. 35
Figure 2. 8 Void ratio variation with pressure	38
Figure 2. 9 Void ratio variation with pressure	39
Figure 2. 10 Particle size graph of different bottom ash, pond ash, and sand, tested in	
Laboratory	39
Figure 2. 11 Particle size graph of different pond ash of India reported in literature	40
Figure 3. 1 Steps of geopolymerization reactions	. 47
Figure 3. 2(a) Hydraulic press and (b) Mould for sample preparation	. 50
Figure 3. 3 Flow chart for production and evaluation of geopolymer samples	. 50
Figure 3. 4 Cured samples of different composition for both bottom ash	. 51
Figure 3. 5 Effect of various parameters on Cold Crushing Strength	53
Figure 3. 6 Effect of various parameters on water absorption	55
Figure 3. 7 Effect of various parameters on apparent density	57
Figure 3. 8 XRD analysis of different samples	58
Figure 3. 9 FT-IR analysis of geopolymer samples	59
Figure 3. 10 SEM micrograph of bricks samples	60
Figure 3. 11 Tentative mechanism of geopolymerization in different types of bottom ash.	61
Figure 4. 1 Flow chart for preparation and characterization of brick samples	68
Figure 4. 2 Photograph of brick samples after firing at different temperature	. 68
Figure 4. 3 Arrangement of samples for thermal conductivity measurement	69
Figure 4. 4 Variation in compressive strength with different firing temperature, fineness	
of bottom ash and iron ore slime content	70
Figure 4.5 Variation in apparent porosity with different firing temperature, fineness of	
bottom ash and iron ore slime content	.72
Figure 4. 6 Variation in bulk density with different firing temperature, fineness of bottom	n
ash and iron ore slime content.	.74
Figure 4.7 Variation in thermal conductivity with different firing temperature.	
fineness of bottom ash and iron ore slime content.	75
Figure 4.8 SEM micrograph of different samples	.77
Figure 4. 9 XRD analysis of fired samples at different temperature and iron ore slime	
Content	78

Figure 4.10 Green brick samples characteristics	85
Figure 4.11 Effect of ageing on oven dried brick samples	85
Figure 4.12 Photographs of brick samples at different conditions	86
Figure 4.13 Effect of firing temperature on cold crushing strength	88
Figure 4.14 Effect of firing temperature and slime content on apparent porosity	89
Figure 4.15 Effect of firing temperature and slime content on water absorption	90
Figure 4.16 Effect of firing temperature and iron ore slime content on bulk density	91
Figure 4.17 Effect of firing temperature and iron ore slime content on PLC	92
Figure 4.18 Comparison in properties of standard brick samples for thermal	
conductivity measurement with brick samples	93
Figure 4.19 Effect of hardening temperature and slime content thermal conductivity	
measured at different temperature for FBC bottom ash samples	94
Figure 4.20 Effect of hardening temperature and slime content thermal conductivity	
measured at different temperature for PCC bottom ash samples	94
Figure 4.21 XRD analysis of fired FBC and PCC brick samples at different firing	
temperature and iron ore slime content	95
Figure 4.22 SEM analysis of different bottom ash samples at different firing temperature	
and iron ore slime content	96
Figure 4.23 Tentative bond formation mechanism for different bottom ash samples at	
different firing temperature and iron ore slime content	97
Figure 5. 1 Different parts of the fabricated Furnace : a) Solid and hollow graphite	
electrodes, b) electrode holder with cooling and moving arrangement,	
c) Furnace body and roof, d) Electrical connector block with nails and SS rod	.105
Figure 5. 2 Cross-section view of plasma arc furnace (a-graphite crucible;	
b- magnesite lining)	107
Figure 5. 3 Particle size analysis of the magnesite ramming mass	108
Figure 5. 4 Steps of making magnesite crucible	109
Figure 5. 5 Gas flow system with purification train	110
Figure 5. 6 Molten metal Sample collection tube (a) silica pipette) and (b) graphite mould	110
Figure 5. 7 Fabricated plasma arc furnace (a-Photographs of isometric view;	
b- Isometric view)	.111
Figure 5. 8 Flow chart of scrap melting procedure	113
Figure 5. 9 Effect of arc current on the melt temperature and meltdown time under	
normal arc.	114
Figure 5. 10 Effect of plasma gas on the melt temperature when exposed to	
different plasma.	.115
Figure 5. 11 Effect of arc current on the melt temperature when exposed to different	
Plasma.	116
Figure 5. 12 Effect of number of heat per campaign on melt temperature and meltdown	110
time under normal arc	116
Figure 5. 13 Variation in arc length with power rating under normal and plasma arcs	.118
Figure 5. 14 Variation in arc conductivity with current under normal and plasma arc	119
Figure 5.15 Effect of gas flow rate on arc length and its conductance	.119
Figure 5.16 Effect of arc current on energy consumption rate under normal and plasma	.121
Figure 5.1 / Variations of sound level, arc current and power rating during melting	100
under the normal arc	.123

Figure 5. 18 Effect of arc current on sound level while exposing arc to liquid melt	124
Figure 5. 19 Graphite electrode erosion as a function of arc current	125
Figure 5. 20 Erosion trends of graphite electrode in different arc plasma condition,	
a) Photograph of electrodes, b) Sketch of electrodes	126
Figure 5. 21 Erosion patterns of magnesite crucible in different arcing condition	127
Figure 5. 22 Photograph shows the condition of sintered crucible after using 7 heats in	
nitrogen plasma	128
Figure 6. 1 Photographs of raw material used in the present study	135
Figure 6. 2 Melting procedure flow chart	137
Figure 6. 3 Photographs of a) Melting operation b) Pouring operation c) Cast ingot	137
Figure 6. 4 Effect of exposure time on recovery of elements in metal	141
Figure 6. 5 Effect of reductant reactivity on recovery of elements in metal	142
Figure 6. 6 Effect of arc on recovery of elements in metal	143
Figure 6. 7 Effect of stoichiometry of carbon content on recovery of elements in metal	143
Figure 6. 8 Effect of form of charges on recovery of elements in metal	144
Figure 6. 9 Effect of charge layer thickness on recovery of elements in metal	.145
Figure 6. 10 Effect of crucible lining material on recovery of elements in metal	146
Figure 6. 11 Effect of reducing gas on recovery of elements in metal	146
Figure 6 12 Ellingham's diagram of major oxides present in the charge materials	148
Figure 6. 12 Dentative mechanism of smelting reduction a) effect of charge chemistry	110
b) effect of charge forms c) effect of lining material	150
Figure 7 1 Dust collection assembly	156
Figure 7. 2 Effect of arcing type on (a) energy and (b) graphite electrode consumption	150
Figure 7. 2 Effect of crucible lining material on (a) energy and (b) graphite electrode consumption	139
rigure 7. 5 Effect of cruciole fining material on (a) energy and (b) graphice electrode	150
Eigure 7. 4 Effect of charge form on (a) energy and (b) graphite electrode consumption	159
Figure 7. 4 Effect of reductors reactivity on (a) energy and (b) graphite electrode consumption	100
Figure 7. 5 Effect of reductant reactivity of (a) energy and (b) graphite electrode	161
Consumption.	101
Figure 7. 6 Effect of shore been thickness on (a) energy and (b) graphice electrode consumption.	102
Figure 7. 7 Effect of charge layer thickness on (a) energy and (b) graphite electrode	1.00
consumption	162
Figure 7. 8 Effect of reducing agents on (a) energy and (b) graphite electrode	1 - 0
consumption	163
Figure 7. 9 Effect of arcing type on sound level	164
Figure 7. 10 Effect of crucible lining material on sound level	165
Figure 7. 11 Effect of charge form on sound level	166
Figure 7. 12 Effect of charge layer thickness on sound level	166
Figure 7. 13 Effect of plasma type on flue dust composition	.167
Figure 7. 14 Effect of reductant presence on flue dust composition	168
Figure 7. 15 Effect of reductant reactivity on flue dust composition	169
Figure 7. 16 Effect of charge materials form and composition on flue dust composition	169
Figure 7. 17 Effect of arc type on partitioning of metals	171
Figure 7. 18 Effect of crucible lining material on partitioning of metals	171
Figure 7. 19 Effect of charge form on partitioning of metals	173
Figure 7. 20 Effect of reductant reactivity on partitioning of metals	173
Figure 7. 21 Effect of stoichiometry carbon on partitioning of metals	174