
Chapter 7 

 

 

 

 

Legendre Collocation Method to Solve the Standard as well as 

Fractional Order Linear/Non-Linear Two-Dimensional Partial 

Differential Equations  

7.1 Introduction 

Here, Linear/non-linear two-dimensional standard, as well as fractional-order models 

are considered which significantly describe many physical problems of the real world 

(Debnath (1998, 2012)). Out of which fractional order form of these models is more 

important in comparison to standard order to explain the many complex physical 

problems as discussed in Chapter 1. Most of these fractional differential equations do 

not have the analytical solutions mainly for nonlinear fractional differential equations. 

Therefore numerical methods are considered to give the approximate solutions of these 

models. In literature, several numerical methods are available to solve these time, space 

and time-space fractional differential equations. In 2013, Sun et al. (2013) have 

developed a semi-analytical finite element method to solve a class of time-fractional 

diffusion equations. Hoz and Vadillo (2013) describe a new technique to solve two-

dimensional advection-diffusion equations via operational matrices avoiding Kronecker 

tensor product. A new Legendre collocation method with finite difference scheme for 

time derivative is given by Bhrawy (2014) to solve two-dimensional fractional diffusion 

equation. Yokus (2017) solved the space and time fractional order Burger type equation 

using finite difference and generalized Taylor series method. The simplified 

reproducing kernel method is used by Jia et al. (2017) to solve variable order fractional 
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functional differential equation. Rahimkhani et al. (2017) have defined new functions 

called generalized fractional-order Bernoulli wavelet functions (GFBWFs) based on the 

Bernoulli wavelets to solve fractional order pantograph differential equations in a large 

interval. Ali et al. (2017) used optimal homotopy asymptotic method for the numerical 

solutions of fractional order Cauchy reaction-diffusion equations. A new numerical 

method based upon the hybrid function to solve the disturbed fractional differential 

equations is given by Mashayekhi and Razzaghi (2016). To solve multi-dimensional 

nonlinear fractional sub-diffusion equations, a Jacobi spectral collocation method is 

given by Bhrawy (2016). Bhrawy et al. (2016) have solved the two-sided space-time 

Caputo fractional diffusion-wave equation using a space-time Legendre tau method. 

Saadatmandi and Dehgan (2011) used a Tau approach with shifted Legendre 

polynomials to solve space fractional diffusion equation. The same authors (2010) used 

a new Legendre operational matrix approach to solve fractional-order differential 

equations. Gupta and Ray (2015) gave a numerical treatment for the solution of 

fractional fifth-order Sawada-Kotera equation using second kind Chebyshev wavelet 

method in their manuscript. Liu et al. (2016) proposed an approach to solving the multi-

term variable order fractional differential equation based on operational matrix approach 

of the second-kind of Chebyshev polynomial.  

In last decade, a lot of attention was given to the spectral methods during the solution of 

standard as well as fractional order form of many physical models. Therefore, in this 

chapter, a new algorithm based on spectral collocation method is derived to solve the 

linear/non-linear standard as well as fractional order two-dimensional partial differential 

equations. For that, the solution of the considered problem is approximated by triple 

shifted Legendre polynomials for space and time variables and then applied to the 

considered problem with the operational matrix of the shifted Legendre polynomials 
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and then collocate it at Legendre Gauss-Lobatto points which convert the considered 

problem into a system of algebraic equations. This system of algebraic equations can be 

solved using any standard numerical technique from where one can get the unknown 

coefficients of expansion. To demonstrate the efficiency of the proposed method, some 

examples are considered, and for each case, a comparison of the approximate solution 

with the existing analytical solution is found. Graphical and tabular presentations of 

absolute error confirm the validity and efficiency of the proposed approach. 

7.2 Preliminaries 

7.2.1 Shifted Legendre Polynomials 

The classical Legendre polynomials (given in Section 1.19.3 of Chapter 1) can be 

defined for any arbitrary finite interval  ],[ ba  by making this interval corresponding to 

the interval ]1,1[  with the use of the definition given in Section 1.20 and called shifted 

Legendre polynomials. The shifted Legendre polynomials 
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which satisfies the following orthogonality condition  
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where 
pq is the Kronecker function.  

7.2.2 Function Approximation 

Let ),,0()( 2 Lxh  then it can be expressed as 
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pa  are the coefficients given by 
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As usual, the first )1( M -terms of )(, xL p  are considered during approximation. Thus 

we have
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Similarly, a function ),( txh  which is defined on the interval ],0[],0[   can be 
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),()()()(),( ,,,,
0 0

, xCtxLtLctxh N

T

Mqp

M

p

N

q
pqNM   

 
    (7.8) 

where the matrix C  is given by 
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The elements of C are obtained from  
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In this way ),,( tyxh , defined on the interval ],0[],0[],0[ 21   may be expressed as 
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where the symbol   stands for Kronecker tensor product and the matrix C  is given as  
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7.2.3 Legendre Operational Matrix of Standard Order Derivative  

The first order derivative of the column vector )(, xM  is given as 
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d
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For even ,M we have 
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It is clear from equation (7.13) that the higher order derivative of the column vector 

)(, xM  is given by 

),()( ,, xDx
dx

d
M

m

Mm

m

      (7.16) 

where m  is a natural number and mD  denotes the mth-order derivative of ).(, xM   

7.2.4 Legendre Operational Matrix of Fractional Order Derivative 

The Caputo fractional derivative of order   of the column vector )(, xM is given by  
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It is to be noted that in D , the first    rows are all zeros.  

7.3 Application of the Proposed Algorithm 

In this section, a new algorithm is proposed to solve the standard order as well as 

fractional order linear/nonlinear two-dimensional PDEs using spectral collocation 

method based on shifted Legendre operational matrix. A two-dimensional fractional 

order PDE is given by  
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with the initial condition  
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and the boundary conditions 

),,(),,0( 0 tygtyu   ),,(),,(
11 tygtyu    ],,0[],0[),( 2  ty             (7.22) 

),,(),0,( 0 txhtxu   ),,(),,(
22 txhtxu    ],,0[],0[),( 1  tx             (7.23) 

where 2,1 21    and .1,0 21    If we take 221    and ,121   then it 

represents the two-dimensional classical reaction-convection-diffusion equation subject 

to initial and boundary conditions. 

Now to start proposed algorithm, approximate the solution ),,( tyxu  by triple shifted 

Legendre polynomials as 

)),()(()()()()(),,(
221121

1 2

21 ,,,,,,

0 0 0

,, yxCttLyLxLctyxu MM

T

Nrqp

M

p

M

q

N

r

pqrNMM  
  


 (7.24) 



 

 

                                 Chapter 7: Legendre Collocation Method to Solve the Standard as  

170 

 

where )(),(
11 ,, xt M

T

N   and )(
22 , yM  are defined in equation (7.7). The matrix C  is 

defined in equation (7.12).  

Now with the help of equations (7.17) and (7.24), the terms of equation (7.20) can be 

re-written as 
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Substituting equations (7.25)-(7.29) in equations (7.20)-(7.23), we get 
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where )0( 1Mqxq   and )0( 2Mryr   are the shifted Legendre-Gauss-Lobatto 

quadratures of )(
11 , xL M  and ),(
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pqrc  which are 

easier to solve. Consequently ),,(,, 21
tyxu NMM  given in equation (7.24) can be 

calculated. 
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7.4 Numerical Results and Discussions 

To demonstrate the efficiency and validity of the proposed algorithm, some illustrative 

examples are carried out in this section. The proposed algorithm is applied to solve the 

considered two-dimensional standard order as well as fractional order PDEs. In 

addition, the results obtained using the proposed algorithm are compared with the exact 

solutions of considered problems which show that the proposed algorithm is providing 

accurate results.  

 

Example 1. Consider the time-fractional heat problem 

),,,(
1

),,(
2

2

2

2

2
tyxu

yx
tyxu

t 


























 ,0],1,0[]1,0[),(  tyx  

with the initial condition 

   ),sin()sin()0,,( yxyxu       ],1,0[]1,0[),( yx  

and the boundary conditions 

,0),,1(),,0(  tyutyu  ,0],1,0[  ty  

,0),1,(),0,(  txutxu  ,0],1,0[  tx  

which has the exact solution )2()sin()sin(),,( 
 tEyxtyxu 

 
(Sun et al. (2013)) 

where 


 


0 )1(
)(

i

i

i

z
zE


 is the Mittang Leffler function.  

To demonstrate the accuracy of the proposed algorithm, the absolute errors are tabulated 

in Tables 7.1 and 7.2. In Table 7.1, absolute errors are tabulated for various choices of t  

with fixed values of yx   and 321  MMN  for Example 1. In Table 7.2, absolute 

errors are tabulated at various choices of yx   with fixed values of t  and 
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.321  MMN   In Fig. 7.1(a) – (e), the absolute errors vs. x and y are plotted for 

various choices of time t  with .321  MMN   

 

Table 7.1 The absolute errors at different t  with fixed values of yx   and 

321  MMN  for Example 1 

t  x  ),,( tyxe  t  x  ),,( tyxe  t    x  ),,( tyxe  

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.1 2.86e-04 

3.26e-04 

3.49e-04 

3.59e-04 

3.59e-04 

3.53e-04 

3.42e-04 

3.29e-04 

3.12e-04 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.5 5.53e-05 

7.52e-04 

1.25e-03 

1.59e-03 

1.80e-03 

1.93e-03 

1.99e-03 

2.00e-03 

1.97e-03 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.9 2.86e-04 

3.26e-04 

3.49e-04 

3.59e-04 

3.59e-04 

3.53e-04 

3.42e-04 

3.29e-04 

3.12e-04 

 

Table 7.2 The absolute errors at different choices of yx   with fixed values of t  and 

321  MMN  for Example 1 

x  t  ),,( tyxe  x  t  ),,( tyxe  x  t  ),,( tyxe  

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.1 2.86e-04 

5.48e-04 

4.57e-04 

1.90e-04 

5.53e-05 

1.90e-04 

4.57e-04 

5.48e-04 

2.86e-04 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.5 3.59e-04 

9.75e-04 

1.46e-03 

1.73e-03 

1.80e-03 

1.73e-03 

1.46e-03 

9.75e-04 

3.59e-04 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.9 3.12e-04 

9.15e-04 

1.48e-03 

1.85e-03 

1.97e-03 

1.85e-03 

1.48e-03 

9.15e-04 

3.12e-04 

 

          
Fig. 7.1(a)      Fig.7.1(b) 

e(x,y,t) 
e(x,y,t) 
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Fig. 7.1(c)      Fig.7.1(d) 

 
Fig. 7.1(e) 

Fig. 7.1 The absolute errors of Example 1 vs. x  and y  with 321  MMN  at (a) 

,2.0t (b) ,4.0t (c) ,6.0t (d) ,8.0t (e) 1t   

 

 

Example 2. Consider the space-fractional reaction-diffusion problem 

,)21(),,(
)6.4(

2
),,(

6

)2.2(
),,( 6.33

6.1

6.16.2

8.1

8.1
8.2 yxexytyxu

y

xy
tyxu

x
yxtyxu

t

t
















        ,0],1,0[]1,0[),(  tyx  

with the initial condition 

,)0,,( 6.33 yxyxu   ],1,0[]1,0[),( yx  

and the boundary conditions 

,),,1(,0),,0( 6.3yetyutyu t  ,0],1,0[  ty  

,),1,(,0),0,( 3xetxutxu t   ,0],1,0[  tx  

which has the exact solution 6.33),,( yxetyxu t (Bhrawy (2014)). 

e(x,y,t) 

e(x,y,t) 
e(x,y,t) 
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In Table 7.3, absolute errors are tabulated for various choices of t  with fixed yx   and 

321  MMN  for Example 2. In Table 7.4, absolute errors are tabulated for 

different choices of yx   with fixed t  and .321  MMN  In Fig. 7.2(a) – (e), the 

absolute errors vs. x and y are displayed for various t   with .321  MMN   

Table 7.3 The absolute errors at various t  with fixed values of yx   and 

321  MMN  for Example 2 

t  x  ),,( tyxe  t  x  ),,( tyxe  t  x  ),,( tyxe  

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.1 4.06e-05 

6.61e-05 

7.84e-05 

7.96e-05 

7.18e-05 

5.70e-05 

3.72e-05 

1.45e-05 

9.08e-06 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.5 1.12e-04 

1.69e-04 

1.88e-04 

1.74e-04 

1.34e-04 

7.57e-05 

4.76e-06 

7.17e-05 

1.47e-04 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.9 1.88e-04 

3.28e-04 

3.94e-04 

3.97e-04 

3.48e-04 

2.59e-04 

1.41e-04 

5.23e-06 

1.36e-04 

 

Table 7.4 The absolute errors at various values of yx   with fixed values of t  and 

321  MMN  for Example 2 

          
Fig. 7.2(a)      Fig.7.2(b) 

x  t  ),,( tyxe  x   t  ),,( tyxe  x   t       ),,( tyxe  

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.1 4.06e-05 

3.70e-05 

1.24e-05 

9.60e-06 

1.12e-04 

3.19e-04 

4.83e-04 

4.51e-04 

1.88e-04 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.5 7.18e-05 

6.53e-05 

2.97e-05 

4.64e-05 

1.34e-04 

4.71e-04 

7.59e-04 

7.43e-04 

3.48e-04 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

  0.9 9.08e-06 

8.26e-06 

1.16e-05 

5.40e-05 

1.47e-04 

2.60e-04 

3.30e-04 

2.91e-04 

1.36e-04 

e(x,y,t) e(x,y,t) 
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Fig. 7.2(c)      Fig.7.2(d) 

 
Fig. 7.2(e) 

Fig. 7.2 The absolute errors of Example 2 vs. x  and y  with 321  MMN  at (a) 

,2.0t (b) ,4.0t (c) ,6.0t (d) ,8.0t (e) 1t  

 

Example 3. Consider the space-fractional reaction-diffusion problem 

 

),)32()4((

),,(
6

)4(
)4(),,(

2

)3(
)23(),,(

32/32/32

21

2

2

1

1

yxxyyyxe

tyxu
y

ytyxu
x

xtyxu
t

t 























 

        ,0],1,0[]1,0[),(  tyx  

with the initial condition 

,)0,,( 32 yxyxu   ],1,0[]1,0[),( yx  

and the boundary conditions 

,),,1(,0),,0( 3yetyutyu t  ,0],1,0[  ty  

,),1,(,0),0,( 2xetxutxu t   ,0],1,0[  tx  

The exact solution of which is given by 
32),,( yxetyxu t  (Bhrawy (2014)). 

e(x,y,t) 
e(x,y,t) 

e(x,y,t) 
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In Tables 7.5 and 7.6, the absolute errors are tabulated for different values of t  with 

fixed yx   and for various yx   at ,t  respectively with 321  MMN  for 

Example 3. In Fig. 7.3(a) – (e), the absolute errors vs. x and y are plotted at various time 

t  with .321  MMN  

Table 7.5 The absolute errors for different t  with fixed values of yx   and 

321  MMN  for Example 3 

t  x  ),,( tyxe  t  x  ),,( tyxe  t  x  ),,( tyxe  

1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.1 7.04e-07 

1.43e-06 

2.16e-06 

2.88e-06 

3.56e-06 

4.18e-06 

4.73e-06 

5.18e-06 

5.51e-06 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.5 1.04e-04 

1.81e-04 

2.35e-04 

2.67e-04 

2.82e-04 

2.81e-04 

2.67e-04 

2.43e-04 

2.12e-04 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.9 2.39e-05 

3.81e-05 

4.51e-05 

4.73e-05 

4.65e-05 

4.41e-05 

4.11e-05 

3.84e-05 

3.62e-05 

 

Table 7.6 The absolute errors at different choices of yx   with fixed values of t  and 

321  MMN  for Example 3 

x  t  ),,( tyxe  x  t  ),,( tyxe  x  t  ),,( tyxe  

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.1 7.04e-07 

1.37e-05 

4.18e-05 

7.61e-05 

1.04e-04 

1.13e-04 

9.87e-05 

6.40e-05 

2.39e-05 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.5 3.56e-06 

4.09e-05 

1.17e-04 

2.09e-04 

2.82e-04 

3.04e-04 

2.61e-04 

1.63e-04 

4.65e-05 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.9 5.52e-06 

3.69e-05 

9.48e-05 

1.61e-04 

2.12e-04 

2.26e-04 

1.93e-04 

1.21e-04 

3.62e-04 

          
Fig. 7.3(a)      Fig.7.3(b) 

e(x,y,t) 
e(x,y,t) 
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Fig. 7.3(c)      Fig.7.3(d) 

 

 
Fig. 7.3(e) 

 

Fig. 7.3 The absolute errors of Example 3 vs. x  and y  with 321  MMN  at (a) 

,2.0t (b) ,4.0t (c) ,6.0t (d) ,8.0t (e) 1t  

 

 

Example 4. Consider the reaction-convection-diffusion problem 

),(sec)(sec),,())(sec3)(sec33(
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            ,0],1,0[]1,0[),(  tyx  

with the initial condition 

),(sec)(sec2)0,,( yhxhyxu   ],1,0[]1,0[),( yx  

and the boundary conditions 

),(sec)1(sec)1(),,1(),(sec)1(),,0( yhhetyuyhetyu tt  ,0],1,0[  ty  

),1(sec)(sec)1(),1,(),(sec)1(),0,( hxhetxuxhetxu tt  ,0],1,0[  tx  

e(x,y,t) 
e(x,y,t) 

e(x,y,t) 
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which has the exact solution )(sec)(sec)1(),,( yhxhetyxu t  (Hoz and Vadillo 

(2013)).  

The absolute errors are tabulated in Tables 7.7 and 7.8 for various t  with fixed yx   

and for various yx   at fixed ,t respectively with 321  MMN  for Example 4. In 

Fig. 7.4(a) – (e), the absolute errors vs. x and y are displayed for various t   with 

.321  MMN  

 

Table 7.7 The absolute errors at various choices of t  with fixed values of yx   and 

321  MMN  for Example 4 

t  x  ),,( tyxe  t  x  ),,( tyxe  t  x  ),,( tyxe  

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.1 2.38e-06 

4.51e-05 

9.80e-05 

1.50e-04 

2.01e-04 

2.38e-04 

2.59e-04 

2.62e-04 

2.45e-04 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.5 2.66e-04 

5.13e-04 

7.43e-04 

9.54e-04 

1.14e-03 

1.31e-03 

1.45e-03 

1.57e-03 

1.68e-03 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.9 2.96e-05 

6.29e-05 

1.00e-04 

1.37e-04 

1.70e-04 

1.97e-04 

2.16e-04 

2.26e-04 

2.26e-04 

 

 

 

Table 7.8 The absolute errors at various choices of yx   with fixed values of t  and 

321  MMN  for Example 4 

x  t  ),,( tyxe  x  t  ),,( tyxe  x    t  ),,( tyxe  

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.1 2.38e-06 

9.38e-05 

1.90e-04 

2.51e-04 

2.66e-04 

2.35e-04 

1.73e-04 

9.72e-05 

2.96e-05 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.5 2.01e-04 

5.31e-04 

8.67e-04 

1.09e-03 

1.14e-03 

1.02e-03 

7.72e-04 

4.56e-04 

1.70e04 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

   0.9 2.45e-04 

7.43e-04 

1.25e-03 

1.59e-03 

1.68e-03 

1.51e-03 

1.13e-03 

6.57e-04 

2.26e-04 
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Fig. 7.4(a)      Fig.7.4(b) 

 

        
Fig. 7.4(c)      Fig.7.4(d) 

 
Fig. 7.4(e) 

Fig. 7.4 The absolute errors of Example 4 vs. x  and y  with 321  MMN  at (a) 

,2.0t (b) ,4.0t (c) ,6.0t (d) ,8.0t (e) 1t  

 

Example 5. Consider the reaction-convection-diffusion problem 
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e(x,y,t) 
e(x,y,t) 

e(x,y,t) 
e(x,y,t) 
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with the initial condition 

),sin()sin(1)0,,( 21 ycxcyxu   ],2/,0[]2/,0[),(  yx  

and the boundary conditions 

,0),,2/(,1),,0(  tyutyu x   ,0],2/,0[  ty   

,0),2/,(,1),0,(  txutxu    ,0],2/,0[  tx   

having the exact solution as )sin()sin(1),,( 21 ycxcetyxu t  (Hoz and Vadillo 

(2013)). 

The absolute errors are tabulated in Tables 7.9 and 7.10 for various t  with fixed yx   

and for various yx   at fixed ,t  respectively with 321  MMN  for Example 5. 

Fig. 7.5(a) – (e), depicts the absolute errors vs. x and y at different t   with 

.321  MMN   

 

 

Table 7.9 The absolute errors at different choices of t  with fixed values of yx   and 

321  MMN  for Example 5 

t  x  ),,( tyxe  t  x  ),,( tyxe  t  x  ),,( tyxe  

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.1 3.49e-06 

8.41e-06 

1.23e-05 

1.53e-05 

1.75e-05 

1.88e-05 

1.94e-05 

1.94e-05 

1.90e-05 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.5 1.16e-04 

2.07e-04 

2.81e-04 

3.37e-04 

3.78e-04 

4.05e-04 

4.18e-04 

4.20e-04 

4.12e-04 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.9 2.78e-04 

4.87e-04 

6.59e-04 

7.96e-04 

8.99e-04 

9.70e-04 

1.01e-03 

1.03e-03 

1.02e-03 
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Table 7.10 The absolute errors at different choices of yx   with fixed values of t  and 

321  MMN  for Example 5 

x  t  ),,( tyxe  x  t  ),,( tyxe  x  t  ),,( tyxe  

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.1 3.49e-06 

1.62e-05 

3.99e-05 

7.39e-05 

1.16e-04 

1.61e-04 

2.07e-04 

2.47e-04 

2.78e-04 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.5 1.75e-05 

6.84e-05 

1.49e-04 

2.55e-04 

3.78e-04 

5.12e-04 

6.49e-04 

7.80e-04 

8.99e-04 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.9 1.90e-05 
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Fig. 7.5(e) 

Fig. 7.5 The absolute errors of Example 5 vs. x  and y  with 321  MMN  at (a) 

,2.0t (b) ,4.0t (c) ,6.0t (d) ,8.0t (e) 1t  

 

7.5 Conclusions 

In this chapter, a new algorithm based on spectral collocation method and shifted 

Legendre polynomials is proposed to get the more accurate approximate solution of the 

standard as well as fractional order linear/non-linear two-dimensional PDEs subject to 

initial and boundary conditions. Operational matrices of the shifted Legendre 

polynomials are used during the application of the proposed algorithm. Some problems 

are solved using the proposed algorithm, and the results are compared with the existing 

analytical solutions to show the applicability, efficiency, and validity of the proposed 

algorithm. Theoretical and graphical studies of the errors of the approximate solution 

show that the proposed algorithm has the exponential convergence rate in both spatial 

and temporal discretization.  
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