Contents		Pages
List of Figur	es	xiii-xvii
List of Table	8	xix-xx
Preface		xxi-xxiv
Chapter 1	Introduction	01-58
§1.1	Groundwater Contamination	01
§1.2	History of Hydrogeology	06
§1.3	History of Porous Media Theory	09
§1.4	Aquifer	18
§1.5	Groundwater	19
§1.6	Void Space/Pore Space/Pores/Interstices/Fissures	20
§1.7	Porous	21
§1.8	Porous Medium	21
§1.9	Porosity	23
§1.10	Hydraulic Head	23
§1.11	Transport Through Porous Media	24
§1.12	Governing Law	25
§1.13	Additional Forms of Darcy's Law	28
	1.13.1 Darcy's Law in Petroleum Engineering	28
	1.13.2 Darcy - Forchheimer Law	29
	1.13.3 Darcy's Law for Gases in Fine Media (Knudsen	29
	Diffusion or Klinkenberg Effect)	
	1.13.4 Darcy's Law for Short Time Scales	30
	1.13.5 Brinkman Form of Darcy's Law	30
§1.14	Mathematical Modeling	31
	1.14.1 Dispersion	34
	1.14.1.1 Mechanical Dispersion	34
	1.14.1.2 Molecular Diffusion	35
	1.14.1.3 Derivation of Dispersion Equation	36
	1.14.2 Advection	38
	1.14.2.1 Derivation of Advection Equation	38

	1.14.3 Derivation of Reaction-Advection-Dispersion	39
	Equation	
§1.15	Volume Averaging Method	41
§1.16	Special Functions	41
	1.16.1 Gamma Function	41
	1.16.2 Mittag-Leffler Function	42
	1.16.3 Celling Function	42
	1.16.4 Generalized Hypergeometric Function	43
	1.16.5 Hypergeometric Function	43
§1.17	Fractional Calculus	43
§1.18	Some Important Definitions of Fractional Derivative and	48
	Integrals	
	1.18.1 Reimann-Liouville Integral	49
	1.18.2 Some Properties of Reimann-Liouville Integral	49
	Operator	
	1.18.3 Caputo Fractional Derivative	49
	1.18.4 Some Properties of Caputo Fractional Derivative	49
§1.19	Spectral Methods	50
§1.20	Orthogonal Polynomials	51
	1.20.1 Chebyshev Polynomials of the First-Kind	52
	1.20.2 Chebyshev Polynomials of the Second-Kind	52
	1.20.3 Legendre Polynomials	53
	1.20.4 Jacobi Polynomials	53
§1.21	Shifted Orthogonal Polynomials	55
§1.22	Linear/Non-linear Partial Differential Equations	55
	1.22.1 Law of Superposition	56
	1.22.2 Law of Homogeneity	56
§1.23	Fractional Differential Equations	56
§1.24	Applications of Fractional Differential Equations	57
Chapter 2	Numerical Solution of Solute Transport System	59-85
§2.1	Numerical Solution of One-Dimensional Finite Solute	59-69
	Transport System with First-type Source Boundary	
	Condition	

	2.1.1 Introduction	59
	2.1.2 Preliminaries	62
	2.1.2.1 Shifted Chebyshev Polynomials of the	62
	Second-Kind	
	2.1.2.2 Function Approximation	63
	2.1.3 Solution of the Problem	63
	2.1.4 Physical Problem	66
	2.1.5 Numerical Benchmarking	67
	2.1.6 Results and Discussion	67
	2.1.7 Conclusions	69
§2.2	Numerical Solution of Space Fractional Order Solute	71-85
	Transport System	
	2.2.1 Introduction	71
	2.2.2 Preliminaries	74
	2.2.2.1 Relation between Chebyshev and Shifted	74
	Chebyshev Polynomials of the Second-Kind	
	2.2.2.2 The Explicit Form of the Second-Kind	74
	Shifted Chebyshev Polynomials	
	2.2.2.3 Evaluation of the Fractional Derivative	74
	using Second-Kind Shifted Chebyshev Polynomials	
	2.2.3 Solution of the Problem	75
	2.2.4 Numerical Results and Discussion	78
	2.2.5 Conclusions	85
Chapter 3	Numerical Solution of Two-Dimensional Solute Transport	87-110
	System Using Operational Matrices	
§3.1	Introduction	87
§3.2	Problem Formation	89
§3.3	Preliminaries	90
	3.3.1 One-Dimensional Chebyshev Spectral Collocation	90
	Method	
	3.3.2 Two-Dimensional Chebyshev Polynomials of the	92
	First-Kind	
	3.3.3 Two-Dimensional Chebyshev Spectral Collocation	93

	Method	
	3.3.4 Shifted Chebyshev Polynomials of the First-Kind	94
	3.3.5 Chebyshev Collocation Spectral Method Correspond to	95
	the Shifted Chebyshev Polynomials	
	3.3.6 Derivative Matrix	95
	3.3.7 Derivative Matrix Corresponding to the Shifted	97
	Chebyshev Polynomials of First-Kind defined over the	
	Interval $[-l_x, l_x]$ and the Physical Space	
	$[-l_x, l_x] \times [-l_y, l_y]$	98
	3.3.8 Derivative Matrix Corresponding to the Shifted	
	Chebyshev Polynomials of First-Kind defined over the	
	Interval $[a,b]$ and the Physical Space	
	$[a_1, b_1] \times [a_2, b_2]$	
§3.4	Numerical Method	99
	3.4.1 Implementation of Boundary Conditions	102
§3.5	Numerical Results and Discussion	105
§3.6	Conclusions	110
Chapter 4	Numerical Solution of Non-Linear Partial Differential	111-130
	Equations Arising in Porous Media Using Operational	
	Matrices	
§4.1	Introduction	111
§4.2	Preliminaries	114
	4.2.1 Shifted Chebyshev Polynomials of the First-Kind	114
	4.2.2 Shifted Chebyshev Spectral Collocation Method	115
	4.2.3 Derivative	115
§4.3	Application of the Spectral Method based on Chebyshev	116
	Operational Matrix	
§4.4	Illustrative Examples	119
§4.5	Conclusions	130
Chapter 5	Numerical Solution of Linear/Non-Linear Space	131-154
	Fractional Order Differential Equations Using Jacobi	
	Polynomials	
§5.1	Introduction	131

§5.2	Preliminaries	133
	5.2.1 Shifted Jacobi Polynomials	133
	5.2.2 Function Approximation	135
	5.2.3 The Jacobi Operational Matrix of Standard Order	136
	Derivative	
	5.2.4 The Jacobi Operational Matrix of Fractional Order	137
	Derivative	
§5.3	Error Analysis	137
§5.4	Application of the Spectral Method based on Jacobi	138
	Operational Matrix for FDEs	
§5.5	Illustrative Examples	142
§5.6	Conclusions	154
Chapter 6	Numerical Solution of Porous Media Equations Using	155-162
	Operational Matrices	
§6.1	Introduction	155
§6.2	Application of the Jacobi Collocation Technique During	157
	Solution of Porous Media Equation	
§6.3	Solution of the Problem	160
§6.4	Numerical Results and Discussion	162
§6.5	Conclusions	162
Chapter 7	Legendre Collocation Method to Solve the Standard as	163-183
	well as Fractional Order Linear/Non-Linear Two-	
	Dimensional Partial Differential Equations	
§ 7. 1	Introduction	163
§7.2	Preliminaries	165
	7.2.1 Shifted Legendre Polynomials	165
	7.2.2 Function Approximation	166
	7.2.3 Legendre Operational Matrix of Standard Order	167
	Derivative	
	7.2.4 Legendre Operational Matrix of Fractional Order	168
	Derivative	
§7.3	Application of Proposed Algorithm	169
§7.4	Numerical Results and Discussion	171

§7.5	Conclusions	183
Chapter 8	Overall Conclusions and Scope for Future Work	185-188
§8.1	Overall Conclusion	185
§8.2	Scope for Future Work	187
Bibliography		189-213
List of Publications		