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ON BIVARIATE FRACTAL APPROXIMATION

V. AGRAWAL, T. SOM, AND S. VERMA

Abstract. In this paper, the notion of dimension preserving approximation for real -valued
bivariate continuous functions, defined on a rectangular domain ⊏⊐, has been introduced and
several results, similar to well-known results of bivariate constrained approximation in terms of
dimension preserving approximants, have been established. Further, some clue for the construc-
tion of bivariate dimension preserving approximants, using the concept of fractal interpolation
functions, has been added. In the last part, some multi-valued fractal operators associated with
bivariate α-fractal functions are defined and studied.

.

1. Introduction

Following the seminal work of Barnsley [2], Navascués [17, 18] studied the approximation of
functions using their fractal counterparts termed as α-fractal functions. In the same vein, Verma
and Masspoust [23] recently introduced the notion of dimension preserving approximation. We
use dim and Gr(f) respectively to represent fractal dimension and graph of a function of f .

Various concepts of fractal dimensions are available but we cover only those fractal dimensions
that are suitable for this article. We only need to mention the Hausdorff dimension, the box
dimension, and the packing dimension defined for nonempty subsets of Rn, n ∈ N, and denoted
by dimH , dimB and dimP respectively. To know these fractal dimensions readers are suggested
to go through, for instance, [9, 15].

The following relations are established between these fractal dimensions. (see [9]):

dimH F ≤ dimBF ≤ dimBF

and
dimH F ≤ dimP F ≤ dimBF.

The class of all real-valued continuous functions on ⊏⊐ := I × J is defined by C
(

⊏⊐
)

where
I = [a, b] and J = [c, d].

For a bivariate function f , we denote the derivative of (k, l)-th order by D(k,l)f , that is,

D(k,l)f :=
∂k+lf

∂xk∂yl
. Let

Cm,n(⊏⊐) = {f : ⊏⊐ → R; D(k,l)f ∈ C
(

⊏⊐
)

, ∀ 0 ≤ k ≤ m, 0 ≤ l ≤ n}.

If D(k,l)f(x) ≥ 0, ∀ x ∈ ⊏⊐, then we say the function f is (m,n)-convex. Let g ∈ C
(

⊏⊐
)

such that
dim(Gr(g)) > 2. We may refer to [21] for the existence of such functions. The function f : ⊏⊐ → R

defined by f(x, y) :=
x
∫

a

y
∫

c

g(t, s)dtds satisfies the following:

dim(Gr(f)) = 2 and dimGr(D(1,1)f) = dim(Gr(g)) > 2,

where dim denotes a fractal dimension.
Recall that the tensor product Bernstein polynomial on ⊏⊐ is defined as:

Bm,n(f)(x, y) =

m
∑

i=0

n
∑

j=0

f
(

a+
i(b− a)

m
, c+

j(d− c)

n

)

(

m

i

)(

n

j

)

(x−a)i(b−x)m−i(y−c)j(d−y)n−j .

2010 Mathematics Subject Classification. Primary 28A80; Secondary 10K50, 41A10.
Key words and phrases. fractal dimension, fractal interpolation, fractal surfaces, Bernstein polynomials, bivari-

ate constrained approximation.

1

http://arxiv.org/abs/2101.07146v1


2 V. AGRAWAL, T. SOM, AND S. VERMA

Let us approximate a function f ∈ Ck,l(⊏⊐) by Bm,n(f), then (see [11] for several properties of
Bernstein polynomials) we have the following:

• Bm,n(f) → f uniformly on ⊏⊐.

•
(

D(k,l)(Bm,n(f))
)

→ D(k,l)f uniformly on ⊏⊐.

• Since Bm,n(f) and D(k,l)(Bm,n(f)) are polynomials, then dim
(

Gr
(

D(k,l)(Bm,n(f))
)

)

=

dim(Gr(Bm,n(f))) = dim(Gr(f)) = 2.

The above items may conclude that the approximation by Bernstein polynomials maintains the
smoothness of a function but not (necessarily) the dimensions of its partial derivatives.

The present paper explores the approximation perspective relative to fractal dimension of a
function and its partial derivatives.

The paper is structured as follows. In Section 1, we give a brief introduction and some pre-
liminaries needed for the paper. In Section 2, we start to prove some results regarding dimension
preserving approximation. In Section 3, we define some multi-valued mappings which are defined
with the help of bivariate α-fractal functions, and establish some properties of them.

2. Dimension preserving approximation of bivariate functions

Firstly, we mention the following result required for our paper:

Lemma 2.1 ( [23], Lemma 3.1). Let A ⊂ R
m and f, g : A → R

n be continuous functions. Then,

dimH(Gr(f + g)) = dimH(Gr(g)) and dimP (Gr(f + g)) = dimP (Gr(g))

provided that f is a Lipschitz function.

Remark 2.2. Note that the above lemma is also true for box dimensions.

Let us denote the class of Y -valued Lipschitz functions on X by Lip(X,Y ), where (X, dX) is
a compact metric space and (Y, ‖.‖Y ) is a normed linear space. Note that this space is a dense
subset of C(X,Y ) with respect to the supremum norm.

In view of Lipschitz invariance property of dimension, one may conclude that the upcoming
theorem holds for all aforementioned dimensions.

Theorem 2.3. Let dim(X) ≤ β ≤ dim(X) + dim(Y ). Then the set Sβ := {f ∈ C(X,Y ) :
dim(Gr(f)) = β} is dense in C(X,Y ).

Proof. Let f ∈ C(X,Y ) and ǫ > 0. Using the density of Lip(X,Y ) in C(X,Y ), there exists g in
Lip(X,Y ) such that

‖f − g‖∞,Y <
ǫ

2
.

Further, we consider a non-vanishing function h ∈ Sβ . Let h∗ = g+ ǫ
2‖h‖∞,Y

h, which immediately

gives

‖g − h∗‖∞,Y ≤
ǫ

2
.

This together with Lemma 2.1 implies that dim(Gr(h∗)) = dim(Gr(h)) = β. Hence, we have
h∗ ∈ Sβ and

‖f − h∗‖∞,Y ≤ ‖f − g‖∞,Y + ‖g − h∗‖∞,Y < ǫ.

Thus, the proof of the theorem is complete. �

To the best our knowledge, the univariate version of the next theorem is well-known, however,
we could not find a proof of the theorem in bivariate setting. Hence, we write a detailed proof of
it.

Theorem 2.4. Let
(

fk
)

be a sequence of differentiable functions on ⊏⊐. Assume that for some

(x0, y0) ∈ ⊏⊐, the sequences
(

fk(x0, .)
)

and
(

fk(., y0)
)

converges uniformly on [c, d] and [a, b] re-

spectively. If (D(1,1)fk) converges uniformly on ⊏⊐, then
(

fk
)

converges uniformly on ⊏⊐ to a

function f , and
D(1,1)f(x) = lim

k→∞
D(1,1)fk(x),
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for every x ∈ ⊏⊐.

Proof. Let ǫ > 0. Since (D(1,1)fk) converges uniformly, there exists N1 ∈ N such that

|D(1,1)fk(x)−D(1,1)fm(x)| <
ǫ

4(b− a)(d− c)
, ∀ x ∈ ⊏⊐, k,m ≥ N1.

By the mean-value theorem, see, for instance, [20, Theorem 9.40], we have
(2.1)

∣

∣fk(x + h, y + k)− fm(x+ h, y + k)− fk(x+ h, y) + fm(x+ h, y)− fk(x, y + k) + fm(x, y + k)

+ fk(x, y)− fm(x, y)
∣

∣

= hk
∣

∣D(1,1)(fk − fm)(t, s)
∣

∣

≤ hk max
(t,s)∈⊏⊐

∣

∣D(1,1)fk(t, s)−D(1,1)fm(t, s)
∣

∣

≤
ǫ

4(b− a)(d− c)
hk

≤
ǫ

4
.

By the hypothesis for (x0, y0) ∈ ⊏⊐, one can choose N0 (> N1) ∈ N such that

|fk(x0, y)− fm(x0, y)| <
ǫ

4
∀ k,m ≥ N0

and

|fk(x, y0)− fm(x, y0)| <
ǫ

4
∀ k,m ≥ N0.

Now, using the above estimates and Equation 2.1 we have

|fk(x, y)− fm(x, y)| ≤
ǫ

4
+ |fk(x, y0)− fm(x, y0)|+ |fk(x0, y)− fm(x0, y)|

+ |fk(x0, y0)− fm(x0, y0)|

<
ǫ

4
+

ǫ

4
+

ǫ

4
+

ǫ

4
<ǫ,

for every (x, y) ∈ ⊏⊐ and k,m ≥ N0. This immediately confirms the uniform convergence of (fk).
The rest part follows by routine calculations, hence omitted.

�

Lemma 2.5. Let f : I → R be a Lipschitz map and g : J → R be a continuous function. A

mapping h : ⊏⊐ → R defined by

h(x, y) = f(x) + g(y),

then

dimH(Gr(h)) = dimH(Gr(g)) + 1.

Proof. Proof follows by defining a bi-Lipschitz mapping from Gr(h) to the set {(x, y, g(y)) : x ∈
I, y ∈ J}. �

Here, let us recall some dimensional results for univariate functions. Mauldin and Williams [16]
considered the following class of functions:

Wb(x) :=

∞
∑

n=−∞

b−αn[φ(bnx+ θn)− φ(θn)],

where θn is an arbitrary real number, φ is a periodic function with period one and b > 1, 0 < α < 1.
They showed that for a large enough b there exists a constant C > 0 such that dimH(Gr(Wb) is
bounded below by 2− α− (C/ ln b).
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Further, a significant progress in dimension theory of functions is contributed by Shen [21] for
the following class of functions:

fφ
λ,b(x) :=

∞
∑

n=0

λnφ(bnx)

where b ≥ 2 and φ is a real-valued, Z-periodic, non-constant, C2-function defined on R. He proved
that there exists a constant K0 depending on φ and b such that if 1 < λb < K0 then

dimH(Gr(fφ
λ,b) = 2 +

logλ

log b
.

For f ∈ C1,1(⊏⊐), we get dim(Gr(f)) = 2. However, no conclusion can be drawn for dimensions
of its partial derivatives. This is evident from the following example: let Weierstrass-type nowhere
differentiable continuous function W : I → R as in [21] with 1 ≤ dim(Gr(W )) ≤ 2. Now, we
define h : ⊏⊐ → R by

h(x, y) = W (x) + y.

Here, by Lemma 2.5, we obtain 2 ≤ dim(Gr(h)) = dim(Gr(W )) + 1 ≤ 3. Then for the function f
defined by

f(x, y) :=

x
∫

a

y
∫

c

h(t, s)dtds,

we have dim(Gr(f)) = 2 and 2 ≤ dim(Gr(D(1,1)f)) = dim(Gr(h)) ≤ 3.

Theorem 2.6. Let f ∈ C1,1(⊏⊐) such that dim(Gr(D(1,1)f)) = β for some 2 ≤ β ≤ 3. Then we

have a sequence (fk) in C1,1(⊏⊐) such that dim(Gr(D(1,1)fk)) = β and fk → f uniformly on ⊏⊐.

Proof. In view of Theorem 2.3, there exists a sequence (gk) in C(⊏⊐) such that dim(Gr(gk)) = β
and gk → D(1,1)f uniformly on ⊏⊐. Further, let us consider a function fk : ⊏⊐ → R defined by

fk(x, y) :=

x
∫

a

y
∫

c

gk(t, s)dtds.

Then D(1,1)fk = gk and (D(1,1)fk) → D(1,1)f uniformly. Next, we have that
(

fk(a, y)
)

→ 0 and
(

fk(x, c)
)

→ 0 uniformly on I and J respectively. Now, Theorem 2.4 provides the proof. �

Theorem 2.7. Let f ∈ C(⊏⊐) with f(x) ≥ 0 ∀ x ∈ ⊏⊐. Then, for a given ǫ > 0, there exists g ∈ Sβ

satisfying the following:

g(x) ≥ 0 ∀ x ∈ ⊏⊐ and ‖f − g‖∞ < ǫ.

Proof. Let ǫ > 0. Theorem 2.3 yields an element h ∈ Sβ such that

‖f − h‖∞ <
ǫ

2
.

We define

g(x) := h(x) +
ǫ

2
, ∀ x ∈ ⊏⊐.

Then, by Lemma 2.1, g ∈ Sβ , and by routine calculations, we get

g(x) = h(x)− f(x) + f(x) +
ǫ

2
≥ −‖f − h‖∞ + f(x) +

ǫ

2
> f(x) ≥ 0.

Furthermore, one has

‖f − g‖∞ ≤ ‖f − h‖∞ + ‖h− g‖∞ < ǫ,

hence the proof. �

Theorem 2.8. Let f : ⊏⊐ → R be a (m,n)-convex function such that f(a, y) = f(x, c) = 0, ∀ x ∈
I, y ∈ J. Then for ǫ > 0, there exists (m,n)-convex function g such that D(m,n)g ∈ Sβ and

‖f − g‖∞ < ǫ.
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Proof. Let ǫ > 0. Using Theorem 2.3, there exists h ∈ Sβ such that ‖D(m,n)f−h‖ < ǫ
(b−a)m(d−c)n .

By choosing

g(x, y) :=

∫ x

a

∫ y

c

· · ·

∫ xm−1

a

∫ yn−1

c

h(xm, yn)dxmdyn . . . dx1dy1,

we have

‖f − g‖ = sup
(x,y)∈⊏⊐

{
∣

∣

∣
f −

∫ x

a

∫ y

c

· · ·

∫ xm−1

a

∫ yn−1

c

h(xm, yn)dxmdyn . . . dx1dy1

∣

∣

∣

}

< ǫ,

proving the assertion. �

Theorem 2.9. Let f ∈ C(⊏⊐). Then, for ǫ > 0 there exists g ∈ Sβ such that

g(x) ≤ f(x) ∀ x ∈ ⊏⊐ and ‖f − g‖∞ < ǫ.

Proof. Since f ∈ C(⊏⊐) and ǫ > 0, Theorem 2.3 generates a member h ∈ Sβ such that

‖f − h‖∞ <
ǫ

2
.

Choose g(x) := h(x)− ǫ
2 , ∀ x ∈ ⊏⊐. Then,

g(x) = h(x)− f(x) + f(x)−
ǫ

2
≤ ‖f − h‖∞ + f(x)−

ǫ

2
< f(x).

Furthermore,
‖f − g‖∞ ≤ ‖f − h‖∞ + ‖h− g‖∞ < ǫ,

establishing the proof. �

Now, we aim to show the existence of best one-sided approximation. Let β ∈ [2, 3], and define

Cβ(⊏⊐) := {f ∈ C(⊏⊐) : dimB(Gr(f)) ≤ β}.

In view of [10, Proposition 3.4], recall that Cβ(⊏⊐) is a normed linear space. Let {g1, g2, . . . , gn}
be a linearly independent subset of Cβ(⊏⊐). Further, for a bounded below and Lebesgue integrable
function f : ⊏⊐ → R, we define

Yβ
n (f) :=

{

h ∈ span{g1, g2, . . . , gn} : h(x) ≤ f(x) ∀ x ∈ ⊏⊐

}

.

Theorem 2.9 guarantees the nonemptyness of Yβ
n (f). A function hf ∈ Yβ

n (f) is said to be a best
one-sided approximation from below to f on ⊏⊐ if

∫

⊏⊐
hf (x) dx = sup

{

∫

⊏⊐
h(x) dx : h ∈ Yβ

n (f)
}

.

In a similar way, we define best one-sided approximations from above. We state the next theorem
for one-sided approximation from below. Though a similar result can be proved in terms of
one-sided approximation from above, see, for instance, [7, 25].

Theorem 2.10. For a bounded below and integrable function f : ⊏⊐ → R, there exists a member

in Yn(f) of best one-sided approximant from below to f on ⊏⊐.

Proof. Let (hm) be a sequence in Yn(f) such that

(2.2)

∫

⊏⊐
hm(x) dx → A as m → ∞,

where A = sup
{

∫

⊏⊐ h(x) dx : h ∈ Yβ
n (f)

}

. With an appropriate constant M∗ > 0, we have
∫

⊏⊐
|hm(x)| dx ≤

∫

⊏⊐

∣

∣

∣
hm(x)−

A

(b − a)(d− c)

∣

∣

∣
dx

+

∫

⊏⊐

A

(b− a)(d− c)
dx ≤ M∗,

where I = [a, b] and J = [c, d]. Since Yβ
n (f) is a subset of finite-dimensional linear space, the closed

set of radius M∗ in Yβ
n (f) is compact. Therefore, there exist a subsequence (hmk

) and a function h
in Yβ

n (f) such that the sequence (hmk
) converges to h in L1(⊏⊐). Recall a basic functional analysis
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result that every norm is equivalent on a finite-dimensional linear space. Now, from the finite-
dimensionality of Yβ

n (f), it follows that the sequence (hmk
) also converges to h uniformly. Further,

since hm(x) ≤ f(x), ∀ x ∈ ⊏⊐, and hmk
→ h uniformly, we get h(x) ≤ f(x), ∀ x ∈ ⊏⊐. Thus,

h ∈ Yβ
n (f). Now, by (2.2), we have

∫

⊏⊐
h(x) dx = lim

k→∞

∫

⊏⊐
hmk

(x) dx = A,

completing the task. �

2.1. Construction of dimension preserving approximants. First, Hutchinson [14] hinted at
the generation of parameterized fractal curves. In [2], Barnsley introduced Fractal Interpolation
Functions (FIFs) via Iterated Function System (IFSs). It is important to choose IFS appropriately
that it is fitted as an attractor for a graph of a continuous function called FIF. We refer to the
reader [2] for more study regarding the construction of FIFs.

Computation of dimensions of fractal functions has been an integral part of fractal geometry.
In [2], Barnsley proved estimates for the Hausdorff dimension of an affine FIF. Falconer also
established a similar results in [8]. Barnsley and his collaborators [3, 4, 12] computed the box
dimension of classes of affine FIFs. In [4], FIFs generated by bilinear maps have been studied.
In [13], a formula for the box dimension of FIFs R

n → R
m was proved. A particular case

of FIFs given by Navascués [17], namely, (univariate) α-fractal function has been proven very
useful in approximation theory and operator theory. Using series expansion, the box dimension of
(univariate) α-fractal function is estimated in [26].

Let us recall a construction of bivariate α-fractal function introduced in [24], which was influ-
enced by Ruan and Xu [19], on rectangular grids.
Let x0 = a, xN = b, y0 = c, yM = d, and f ∈ C(⊏⊐). Let us denote Σk = {1, 2, . . . , k},
Σk,0 = {0, 1, . . . k}, ∂Σk,0 = {0, k} and intΣk,0 = {1, 2, . . . , k − 1}. Further, a net ∆ on ⊏⊐ is
defined as follows:

∆ := {(xi, yj) : i ∈ ΣN,0, j ∈ ΣM,0 and x0 < x1 < · · · < xN ; y0 < y1 < · · · < yM}.

For each i ∈ ΣN and j ∈ ΣM , let us define Ii = [xi−1, xi], Jj = [yj−1, yj] and ⊏⊐ij := Ii × Jj . Let
i ∈ ΣN , we define contraction mappings ui : I → Ii such that

ui(x0) = xi−1, ui(xN ) = xi, if i is odd, and ui(x0) = xi, ui(xN ) = xi−1, if i is even.

Similar to the above, for each j ∈ ΣM , we define vj : J → Jj , and Qij(x) := (u−1
i (x), v−1

j (y)),

where x = (x, y) ∈ ⊏⊐ij .
Let α ∈ C(⊏⊐) be such that ‖α‖∞ < 1. Assume further that s ∈ C(⊏⊐) satisfying s(xi, yj) =

f(xi, yj), for all i ∈ ∂ΣN,0, j ∈ ∂ΣM,0. By [25, Theorem 3.4], we have a unique function fα
∆,s ∈

C(⊏⊐) termed as α-fractal function, such that

fα
∆,s(x) = f(x) + α(x) fα

∆,s

(

Qij(x)
)

− α(x) s
(

Qij(x)
)

,

for x ∈ ⊏⊐ij , (i, j) ∈ ΣN × ΣM .

Note 2.11. In this note, we recall Theorem 5.16 in [25]. With the metric

d⊏⊐(x,y) :=
√

(x1 − y1)2 + (x2 − y2)2, where x = (x1, x2), y = (y1, y2),

we consider f and s such that

(2.3)
|f(x)− f(y)| ≤ Kfd⊏⊐(x,y)σ,

|s(x)− s(x)| ≤ Ksd⊏⊐(x,y)σ.

for every x,y ∈ ⊏⊐, and for fixed Kf ,Ks > 0. Assume that for some kf > 0, δ0 > 0 the following
holds: for each x ∈ ⊏⊐ and 0 < δ < δ0 there exists y such that d⊏⊐(x,y) ≤ δ and

(2.4) |f(x)− f(y)| ≥ kfd⊏⊐(x,y)σ.

Furthermore, we suppose N = M, xi−xi−1 = 1
N
, yj−yj−1 = 1

M
, ∀ i ∈ ΣN , j ∈ ΣM and constant

scaling function α.

If |α| < min
{

1
M
,

kf

(Kfα+Ks)Mσ

}

, then dimB

(

Gr(fα)
)

= 3− σ.
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Remark 2.12. With the assumptions in the above note, one may construct dimension preserving
approximants for a given function, see, for instance, [23, Theorem 3.16].

Navascués [18] developed the notion of (univariate) α-fractal function via so-called (univariate)
fractal operator. In [24, 25], her collaborators extended some of her results in bivariate setting.
On putting L = Bm,n in [24, Theorem 3.1], we have a unique function fα

∆,Bm,n
∈ C(⊏⊐) such that

(2.5) fα
∆,Bm,n

(x) = f(x) + α(x) fα
∆,Bm,n

(

Qij(x)
)

− α(x) Bm,n(f)
(

Qij(x)
)

,

for x ∈ ⊏⊐ij , (i, j) ∈ ΣN × ΣM .
Following the work of [24], we define a single-valued fractal operator Fα

m,n : C(⊏⊐) → C(⊏⊐) by

Fα
m,n(f) = fα

∆,Bm,n
.

In [24], several operator theoretic results for fractal operator are obtained. We recall that Fα
m,n is

a bounded linear operator, see, for instance, [24, Theorem 3.2].

Lemma 2.13 ( [5], Lemma 1). Let (X, ‖.‖) be a Banach space, T : X → X be a linear operator.

Suppose there exist constants λ1, λ2 ∈ [0, 1) such that

‖Tx− x‖ ≤ λ1‖x‖+ λ2‖Tx‖, ∀ x ∈ X.

Then T is a topological isomorphism, and

1− λ2

1 + λ1
‖x‖ ≤ ‖T−1x‖ ≤

1 + λ2

1− λ1
‖x‖, ∀ x ∈ X.

Note 2.14. We have the following.

Bm,n(f)(x) =
1

(b − a)m(d− c)n

m
∑

i=0

n
∑

j=0

(

m

i

)(

n

j

)

(x− a)i(b− x)m−i

(y − c)j(d− y)n−jf
(

a+
i(b− a)

m
, c+

j(d− c)

n

)

,

Choosing f = 1, we have

Bm,n1(x) =
1

(b− a)m(d− c)n

m
∑

i=0

n
∑

j=0

(

m

i

)(

n

j

)

(x − a)i(b − x)m−i(y − c)j(d− y)n−j

=
1

(b− a)m(d− c)n

m
∑

i=0

(

m

i

)

(x− a)i(b− x)m−i

n
∑

j=0

(

n

j

)

(y − c)j(d− y)n−j

=
1

(b− a)m(d− c)n

m
∑

i=0

(

m

i

)

(x− a)i(b− x)m−i(y − c+ d− y)n

=
1

(b− a)m(d− c)n
(x− a+ b − x)m(y − c+ d− y)n

= 1.

This implies that ‖Bm,n‖ ≥ 1. Now, for every f ∈ C(⊏⊐) we get

|Bm,n(f)(x)| ≤
‖f‖∞

(b − a)m(d− c)n

m
∑

i=0

n
∑

j=0

(

m

i

)(

n

j

)

(x− a)i(b− x)m−i(y − c)j(d− y)n−j

= ‖f‖∞,

which produces ‖Bm,n‖ ≤ 1. Therefore, we have ‖Bm,n‖ = 1.

Theorem 2.15. The fractal operator Fα
m,n : C(⊏⊐) → C(⊏⊐) is a topological isomorphism.

Proof. Using equation (2.5) and note 2.14, one gets
∥

∥f −Fα
m,n(f)

∥

∥

∞
≤ ‖α‖∞

∥

∥Fα
m,n(f)−Bm,nf

∥

∥

∞
= ‖α‖∞

∥

∥Fα
m,n(f)

∥

∥

∞
+ ‖α‖∞‖f‖∞.

Since ‖α‖∞ < 1, the previous lemma yields that the fractal operator Fα
m,n is a topological isomor-

phism. �
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Remark 2.16. The above theorem may strengthen item-4 of [24, Theorem 3.2]. To be precise,

item-4 tells that Fα
m,n is a topological isomorphism if ‖α‖∞ <

(

1+ ‖I −Bm,n‖
)−1

, which is more
restricted than the standing assumption considered in the above theorem, that is, ‖α‖∞ < 1.

Theorem 2.17. Let f ∈ C(⊏⊐) be such that f(x) ≥ 0, ∀ x ∈ ⊏⊐. Then for ǫ > 0, and for α ∈ C(⊏⊐)
satisfying ‖α‖∞ < 1, we have an α-fractal function gα∆,Bm,n

satisfying

gα∆,Bm,n
(x) ≥ 0, ∀ x ∈ ⊏⊐ and ‖f − gα∆,Bm,n

‖∞ < ǫ.

Proof. Note that the Bernstein operator Bm,n fixes the constant function 1, that is, Bm,n(1) = 1,
where 1(x) = 1 on ⊏⊐. Consider α ∈ C(⊏⊐) such that ‖α‖∞ < 1. From Equation 2.5, we deduce

‖gα∆,Bm,n
− g‖∞ ≤ ‖α‖∞‖gα∆,Bm,n

−Bm,ng‖∞, ∀ g ∈ C(⊏⊐).

Choose g = 1, then the above inequality gives

‖fα
∆,Bm,n

− 1‖∞ ≤ ‖α‖∞‖fα
∆,Bm,n

− 1‖∞,

and this further yields ‖fα
∆,Bm,n

− 1‖∞ = 0. Therefore, fα
∆,Bm,n

= 1, that is, Fα
m,n(1) = 1.

For ǫ > 0, α ∈ C(⊏⊐) and f ∈ C(⊏⊐). Using Theorem 2.3, there exists a function hα
∆,Bm,n

such that

‖f − hα
∆,Bm,n

‖∞ <
ǫ

2
, where Fα

m,n(h) = hα
∆,Bm,n

.

Define gα∆,Bm,n
(x) = hα

∆,Bm,n
(x) + ǫ

2 for all x ∈ ⊏⊐. Since Fα
m,n(1) = 1,

gα∆,Bm,n
(x) = hα

∆,Bm,n
(x) +

ǫ

2
1(x) = hα

∆,Bm,n
(x) +

ǫ

2
1α(x).

Further, since Fα
m,n is a linear operator

gα∆,Bm,n
= hα

∆,Bm,n
+

ǫ

2
1α = Fα

m,n(h+
ǫ

2
1).

Moreover,

gα∆,Bm,n
(x) = hα

∆,Bm,n
(x) +

ǫ

2

= hα
∆,Bm,n

(x) +
ǫ

2
− f(x) + f(x)

≥ f(x) +
ǫ

2
− ‖hα

∆,Bm,n
− f‖∞

≥ 0.

Further, we get

‖f − gα∆,Bm,n
‖∞ ≤ ‖f − hα

∆,Bm,n
‖∞ + ‖hα

∆,Bm,n
− gα∆,Bm,n

‖∞

<
ǫ

2
+

ǫ

2
= ǫ,

completing the proof. �

3. Some multi-valued mappings

First, we collect some definitions and related results which will be used in this section.

Definition 3.1. ( [1]). Let (X, ‖.‖X) and (Y, ‖.‖Y ) be normed linear spaces. For a multi-valued
(set-valued) mapping T : X ⇒ Y , the domain of T is defined by Dom(T ) := {x ∈ X : T (x) 6= ∅}.
Then T : X ⇒ Y is

(1) convex if

λT (x1) + (1− λ)T (x2) ⊆ T
(

λx1 + (1− λ)x2

)

, ∀ x1, x2 ∈ Dom(T ), λ ∈ [0, 1].

(2) process if
λT (x) = T (λx), ∀ x ∈ X, λ > 0, and 0 ∈ T (0).

(3) linear if

βT (x1) + γT (x2) ⊆ T
(

βx1 + γx2

)

, ∀ x1, x2 ∈ Dom(T ), β, γ ∈ R.
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(4) closed if the graph of T defined by Gr(T ) :=
{

(x) ∈ X × Y : y ∈ T (x)
}

is closed.
(5) Lipschitz if

T (x1) ⊆ T (x2) + l‖x1 − x2‖X UY , ∀ x1, x2 ∈ Dom(T ), for some constant l > 0,

where UY = {y ∈ Y : ‖y‖Y ≤ 1}.
(6) lower semicontinuous at x ∈ X if there exists a δ > 0 such that

U ∩ T (x′) 6= ∅ whenever ‖x− x′‖X < δ

holds for a given open set U in Y satisfying U ∩ T (x) 6= ∅.

Note that the above definitions are also applicable in metric spaces with obvious modifications,
see, for instance, [1].

Theorem 3.2 ( [6], Corollary 1.4). Let T : Dom(T ) = X ⇒ Y be linear such that T (0) = {0}.
Then, T is single-valued.

Theorem 3.3 ( [6], Corollary 2.1). Let T : Dom(T ) = X ⇒ Y be such that T (x0) is singleton for

some x0 ∈ X. Then the following are equivalent:

• T is single-valued and affine.

• T is convex.

Our work in this part is partly motivated by [26].

Theorem 3.4. The multi-valued mapping Wα
∆ : C(⊏⊐) ⇒ C(⊏⊐) defined by

Wα
∆(f) = {fα

∆,Bm,n
: m, n ∈ N}

is a Lipschitz process.

Proof. Using the linearity of Fα
m,n, we have

Wα
∆(λf) = {(λf)α∆,Bm,n

: m, n ∈ N} = λWα
∆(f), ∀ f ∈ C(⊏⊐), λ > 0.

Again by linearity of Fα
m,n, it is plain that Wα

∆(0) = {0}. Therefore, Wα
∆ is a process.

Let f, g ∈ C(⊏⊐). On applying Equation 2.5, we have

∣

∣fα
∆,Bm,n

(x)− gα∆,Bm,n
(x)

∣

∣ ≤ ‖f − g‖∞ + ‖α‖∞‖fα
∆,Bm,n

− gα∆,Bm,n
‖∞

+ ‖α‖∞‖Bm,n(g)−Bm,n(f)‖∞,

for any x ∈ ⊏⊐. Further, we deduce

‖fα
∆,Bm,n

− gα∆,Bm,n
‖∞ ≤

1 + ‖α‖∞‖Bm,n‖

1− ‖α‖∞
‖f − g‖∞.

Using ‖Bm,n‖ = 1,

‖fα
∆,Bm,n

− gα∆,Bm,n
‖∞ ≤

1 + ‖α‖∞
1− ‖α‖∞

‖f − g‖∞.

Consequently, we have

Wα
∆(g) ⊆ Wα

∆(f) +
1 + ‖α‖∞
1− ‖α‖∞

‖f − g‖∞UC(⊏⊐),

proving the Lipschitzness of Wα
∆, and hence the proof. �

Remark 3.5. For the multivalued mapping Wα
∆, let us first note the following:

(1) By linearity of Fα
∆,Bm,n

, we have Wα
∆(0) = {0}.

(2) Since if α 6= 0, m 6= k then fα
∆,Bm,n

6= fα
∆,Bk,l

, hence Wα
∆ : C(⊏⊐) ⇒ C(⊏⊐) is not single-

valued.

In view of the above items, Theorems 3.2-3.3 produce that the mapping Wα
∆ : C(⊏⊐) ⇒ C(⊏⊐) is

not convex.
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Theorem 3.6. Let a fixed net △ and m,n ∈ N, the multivalued mapping T ∆
m,n : C(⊏⊐) ⇒ C(⊏⊐) by

T ∆
m,n(f) = {fα

△,Bm,n
: α ∈ C(⊏⊐) such that ‖α‖∞ < 1}

is a process.

Proof. Let f ∈ C(⊏⊐) and λ > 0,

λT ∆
m,n(f) =λ{fα : α ∈ C(⊏⊐) such that ‖α‖∞ < 1}

={λfα : α ∈ C(⊏⊐) such that ‖α‖∞ < 1}

=T ∆
m,n(λf).

Moreover, Using linearity of fractal operator, we have fα = 0, whenever f = 0. That is, 0 ∈
T ∆
m,n(0). Therefore, T

∆
m,n is a process.

�

Remark 3.7. One may see that T ∆
m,n is not convex through the following lines. Let f, g ∈ C(⊏⊐),

T ∆
m,n(f + g) ={(f + g)α : ‖α‖∞ < 1}

={fα + gα : ‖α‖∞ < 1}

⊆{fα + gβ : ‖α‖∞ < 1, ‖β‖∞ < 1}

={fα : ‖α‖∞ < 1}+ {gβ : ‖β‖∞ < 1}

⊆T ∆
m,n(f) + T ∆

m,n(g).

Theorem 3.8. Let a fixed net △ and m,n ∈ N, the multivalued mapping T ∆
m,n : C(⊏⊐) ⇒ C(⊏⊐)

defined by

T ∆
m,n(f) = {fα

△,Bm,n
: ‖α‖∞ ≤ q < 1},

satisfies the following:

‖T ∆
m,n‖ ≤ 1 +

q

1− q
‖Id−Bm,n‖.

Proof. We have

‖T ∆
m,n‖ = sup

f∈C(⊏⊐)

d(0, T ∆
m,n(f))

‖f‖∞

= sup
f∈C(⊏⊐)

inf
fα∈T ∆

m,n(f)

‖fα‖

‖f‖

≤ sup
f∈C(⊏⊐)

(

1 +
‖α‖∞

1− ‖α‖∞
‖Id−Bm,n‖

)

≤ sup
f∈C(⊏⊐)

(

1 +
q

1− q
‖Id−Bm,n‖

)

=1 +
q

1− q
‖Id−Bm,n‖,

hence the proof. �

Theorem 3.9. For a fixed net △ and operator L, the multivalued mapping T ∆
m,n : C(⊏⊐) ⇒ C(⊏⊐)

defined by

T ∆
m,n(f) = {fα

△,Bm,n
: ‖α‖∞ < 1}

is lower semicontinuous.

Proof. Let f ∈ C(⊏⊐), let fα ∈ T ∆
m,n(f) and a sequence (fk) in C(⊏⊐) such that fk → f. Since the

fractal operator is continuous, we have fα
k → fα. It is clear that fα

k ∈ T ∆
m,n(fk). Therefore, the

result follows. �
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Theorem 3.10. Let △ be a net of ⊏⊐ and m,n ∈ N. The multi-valued mapping T ∆
m,n : C(⊏⊐) ⇒

C(⊏⊐) defined by

T ∆
m,n(f) = {fα

△,Bm,n
: ‖α‖∞ ≤ q < 1},

is Lipschitz.

Proof. Let f, g ∈ C(⊏⊐). Equation (2.5) yields

∣

∣fα
△,Bm,n

(x)− gα△,Bm,n
(x)

∣

∣ =‖f − g‖∞ + ‖α‖∞‖fα
△,Bm,n

− gα△,Bm,n
‖∞

+ ‖α‖∞‖Bm,ng −Bm,nf‖∞,

for every x ∈ ⊏⊐. Further, we deduce

‖fα
△,Bm,n

− gα△,Bm,n
‖ ≤

1 + ‖α‖∞‖Bm,n‖

1− ‖α‖∞
‖f − g‖∞.

Since ‖α‖∞ ≤ q and ‖Bm,n‖ = 1, we get

‖fα
△,Bm,n

− gα△,Bm,n
‖ ≤

1 + q

1− q
‖f − g‖.

Choosing l = 1+q
1−q

, we have

T ∆
m,n(g) ⊂ T ∆

m,n(f) + l ‖f − g‖∞UC(⊏⊐),

proving the assertion. �

Theorem 3.11. For a fixed admissible scale vector α and m,n ∈ N, the multivalued mapping

Vα
m,n : C(⊏⊐) ⇒ C(⊏⊐) defined by

Vα
m,n(f) = {fα

△,Bm,n
: all possible net △}

is a process.

Proof. Let f ∈ C(⊏⊐) and λ > 0, then

λVα
m,n(f) =λ{fα

△,Bm,n
: all possible net △}

={λfα
△,Bm,n

: all possible net △}

={(λf)α△,Bm,n
: all possible net △}

=Vα
m,n(λf).

The third equality follows from the fact that the fractal operator Fα
m,n is a linear operator. More-

over, using linearity of the fractal operator, we have fα
△,Bm,n

= 0, whenever f = 0. That is,

0 ∈ Vα
m,n(0). Therefore, V

α
m,n is a process.

�

Theorem 3.12. For a fixed admissible scale function α and m,n ∈ N, the multivalued mapping

Vα
m,n is lower semicontinuous.

Proof. Let f ∈ C(⊏⊐), let fα
△,Bm,n

∈ Vα
m,n(f) and a sequence (fk) converges to f in C(⊏⊐). Since the

fractal operator is continuous, we have (fk)
α
△,Bm,n

→ fα
△,Bm,n

. By definition of Vα
m,n, (fk)

α
△,Bm,n

∈

Vα
m,n(fk). Hence, the lower semicontinuity of Vα

m,n follows.
�

Theorem 3.13. The multi-valued function Φ : [dim(X), dim(X)+dim(Y )] → C(X,Y ) defined by

Φ(β) := {f ∈ C(X,Y ) : dim(Gr(f)) = β}

is lower semicontinuous.

Proof. Let U be an open set of C(X,Y ). In the light of Theorem 2.3, that is, Φ(α) = Sα is a dense
subset of C(X,Y ), we obtain

S(α) ∩ U 6= ∅, ∀ α ∈ [dim(X), dim(X) + dim(Y )].

Now, by the very definition of lower semicontinuous, the result follows. �



12 V. AGRAWAL, T. SOM, AND S. VERMA

Remark 3.14. Note that the multivalued mapping Φ is not closed. To show this, let f ∈ C(X,Y )
with dim(Gr(f)) > dim(X). Consider a sequence of Lipschitz functions (fk) converging to f
uniformly. It is obvious that dim(Gr(fk)) = dim(X). Now, we have

(

dim(X), fk
)

→
(

dim(X), f
)

as n → ∞. Using
(

dim(X), fk
)

∈ Gr(Φ) and
(

dim(X), fk
)

→
(

dim(X), f
)

with dim(Gr(f)) >
dim(X), we get the result.

4. conclusion

This paper has been intended to develop a newly defined notion of constrained approximation
termed as dimension preserving approximation for bivariate functions. The later work of the
paper has introduced some multi-valued operators associated with bivariate α-fractal functions.
The notion of dimension preserving approximation is new, and demands further developments. In
particular, dimension preserving approximation of set-valued mappings may be one of our future
investigations.
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