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Numerical Solution of Porous Media Equations Using Jacobi 

Operational Matrices 

  

6.1 Introduction 

In last chapters, only those models have considered in which the coefficients are 

constant or the function of space-time and if the model is non-linear then nonlinearity 

only presents in reaction term. But in general, as discussed in Chapter 1, the coefficients 

may depend on the unknown due to which nonlinearity may appear in diffusion and 

advection term. In the present chapter, those models are considered where the diffusion 

coefficient d  depends upon the unknown .c  Let us considered the model which can be 

expressed as 

),())(( cccdc xxt         (6.1) 

The equation (6.1) is a nonlinear reaction-diffusion model in which )(cd  can have 

different functional forms from which various diffusion processes are characterized 

such as fast diffusion ( 0,)(  pccd p ), slow diffusion ( 0,)(  pccd p ), and other 

types of diffusion (Wazwaz (2001)) and )(c is the nonlinear reaction term. The 

simplest form of )(c  is the so-called Fisher equation with )1()( ccc   which have 

been given by Fisher (1937) to depict the movement of a vital mutant in an infinitely 

long habitat and having great applications in various fields as discussed in Chapter 4. It 

also used as a mathematical model of reacting flow in the porous medium. If 
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)1)(1()(  cccc  then another simplest form of the equation (6.1) is known as 

Huxley equation which also has important applications in various fields, e.g., biology, 

chemistry, fluid dynamics. This model is often encountered during the modeling of 

various complex phenomena like heat and mass transfer, combustion theory, flow 

through porous media (Patel et al. (2013); Das et al. (2011); Kudryashov et al. (2013), 

Freitas et al. (2017)) and thus it is known as porous media equation. It represents the 

unsteady heat transfer where diffusivity is a power-law function of temperature 

(Polyanin and Zaitsev (2004)) and fluid dynamics of thin films (Witelski (1997)). If the 

diffusion term does not satisfy the condition for classical diffusion ( 0)( cd ), equation 

(6.1) is known as degenerate parabolic differential equation (Witelski (1997)). J.D. 

Murray (1993) considered the diffusion coefficient as the function of the population in 

his model which shows that the population disperses faster in the lower density region 

as compared to the regions where population gets more crowded, and thus it represents 

the population pressure in biological systems.  

Many analytical, as well as numerical methods, are exiting in the literature for the 

solution of different forms of equation (6.1). The Lie group similarity technique is used 

very frequently to get the exact solutions to these problems (Ames (1972)). To find 

another class of exact solutions, Bluman and Kumei (1989) have used the potential and 

nonlocal symmetries. E. A. Saied (1999) has solved the inhomogeneous nonlinear 

diffusion equation (NDE) by applying a non-classical method of Lie's generalization 

method. Saied and Hussein (1994) have been used the Lie similarity method to get the 

analytical solutions of inhomogeneous NDEs. In 1999, Changzheng (1999) had used a 

generalized conditional method to obtain the exact solution of NDE by reducing the 

considered problem in Fujita's equation. J. R. King (1991) investigated the local and 

nonlocal symmetries of two particular cases with 3/4m and .3/2m  A. M. 



 

 

                                 Chapter 6: Numerical Solution of Porous Media Equation Using  

157 

 

Wazwaz (2001) has used the Adomian decomposition method (ADM) to get the 

solution of NDEs with power-law diffusivities, and he also used the He's variational 

iteration method to get the analytical solutions of linear and nonlinear diffusion 

problems in his other article (Wazwaz (2007)). S. Pamuk (2005) obtained the exact 

solution of the porous media equation by applying ADM. M. Sari (2009) used the 

compact finite difference method in space with third-order Runge-Kutta scheme in time 

to get the solutions of porous media equations. 

Due to important applications of this model, the study of the solutions of different forms 

of this model has been carried out during last half century and still a deedful field of 

research to develop some better exact as well as numerical methods to approximate the 

solutions of these porous media equations.  

In this chapter, Jacobi collocation technique discussed already in Chapter 5 is 

considered to get the numerical solution of equation (6.1) with 0,)(  mccd m and 

)1()( ccc   subject initial and boundary conditions. The results obtained for 

different particular cases are displayed through the graphical presentations and tabular 

forms.  

6.2 Application of the Jacobi Collocation Technique During Solution of Porous 

Media Equation 

Here, to show the importance of Jacobi operational matrix during the solution of porous 

media equation, the Jacobi collocation technique is applied to solve the porous media 

equation     
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with the boundary conditions                            

),(),0( tftc   ,0  t      (6.3) 
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),(),( tgtLc   ,0  t      (6.4) 

and initial condition                 

),()0,( xhxc   ,0 Lx                           (6.5) 

Equation (6.2) with the use of initial condition (6.5) can be re-written in the form  
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which has to be solved along with the given boundary conditions. 

To solve the problem (6.6) with the given boundary conditions, let us approximate the 

solution ),( txc  as 
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where A is the )1()1(  NM  order matrix with the coefficients ,pqa  given as 
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and T  represents the transpose of the matrix. 

The entries of the matrix A are obtained from 
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The standard order derivatives of the approximate solution (6.7) can be expressed as 

),()(~),( ,, xADttxc
t

NL

TT

M 





   (6.10) 



 

 

                                 Chapter 6: Numerical Solution of Porous Media Equation Using  

159 

 

),()(~),( ,, xDAttxc
x

NL

m

L

T

Mm

m





    (6.11) 
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Employing equations (6.10)-(6.12) in equation (6.6), we get 
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with the boundary conditions 
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According to the spectral Jacobi collocation method, equation (6.13) is to be satisfied at 

)1()1(  NM  collocation points, and the considered boundary conditions (6.14) are 

satisfied at )1(2 M  collocation points as  
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 (6.15)  

with the boundary conditions 
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where ,pt Mp ,...,1,0 are the roots of )(),(

1, tP M


   and ,qx  2,...,1,0  Nq  are the 

Jacobi Gauss-Lobatto points. From here we get the nonlinear system of 

)1()1(  NM  algebraic equations in pqa  in which )1()1(  NM  equations arise 

from equation (6.15), and )1(2 M  equations arise from equation (6.16). This system 

can be solved using Newton iterative method for pqa . As a result, ),(, txc NM given in 

equation (6.7) can be calculated. 
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6.3 Solution of the Problem 

To understand the physical behavior of reaction term and the role of diffusivity 

coefficients, let us reformulate the Porous-Fisher model by taking mccd )(  and 

)1()( ccc   as 

),1()( ccccc xx

m

t    ,10  x ,0  t  

with the boundary conditions 

    ,0),(),0(  tLctc   ,0  t  

and the initial condition 

    ,)0,( xxc     .10  x  

Case I: When ,0m  the considered Porous-Fisher equation reduces to a reaction-

diffusion model of the form 

     ).1( cccc xxt    

 

 
Fig. 6.1 Plots of the approximate solution vs. x when 1,0,1  at 1t hr for 

3 NM  

 

Case II: When ,1m  the considered Porous-Fisher equation becomes a non-linear 

reaction-convection-diffusion model of the form 
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     ),1()( ccccc xxt    

or     ).1(2 cccccc xxxt    

 

 
Fig. 6.2 Plots of the approximate solution vs. x when 1,0,1  at 1t hr for 

3 NM  

 

Case III: When ,2m  the considered Porous-Fisher equation becomes a highly 

nonlinear reaction-convection-diffusion model of the form 

     ),1()( 2 ccccc xxt    

or     ).1(2 22 ccccccc xxxt    

 

   
Fig. 6.3 Plots of the approximate solution vs. x when 1,0,1  at 1t hr for 

3 NM  
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6.4 Numerical Results and Discussion 

Numerical values of the field variable ),( txu  for various values of x  at time 1t hr are 

calculated. During numerical computation, the parameter values of Jacobi polynomials 

are taken as 0   and also the values of NM,  are taken as .3 NM  It is 

observed from Fig. 6.1 that for Case I, the sub-diffusions are observed and the 

overshoots decrease as the value of   is decremented by 1. The fact is that due to the 

presence of sink term  ,1   the height of the overshoot decreases as compared to 

the case of source term  .1  The similar natures are found for the Case II and Case 

III which are depicted through Figures 6.2 and 6.3. It is seen from the figures that if the 

power of nonlinearity increases in the diffusion term the probability density function 

increases with the increase in .x  

6.5 Conclusions 

In the present scientific contribution, a method is proposed to solve NPDEs encountered 

in porous media. The considered NPDEs are converted into a system of nonlinear 

algebraic equations using shifted Jacobi polynomials together with shifted Jacobi 

operational matrix. The Newton iterative method is used in the solution of nonlinear 

algebraic equations. The author firmly believes that the present demonstration of 

simple, efficient and reliable method towards the solutions of NPDEs with variable 

coefficients will be appreciated by the researchers working in the area of modeling of 

NPDEs.  

 


