Contents		Pages
List of Figures		xiii-xvii
List of Tables		xix-xx
Preface		xxi-xxiv
Chapter 1	Introduction	01-58
§1.1	Groundwater Contamination	01
§1.2	History of Hydrogeology	06
§1.3	History of Porous Media Theory	09
§1.4	Aquifer	18
§1.5	Groundwater	19
§1.6	Void Space/Pore Space/Pores/Interstices/Fissures	20
§1.7	Porous	21
§1.8	Porous Medium	21
§1.9	Porosity	23
\$1.10	Hydraulic Head	23
§1.11	Transport Through Porous Media	24
\$1.12	Governing Law	25
§1.13	Additional Forms of Darcy's Law	28
	1.13.1 Darcy's Law in Petroleum Engineering 1.13.2 Darcy - Forchheimer Law 1.13.3 Darcy's Law for Gases in Fine Media (Knudsen Diffusion or Klinkenberg Effect) 1.13.4 Darcy's Law for Short Time Scales 1.13.5 Brinkman Form of Darcy's Law	$\begin{gathered} 28 \\ 29 \\ 29 \\ 30 \\ 30 \end{gathered}$
\$1.14	Mathematical Modeling	31
	1.14.1 Dispersion 1.14.1.1 Mechanical Dispersion 1.14.1.2 Molecular Diffusion 1.14.1.3 Derivation of Dispersion Equation 1.14.2 Advection 1.14.2.1 Derivation of Advection Equation	$\begin{aligned} & 34 \\ & \mathbf{3 4} \\ & \mathbf{3 5} \\ & \mathbf{3 6} \\ & \mathbf{3 8} \\ & \mathbf{3 8} \end{aligned}$

	1.14.3 Derivation of Reaction-Advection-Dispersion Equation	39
§1.15	Volume Averaging Method	41
§1.16	Special Functions	41
	1.16.1 Gamma Function 1.16.2 Mittag-Leffler Function 1.16.3 Celling Function 1.16.4 Generalized Hypergeometric Function 1.16.5 Hypergeometric Function	$\begin{aligned} & 41 \\ & 42 \\ & 42 \\ & 43 \\ & 43 \end{aligned}$
§1.17	Fractional Calculus	43
§1.18	Some Important Definitions of Fractional Derivative and Integrals	48
	1.18.1 Reimann-Liouville Integral 1.18.2 Some Properties of Reimann-Liouville Integral Operator 1.18.3 Caputo Fractional Derivative 1.18.4 Some Properties of Caputo Fractional Derivative	49 49 49 49
\$1.19	Spectral Methods	50
\$1.20	Orthogonal Polynomials	51
	1.20.1 Chebyshev Polynomials of the First-Kind 1.20.2 Chebyshev Polynomials of the Second-Kind 1.20.3 Legendre Polynomials 1.20.4 Jacobi Polynomials	$\begin{aligned} & \mathbf{5 2} \\ & \mathbf{5 2} \\ & \mathbf{5 3} \\ & \mathbf{5 3} \end{aligned}$
\$1.21	Shifted Orthogonal Polynomials	55
\$1.22	Linear/Non-linear Partial Differential Equations	55
	1.22.1 Law of Superposition 1.22.2 Law of Homogeneity	$\begin{aligned} & \hline 56 \\ & 56 \end{aligned}$
§1.23	Fractional Differential Equations	56
\$1.24	Applications of Fractional Differential Equations	57
Chapter 2	Numerical Solution of Solute Transport System	59-85
§2.1	Numerical Solution of One-Dimensional Finite Solute Transport System with First-type Source Boundary Condition	59-69

	2.1.1 Introduction 2.1.2 Preliminaries 2.1.2.1 Shifted Chebyshev Polynomials of the Second-Kind 2.1.2.2 Function Approximation 2.1.3 Solution of the Problem 2.1.4 Physical Problem 2.1.5 Numerical Benchmarking 2.1.6 Results and Discussion 2.1.7 Conclusions	59 62 62 63 63 66 67 67 69
§2.2	Numerical Solution of Space Fractional Order Solute Transport System	71-85
	2.2.1 Introduction 2.2.2 Preliminaries 2.2.2.1 Relation between Chebyshev and Shifted Chebyshev Polynomials of the Second-Kind 2.2.2.2 The Explicit Form of the Second-Kind Shifted Chebyshev Polynomials 2.2.2.3 Evaluation of the Fractional Derivative using Second-Kind Shifted Chebyshev Polynomials 2.2.3 Solution of the Problem 2.2.4 Numerical Results and Discussion 2.2.5 Conclusions	71 74 74 74 74 75 78 85
Chapter 3	Numerical Solution of Two-Dimensional Solute Transport System Using Operational Matrices	87-110
§3.1	Introduction	87
§3.2	Problem Formation	89
§3.3	Preliminaries	90
	3.3.1 One-Dimensional Chebyshev Spectral Collocation Method 3.3.2 Two-Dimensional Chebyshev Polynomials of the First-Kind 3.3.3 Two-Dimensional Chebyshev Spectral Collocation	90 92 93

	Method 3.3.4 Shifted Chebyshev Polynomials of the First-Kind 3.3.5 Chebyshev Collocation Spectral Method Correspond to the Shifted Chebyshev Polynomials 3.3.6 Derivative Matrix 3.3.7 Derivative Matrix Corresponding to the Shifted Chebyshev Polynomials of First-Kind defined over the Interval $\left[-l_{x}, l_{x}\right]$ and the Physical Space $\left[-l_{x}, l_{x}\right] \times\left[-l_{y}, l_{y}\right]$ 3.3.8 Derivative Matrix Corresponding to the Shifted Chebyshev Polynomials of First-Kind defined over the Interval $[a, b]$ and the Physical Space $\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]$	94 95 95 97 98
§3.4	Numerical Method	99
	3.4.1 Implementation of Boundary Conditions	102
§3.5	Numerical Results and Discussion	105
§3.6	Conclusions	110
Chapter 4	Numerical Solution of Non-Linear Partial Differential Equations Arising in Porous Media Using Operational Matrices	111-130
§4.1	Introduction	111
§4.2	Preliminaries	114
	4.2.1 Shifted Chebyshev Polynomials of the First-Kind 4.2.2 Shifted Chebyshev Spectral Collocation Method 4.2.3 Derivative	$\begin{aligned} & 114 \\ & 115 \\ & 115 \end{aligned}$
§4.3	Application of the Spectral Method based on Chebyshev Operational Matrix	116
§4.4	Illustrative Examples	119
§4.5	Conclusions	130
Chapter 5	Numerical Solution of Linear/Non-Linear Space Fractional Order Differential Equations Using Jacobi Polynomials	131-154
§5.1	Introduction	131

§5.2	Preliminaries	133
	5.2.1 Shifted Jacobi Polynomials 5.2.2 Function Approximation 5.2.3 The Jacobi Operational Matrix of Standard Order Derivative 5.2.4 The Jacobi Operational Matrix of Fractional Order Derivative	$\begin{aligned} & 133 \\ & 135 \\ & 136 \\ & 137 \end{aligned}$
§5.3	Error Analysis	137
§5.4	Application of the Spectral Method based on Jacobi Operational Matrix for FDEs	138
\$5.5	Illustrative Examples	142
§5.6	Conclusions	154
Chapter 6	Numerical Solution of Porous Media Equations Using Operational Matrices	155-162
§6.1	Introduction	155
§6.2	Application of the Jacobi Collocation Technique During Solution of Porous Media Equation	157
§6.3	Solution of the Problem	160
§6.4	Numerical Results and Discussion	162
§6.5	Conclusions	162
Chapter 7	Legendre Collocation Method to Solve the Standard as well as Fractional Order Linear/Non-Linear TwoDimensional Partial Differential Equations	163-183
§7.1	Introduction	163
§7.2	Preliminaries	165
	7.2.1 Shifted Legendre Polynomials 7.2.2 Function Approximation 7.2.3 Legendre Operational Matrix of Standard Order Derivative 7.2.4 Legendre Operational Matrix of Fractional Order Derivative	$\begin{aligned} & 165 \\ & 166 \\ & 167 \\ & \\ & 168 \end{aligned}$
§7.3	Application of Proposed Algorithm	169
§7.4	Numerical Results and Discussion	171

$\S 7.5$	Conclusions	183
Chapter 8	Overall Conclusions and Scope for Future Work	$185-188$
$\S 8.1$	Overall Conclusion	185
$\S 8.2$	Scope for Future Work	187
Bibliography	$\mathbf{1 8 9 - 2 1 3}$	
List of Publications		

