List of Figures

Page No.

Fig. 1.1	Distribution of earth's water	02
Fig. 1.2	Sources of groundwater water contamination	03
Fig. 1.3	The Water Cycle	06
Fig. 1.4	Different types of aquifers	19
Fig. 1.5	The distribution of sub-surface water	20
Fig. 1.6	Diagram showing several types of Rock Interstices	20
Fig. 1.7	Examples of natural porous materials	22
Fig. 1.8	Darcy's experiments	26
Fig. 1.9	Example of the diffusion process	36
Fig. 1.10	Elementary control volume	37
Fig. 2.1.1	Physical problem	66
Fig. 2.1.2	Plots of analytical and numerical results of concentration factor	67
	vs. column length for the conservative system at $t = 2.5$ hrs	
Fig. 2.1.3	Plots of analytical and numerical results of concentration factor	67
	vs. column length for the conservative system at $t = 5 hrs$	
Fig. 2.1.4	Plots of concentration profiles vs. column length for a	68
	conservative finite-length system with first-type source	
	boundary conditions at 2.5,5,10,15 and 20 hours	
Fig. 2.1.5	Plots of concentration profiles vs. column length for a non-	69
	conservative finite-length system with first-type source	
	boundary conditions at 2.5,5,10,15 and 20 hours	
Fig. 2.2.1	Concentration profiles $C(x,t)$ vs. x at $t = 2.5,5,10,15$, and	81
	20 hrs for (a) $\beta = 1$, (b) $\beta = 0.9$, (c) $\beta = 0.8$, (d) $\beta = 0.7$,	
	for a conservative solute	
Fig. 2.2.2	Concentration profiles $C(x,t)$ vs. x at $t = 2.5,5,10,15$, and	82
	20 hrs for (a) $\beta = 1$, (b) $\beta = 0.9$, (c) $\beta = 0.8$, (d) $\beta = 0.7$,	
	for a non-conservative solute	
Fig. 2.2.3	Concentration profiles $C(x,t)$ vs. x for various β at	83
	(a)t = 2.5, $(b)t = 5$, $(c)t = 10$, and $(d)t = 20$ hrs for a	
	conservative solute	

Fig. 2.2.4	Concentration profiles $C(x,t)$ vs. x for various β at	85
	(a)t = 2.5, $(b)t = 5$, $(c)t = 10$, and $(d)t = 20$ hrs for a non-	
	conservative solute	
Fig. 3.1	Chebyshev Gauss-Lobatto grid for $N_x = 3 = N_y$ together with	101
	c_{pq} 's	
Fig. 3.2	Normalized concentration distributions for conservative system	106
	at different time levels (a) $t = 0.25 \text{ day}$, (b) $t = 0.5 \text{ day}$, (a)	
	$t = 0.75 \mathrm{day}, (\mathrm{a}) \ t = 1 \mathrm{day}$	
Fig. 3.3	Normalized concentration distributions for non-conservative	107
	system at different time levels (a) $t = 0.25 \text{ day}$, (b) $t = 0.5 \text{ day}$,	
	(a) $t = 0.75 \text{ day}$, (a) $t = 1 \text{ day}$	
Fig. 3.4	Comparison of normalized concentration distributions for the	107
	conservative system at different time levels	
Fig. 3.5	Comparison of normalized concentration distributions for the	107
	non-conservative system at different time levels	
Fig. 3.6	Comparison between conservative and non-conservative system	108
	at $t = 5 day$	
Fig. 3.7	Normalized concentration distributions for conservative system	108
	for $y = 10$ cm at different time levels (a) $t = 0.25$ day, (b)	
	t = 0.5 day, (a) $t = 0.75 day$, (a) $t = 1 day$	
Fig. 3.8	Normalized concentration distributions for non-conservative	109
	system for $y=10$ cm at different time levels (a) $t=0.25$ day,	
	(b) $t = 0.5 \text{ day}$, (a) $t = 0.75 \text{ day}$, (a) $t = 1 \text{ day}$	
Fig. 3.9	Normalized concentration distributions for a conservative	109
	system for $y = 10$ cm at different time levels	
Fig. 3.10	Normalized concentration distributions for a Non-conservative	110
	system for $y = 10$ cm at different time levels	
Fig. 4.1	Plot of the approximate solution of Example 1 vs. x and t for	120
	M = N = 3	
Fig. 4.2	Comparison between exact and approximate solutions of	121
	Example 1 vs. x and t for $M = N = 3$	
Fig. 4.3	Absolute errors of Example 1 vs. <i>x</i> and <i>t</i> for $M = N = 3$	121

Fig. 4.4	Plot of the approximate solution of Example 2 vs. x and t for	123
	M = N = 3	
Fig. 4.5	Comparison between the exact and approximate solution of	123
	Example 2 vs. x and t for $M = N = 3$	
Fig. 4.6	Absolute errors of Example 2 vs. <i>x</i> and <i>t</i> for $M = N = 3$	123
Fig. 4.7	Plot of the approximate solution of Example 3 vs. x and t for	125
	M = N = 3	
Fig. 4.8	Comparison between the exact and approximate solution of	125
	Example 3 vs. x and t for $M = N = 3$	
Fig. 4.9	Absolute errors of Example 3 vs. <i>x</i> and <i>t</i> for $M = N = 3$	125
Fig. 4.10	Plot of the approximate solution of Example 4 vs. x and t for	127
	M = N = 3	
Fig. 4.11	Comparison between the exact and approximate solution of	127
	Example 4 vs. x and t for $M = N = 3$	
Fig. 4.12	Absolute errors of Example 4 vs. <i>x</i> and <i>t</i> for $M = N = 3$	127
Fig. 4.13	Plot of the approximate solution of Example 5 vs. x and t for	129
	M = N = 3	
Fig. 4.14	Comparison between the exact and approximate solution of	129
	Example 5 vs. x and t for $M = N = 3$	
Fig. 4.15	Absolute errors of Example 5 vs. <i>x</i> and <i>t</i> for $M = N = 3$	129
Fig. 5.1	Comparison between exact and approximate solutions of	143
	Example 1 vs. x for $M = N = 3$ at $t = 1$ hr	
Fig. 5.2	Variation of absolute error of Example 1 vs. x for $M = N = 3$ at	144
	$t = 1 \mathrm{hr}$	
Fig. 5.3	Plot of the approximate solution of Example 2 vs. x and t for	145
	$M = N = 3$, $\gamma = 2$ and $\eta = 1$	
Fig. 5.4	Comparison between the exact and approximate solution of	145
	Example 2 vs. x and t for $M = N = 3$, $\gamma = 2$ and $\eta = 1$	
Fig. 5.5	Variation of absolute error of Example 2 vs. x and t for	146
	$M - N - 3 \gamma - 2$ and $n - 1$	
	$N_1 = N = 3, y = 2$ and $\eta = 1$	
Fig. 5.6	Plots of the approximate solution of Example 2 vs. x for	146

Fig. 5.7	Comparison between exact and approximate solutions of	148
	Example 3 vs. x for $M = N = 3$ at $t = 1$ hr	
Fig. 5.8	Variation of absolute error of Example 3 vs. <i>x</i> for $M = N = 3$ at	148
	t = 1hr	
Fig. 5.9	Plot of the approximate solution of Example 4 vs. x and t for	150
	$M = N = 3, \gamma = 2$ and $\lambda = 1$	
Fig. 5.10	Comparison between exact and approximate solutions of	150
	Example 4 vs. x and t for $M = N = 3$, $\gamma = 2$ and $\lambda = 1$	
Fig. 5.11	Variation of absolute error of Example 4 vs. x and t for	150
	$M = N = 3, \ \gamma = 2 \ \text{and} \ \lambda = 1$	
Fig. 5.12	Plots of the approximate solution of Example 4 vs. x for	151
	different value of γ and $M = N = 3$ at $t = 1$ hr	
Fig. 5.13	Plot of the approximate solution of Example 5 vs. x and t for	152
	$M = N = 3$, $\gamma = 2$ and $\eta = 1$	
Fig. 5.14	Comparison between exact and approximate solutions of	153
	Example 5 vs. x and t for $M = N = 3$, $\gamma = 2$ and $\eta = 1$	
Fig. 5.15	Variation of absolute error of Example 5 vs. x and t for	153
	$M = N = 3$, $\gamma = 2$ and $\eta = 1$	
Fig. 5.16	Plots of the approximate solution of Example 5 vs. x for	153
	different value of γ , η and $M = N = 3$ at $t = 1$ hr	
Fig. 6.1	Plots of the approximate solution vs. x when $\lambda = -1,0,1$ at	160
	t = 1 hr for M = N = 3	
Fig. 6.2	Plots of the approximate solution vs. x when $\lambda = -1,0,1$ at	161
	t = 1 hr for $M = N = 3$	
Fig. 6.3	Plots of the approximate solution vs. x when $\lambda = -1,0,1$ at	161
	t = 1 hr for $M = N = 3$	
Fig. 7.1	The absolute errors of Example 1 vs. x and y with	174
	$N = M_1 = M_2 = 3$ at (a) $t = 0.2$, (b) $t = 0.4$, (c) $t = 0.6$, (d)	
	t = 0.8, (e) $t = 1$	
Fig. 7.2	The absolute errors of Example 2 vs. x and y with	176
č	$N = M_1 = M_2 = 3$ at (a) $t = 0.2$, (b) $t = 0.4$, (c) $t = 0.6$, (d)	
	t = 0.8, (e) $t = 1$	

- Fig. 7.3 The absolute errors of Example 3 vs. x and y with 178 $N = M_1 = M_2 = 3$ at (a) t = 0.2, (b) t = 0.4, (c) t = 0.6, (d) t = 0.8, (e) t = 1
- Fig. 7.4 The absolute errors of Example 4 vs. x and y with 180 $N = M_1 = M_2 = 3$ at (a) t = 0.2, (b) t = 0.4, (c) t = 0.6, (d) t = 0.8, (e) t = 1
- Fig. 7.5 The absolute errors of Example 5 vs. x and y with 183 $N = M_1 = M_2 = 3$ at (a) t = 0.2, (b) t = 0.4, (c) t = 0.6, (d) t = 0.8, (e) t = 1