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Numerical Solution of Linear/Non-Linear Space Fractional 

Order Differential Equations Using Jacobi Polynomials

  

5.1 Introduction 

The importance of fractional order partial differential equations (FPDEs) to describe the 

physical phenomena in various fields of science and engineering have already been 

discussed in Chapter 1.  Lots of researchers have extended the classical methods in 

studying the initial and boundary value differential and integral equations of integer 

order to fractional order problems. Many researchers have constructed the operational 

matrix of integer as well as fractional order derivative and integration, which are used in 

many numerical methods such as tau method (Bhrawy (2015); Saadatmandi and Dehgan 

(2011); Bhrawy et al. (2016)), collocation method (Doha et al. (2011,2012)). The 

operational matrix for different orthogonal polynomials can be found in literature 

survey (Bhrawy (2015, 2016); Saadatmandi and Dehgan (2010, 2011, 2012); Bhrawy et 

al. (2016); Doha et al. (2011, 2012)). 

To obtain the numerical solutions of FPDEs, a number of numerical methods are 

available in the literature. A spectral tau algorithm based on Jacobi operational matrix is 

used by Bhrawy et al. (2015) to solve the time fractional diffusion-wave equations. 

Saadatmandi and Dehgan (2011) used the shifted Legendre-tau approach to solve the 

space fraction diffusion equation subject to initial and boundary conditions with 

variable coefficients on a finite domain. A space-time Legendre spectral tau method is 
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used by Bhrawy et al. (2016) to solve the two-sided space-time Caputo fractional 

diffusion-wave equations which are used in modeling practical phenomena of diffusion 

and wave in fluid flow, oil strata and others. Doha et al. (2011) have solved the linear 

and nonlinear multi-term FDEs using the shifted Chebyshev tau and collocation 

methods. In another article, Doha et al. (2012) derived the shifted Jacobi operational 

matrix of the fractional derivative to apply the spectral tau method to solve the 

numerical solution of general linear multi-term FDEs. For that, the authors have derived 

the shifted Chebyshev operational matrix of fractional order and used those in spectral 

methods for solving FDEs. Recently a Jacobi collocation method is derived by Bhrawy 

(2016) to solve the multi-dimensional non-linear fractional sub-diffusion problems. In 

2015, Parvizi et al. (2015) used collocation method to solve the fractional order 

advection-diffusion equation with a nonlinear source term in which the space 

derivatives are replaced by the Riemann-Liouville derivatives, where the stability and 

convergence of the considered method were exhibited. Ren and Wang (2017) discussed 

a fourth-order extrapolated compact difference method for time-fractional convection-

reaction-diffusion equations with spatially variable coefficients. In the year 2017, Wei 

(2017) presented and analyzed a new finite difference/local discontinuous Galerkin 

method for the fractional diffusion-wave equation. Nagy (2017) have proposed a new 

numerical scheme namely Sinc-Chebyshev collocation method to solve the time-

fractional nonlinear Klein-Gorden equation in which fractional derivative is discussed in 

Caputo sense. Heydari et al. (2017) have proposed a new method based on the Legendre 

wavelets expansion together with operational matrices of fractional integration and 

derivatives of the basis functions to solve FPDEs with Dirichlet boundary conditions. 

Zheng et al. (2010) solved the symmetric FPDEs using Galerkin finite element 

approximation. A power penalty method for a 2D fractional partial differential linear 
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complementarity problem has been solved by Chen and Wang (2017). Haar wavelet 

operational method is proposed by Wang et al. (2014) to solve FPDEs. During 

numerical solutions of FPDEs with variable coefficients using tau method, Chen et al. 

(2014) constructed generalized fractional-order Legendre functions and their operational 

matrices. But most of the methods discussed in literature generally talk about the 

solution of a particular type of problem or with a particular type of boundary conditions. 

In this Chapter, to solve the linear/non-linear space fractional order partial differential 

equations subject to initial and any type of boundary conditions viz., Dirichlet, 

Neumann, and Robin type, the numerical algorithm used in last Chapter 4 is extended. 

For that, firstly shifted Jacobi polynomials as a basis function are used to approximate 

the solution of the considered problems together with spectral collocation method in 

which shifted fractional operational matrix in space, as well as temporal discretization, 

are used for derivatives. It converts the considered problem into the system of algebraic 

equations which can be solved easily. The exponential convergence rate of the proposed 

method is investigated through the illustrative examples for both spatial and temporal 

discretization. To show the efficiency and accuracy of the proposed method, it has 

applied to a number of physical problems, and a comparison of the approximate 

solution with the existing analytical solution present in literature are shown through the 

graphical presentations as well as tables.  

5.2 Preliminaries 

5.2.1 Shifted Jacobi Polynomials 

The Jacobi polynomial can be defined for any arbitrary finite interval ],[ ba  by using 

the definition given in Section 1.20 of Chapter 1. Let the shifted Jacobi polynomials 
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constituting a class of orthogonal polynomials as Jacobi polynomials with respect to the 

weight function  )()()(),( axxbxw ab 
 on the interval ],[ ba  given as 
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where ij  is the Kronecker function and 
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Since in most of the problems interval of interest is ],,0[ L  so changing the variable 
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This shifted Jacobi polynomials satisfy the following orthogonality condition with 

respect to the weight function  )()(),( xLxxwL  on the interval ],0[ L  as 
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where ij  is the Kronecker function and 
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The explicit analytic form of shifted Jacobi polynomials  xP iL
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  of degree i  on the 

interval ],0[ L  is given as 
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5.2.2 Function Approximation 

Let )(xc  be a square integrable function with respect to the Jacobi weight function 
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where ia ’s are the coefficients given by 
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As usual, the first )1( M -terms of the shifted Jacobi polynomials are taken during 

approximation. Thus we have

                                         

 

),(~)( ),(

,

0

xPaxc iL

M

i

iM




     (5.11) 

which can be written in matrix form as 
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5.2.3 The Jacobi Operational Matrix of Standard Order Derivative 

The first order derivative of the column vector )(, xML  is given as 
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For even ,M we have 
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The higher order derivative of the column vector )(, xML  is given by 
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where m  is a natural number and mD  denotes the mth-order derivative of ).(, xML   
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5.2.4 The Jacobi Operational Matrix of Fractional Order Derivative 

The Caputo fractional derivative of the order  of the column vector )(, xML  is given 

by  
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

    (5.17) 

where DL  denotes the )1()1(  MM  order Jacobi operational matrix of the 

fractional derivative of order   in the interval ],0[ L  and it is given as  
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It is to be noted that in DL , the first    rows are all zeros. 

5.3 Error Analysis 

Theorem: Let ),( txc  be the smooth function in ],0[],0[  L and consider 
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Suppose 
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Proof: See the article of Bhrawy and Zaky (2015). 

 

5.4 Application of the Spectral Method Based on Jacobi Operational Matrix for 

FDEs 

In this section, in order to show the importance of Jacobi operational matrix of 

fractional derivatives, the spectral collocation method is applied to solve the space 

fractional order linear/nonlinear reaction-advection-diffusion equations with variable 

coefficients of the form 

),,),,((
),(

),(
),(

),(
),(

txtxc
x

txc
txv

x

txc
txd

t

txc
























,0 Lx  ,0  t            (5.20) 

with any one of the boundary conditions:                             

(a) Dirichlet boundary conditions 
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(b) Neumann boundary conditions 
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(c) Mixed boundary conditions  
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along with initial condition 
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where ,21   ,10  d is the diffusivity, v  is the average fluid velocity, 

),),,(( txtxc  is the linear/nonlinear reaction term. Here vd ,  may be constants which 

simplify the considered problems. 

Equation (5.20) with the use of initial condition (5.27) can be rewritten in the form  

),,),,(()()0,(
),(

),(
),(

),(
),(

txtxcxhxc
x

txc
txv

x

txc
txd

t

txc
























 (5.28) 

which has to be solved along with the given boundary conditions. 

To solve the problem (5.28) with the given boundary conditions, let us approximate the 

solution ),( txc  by )1()1(  NM  terms of shifted Jacobi polynomials series as 
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where C is the )1()1(  NM  order matrix of the coefficients ,pqc  given as 
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The entries of the matrix C are obtained from 
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The standard, as well as fractional order derivative of the approximate solution, can be 

expressed as 
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M             (5.35) 

Employing equations (5.32)-(5.35) in equation (5.28), we get 

),,),()(()()()0(

)()),(),()((

,,,,

,1,

txxCtxhxC

xDCtxvDCtxdCDt

NL

T

MNL

T

M

NLLL

TT

M










 (5.40) 

with one of the boundary conditions: 

(a) Dirichlet boundary conditions 

).()()(

),()0()(

,,

,,

tgLCt

tfCt

NL

T

M

NL

T

M








    (5.41) 
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(b) Neumann boundary conditions 

).(),()(

),(),0()(

,,

,,

tgLDCt

tfDCt

NLL

T

M

NLL

T

M








   (5.42) 

(c) Mixed boundary conditions  

).(),()(

),()0()(

,,

,,

tgLDCt

tfCt

NLL

T

M

NL

T

M








   (5.43) 

According to the spectral Jacobi collocation method, equation (5.40) is to be satisfied at 

)1()1(  NM  collocation points, and the considered boundary conditions are 

satisfied at )1(2 M  collocation points as  

),,),()(()()()0(

)()),(),()((

,,,,

,21,

pqqNLp

T

MqqNL

T

M

qNLLpqLpq

T

p

T

M

txxCtxhxC

xDCtxvDCtxdCDt










  (5.44)  

with one of the boundary conditions: 

(a) Dirichlet boundary conditions 

).()()(

),()0()(

,,

,,

pNLp

T

M

pNLp

T

M

tgLCt

tfCt








    (5.45) 

(b) Neumann boundary conditions 

).(),()(

),(),0()(

,,

,,

pNLLp

T

M

pNLLp

T

M

tgLDCt

tfDCt








   (5.46) 

(c) Mixed boundary conditions  

),(),()(

),()0()(

,,

,,

pNLLp

T

M

pNLp

T

M

tgLDCt

tfCt








   (5.47) 

where ,pt  Mp ,...,1,0 are the roots of )(),(

1, tP M


   and ,qx  2,...,1,0  Nq  are the 

Jacobi Gauss-Lobatto points.  
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From here, the system of )1()1(  NM  linear/non-linear algebraic equations in 
pqc  

are obtained, in which )1()1(  NM  equations come from equation (5.44) and 

)1(2 M  equations come from one of the equation (5.45) or (5.46) or (5.47). Now if the 

system of )1()1(  NM  equations is a linear system of algebraic equations, then it 

can be solved easily but if the system of )1()1(  NM  equations is a non-linear 

system of algebraic equations, can be solved using Newton’s iterative method for pqc . 

Consequently ),(, txc NM
 given in equation (5.29) can be calculated. 

5.5 Illustrative Examples 

To illustrate the effectiveness and accuracy of the proposed method, some examples are 

carried out in this section. In general, to solve the problem, we construct the proposed 

algorithm with general Jacobi parameters ( and  ) which takes the particular values to 

achieve the approximate solution. During numerical computations, the values of Jacobi 

parameters are taken as, and .3 NM  Comparison of the results obtained by the 

proposed method with the existing exact solution shows that the present method is very 

effective, convenient and reliable. 

 

Example 1. Consider the following space fractional reaction-advection-diffusion 

problem 

),5.3(55.4)2.0( 2

8.1

8.1
8.0 













  xe
x

c

x

c
x

t

c t
 ,10  x ,0  t  

with the boundary conditions 

 ,0),1(),0(  tctc    ,0  t  

and initial condition 

),1(5)0,( xxxc     .10  x  
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The exact solution of this problem is )1(5),( xxetxc t   (Parvizi et al. (2015)). In 

Table 5.1, the absolute error ),(),(max),( ,

10
10

txctxctxER NM

t
x






 for different values of 

M  and N  are presented at 1t hr. In Fig. 5.1, the approximate solution of this 

problem vs. x is plotted and compared with the existing analytical solution at 1t . The 

variations of absolute error vs. x at 1t  are shown through Fig. 5.2. All the plots are 

drawn for .3NM   

 

Table 5.1 The absolute error )1,(xER with various choices of M and N  

x 3 NM  5 NM  7 NM  

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

9.02e-04 

1.40e-03 

1.59e-03 

1.52e-03 

1.28e-03 

9.42e-04 

5.68e-04 

2.37e-04 

2.39e-05 

7.86e-06 

1.20e-05 

1.72e-05 

2.32e-05 

4.28e-04 

8.52e-06 

2.38e-05 

4.27e-04 

4.97e-07 

1.72e-09 

4.42e-08 

2.89e-07 

3.54e-07 

6.24e-08 

5.22e-07 

4.65e-07 

4.33e-09 

3.49e-11 

 

 

0.2 0.4 0.6 0.8 1.0
x

0.1

0.2

0.3

0.4

c x , t

 
Fig. 5.1 Comparison between exact and approximate solutions of Example 1 vs. x 

for 3 NM  at 1t hr 

         Exact 

…….. Approximate  
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0.2 0.4 0.6 0.8 1.0
x

0.0005

0.0010

0.0015

ER x , t

 
Fig. 5.2 Variation of absolute error of Example 1 vs. x for 3 NM  at 1t hr 

 

Example 2. Consider the following space fractional advection-diffusion problem 

,
),(),(),(









x

txc

x

txc
d

t

txc














 ,10  x ,0t  

with the boundary conditions 

,),1(

,),0(

)1(1

)1(

td

x

td

etc

etc








  ,0t  

and initial condition 

,)0,( xexc     .10  x  

The exact solution of this problem is tdxetxc )1(),(   for 2  and 1  (Bastani 

and Salkuyeh (2012)). During the solution of this problem the value of diffusivity 

constant is taken as .1d  In Table 5.2, the absolute error already defined in Example 1 

is presented for different values of M  and N at 1t hr. The approximate solution of 

this problem vs. x and t for 2  and 1  is shown through Fig. 5.3. The comparison 

between the existing analytical solution and the approximate solution vs. x and t for 

,2  1  is displayed through Fig. 5.4. The absolute error vs. x and t for ,2  

1  is shown though Fig. 5.5. The approximate solution vs. x is displayed through 

Fig. 5.6 for different values of  ,  at .1t  
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Table 5.2 The absolute error )1,(xER with various choices of M and N  

x 3 NM  5 NM  7 NM  

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

7.42e-05 

6.29e-05 

4.13e-05 

1.44e-05 

1.28e-05 

3.52e-05 

4.78e-05 

4.53e-05 

2.24e-05 

6.48e-07 

5.23e-07 

4.38e-06 

2.52e-06 

2.78e-07 

1.42e-06 

1.98e-06 

1.34e-06 

1.32e-07 

4.82e-10 

4.76e-09 

3.92e-09 

2.84e-08 

2.26e-08 

3.84e-11 

4.83e-10 

5.57e-11 

1.01e-12 

 

 

 
Fig. 5.3 Plot of the approximate solution of Example 2 vs. x and t for 

,3 NM 2 and 1  

  

 

Numerical

Exact  
Fig. 5.4 Comparison between the exact and approximate solution of Example 2 vs. x 

and t for ,3 NM 2 and 1  
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Fig. 5.5 Variation of absolute error of Example 2 vs. x and t for ,3 NM 2 and 

1  

  

 

2, 1

1.4, 0.7

1.6, 0.8

1.8, 0.9
 

Fig. 5.6 Plots of the approximate solution of Example 2 vs. x for different value of  ,  

and 3 NM  at 1t hr 
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Example 3. Consider the following problem 

),36233(5)2.1( 234578923

8.1

8.1
8.1 xxxxxxxecc

x

c
x

t

c t 







 

],,0[]1,0[),( tx  

with the boundary conditions 

,0),1(),0(  tctc    ,0  t  

and initial condition 

,)0,( 32 xxxc     .10  x  

The exact solution of this problem is )(5),( 32 xxetxc t    (Parvizi et al. (2015)). The 

absolute error for above example is tabulated in Table 5.3 for different values of M  and 

N  at 1t hr. A comparison of the approximate solution using the proposed method 

with existing exact solution vs. x and the variations of absolute error vs. x at 1t hr are 

displayed through Figures 5.7 and 5.8, respectively. 

 

 

Table 5.3 The absolute error )1,(xER with various choices of M and N  

x 3 NM  5 NM  7 NM  

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

2.96e-04 

7.34e-04 

1.23e-03 

1.72e-03 

2.11e-03 

2.34e-03 

2.32e-03 

1.97e-03 

1.22e-03 

3.32e-05 

2.40e-05 

2.76e-06 

2.22e-05 

2.28e-04 

3.52e-06 

4.58e-05 

1.24e-04 

1.97e-07 

3.52e-08 

2.56e-08 

4.38e-07 

1.54e-09 

1.86e-08 

5.72e-09 

6.52e-07 

4.52e-09 

7.54e-12 
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0.2 0.4 0.6 0.8 1.0
x

0.05

0.10

0.15

0.20

0.25

c x , t

 

Fig. 5.7 Comparison between exact and approximate solutions of Example 3 vs. x for 

3 NM  at 1t hr 

 

0.2 0.4 0.6 0.8 1.0
x

0.0005

0.0010

0.0015

0.0020

0.0025

ER x , t

 
Fig. 5.8 Variation of absolute error of Example 3 vs. x for 3 NM at hrt 1  

 

 

Example 4. Consider the following space fractional Fisher’s type problem 

),1(
),(),(

cc
x

txc

t

txc
















 ,0 Lx  ,0  t  

where ,21    with the boundary conditions  

 
,

1

1
),0(

26/5 te
tc


  ,0  t  

 
,

1

1
),1(

2
6/56/ t

e
tc

 


  ,0  t  

         Exact 
……….. Approximate  
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and initial condition 

 
,

1

1
)0,(

2
6/ x

e
xc




   .0 Lx   

This problem has the exact solution 

 26/56/
1

1
),(

tx
e

txc
 


  for 2  (Bastani and 

Salkuyeh (2012)). During the solution of this problem, 1  is considered. The 

absolute error is shown in Table 5.4 for different values of M  and N  at 1t hr. The 

approximate solution of this problem vs. x and t is depicted through Fig. 5.9 for .2  

In Fig. 5.10, the comparison between the existing analytical solution and the 

approximate solution vs. x and t for 2  is shown.  The variation of absolute error vs. 

x and t  for 2  is shown through Fig. 5.11 and the approximate solutions for different 

values of   at 1t hr are presented through Fig. 5.12. 

 

 

 

Table 5.4 The absolute error )1,(xER  with various choices of  M  and N  

x 3 NM  5 NM  7 NM  

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.24e-04 

1.64e-04 

1.43e-04 

8.14e-05 

7.27e-07 

8.27e-05 

1.44e-04 

1.64e-04 

1.24e-04 

7.24-06 

2.23-05 

3.42e-05 

7.22e-05 

8.29e-06 

4.32e-06 

1.84-05 

1.02e-05 

2.32e-06 

5.42e-09 

1.29e-08 

6.54e-08 

2.74e-09 

1.21e-08 

3.76e-08 

5.23-08 

9.33e-10 

5.75e-09 
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Fig. 5.9 Plot of the approximate solution of Example 4 vs. x and t for 

,3 NM 2 and 1  

Exact

Approximate  
Fig. 5.10 Comparison between exact and approximate solutions of Example 4 vs. x and 

t for ,3 NM  2  and 1  

 
Fig. 5.11 Variation of absolute error of Example 4 vs. x and t for ,3 NM  2  

and 1  
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2

1.8

1.6

1.4
 

Fig. 5.12 Plots of the approximate solution of Example 4 vs. x for different value of   

and 3 NM  at 1t hr 

 

Example 5. Consider the following nonlinear space fractional Burger-Fisher problem  

)),,(1)(,(
),(

),(
),(),(

txctxc
x

txc
txc

x

txc

t

txc























 ,0 Lx  ,0  t  

with the boundary conditions 

,
8

5
tanh

2

1

2

1
),0(









 ttc   ,0  t  

,
2

5
1

4

1
tanh

2

1

2

1
),1(

















 ttc   ,0  t  

and initial condition 

,
4

tanh
2

1

2

1
)0,(










x

xc    .0 Lx   

The exact solution of this problem is 
















 txtxc

2

5

4

1
tanh

2

1

2

1
),( for 2  and 

1  (Babolian and Saeidian (2009)). In Table 5.5, the absolute error is presented for 

different values of M  and N at 1t hr. The approximate solution of this problem and 

the comparison of that with the exact solution vs. x and t are shown through the Fig. 

5.13 and Fig. 5.14, respectively for ,2  .1  The variations of absolute error vs. x 
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and t for ,2  1  are presented through Fig. 5.15. The approximate solutions for 

different values of  ,  at 1t hr are shown through Fig. 5.16. 

 

Table 5.5 The absolute error )1,(xER with various choices of M and N  

x 3 NM  5 NM  7 NM  

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.43e-04 

1.94e-04 

8.85e-05 

1.13e-04 

3.54e-04 

5.73e-04 

7.12e-04 

7.13e-04 

5.15e-04 

2.21e-05 

2.34e-06 

3.42e-06 

8.12e-07 

8.19e-06 

4.26e-06 

5.24e-05 

6.22e-07 

4.27e-07 

1.11e-09 

1.26e-08 

6.15e-10 

7.14e-09 

8.21e-09 

3.56e-11 

3.53e-08 

4.23e-10 

6.45e-11 

 

 

 
Fig. 5.13 Plot of the approximate solution of Example 5 vs. x and t for 

,3 NM 2 and 1  
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Exact

Approximate  
Fig. 5.14 Comparison between exact and approximate solutions of Example 5 vs. x and 

t for ,3 NM  2  and 1  

 

 
Fig. 5.15 Variation of absolute error of Example 5 vs. x and t for ,3 NM  2  

and 1  

 

  

2, 1

1.4, 0.7

1.6, 0.8

1.8, 0.9
 

Fig. 5.16 Plots of the approximate solution of Example 5 vs. x for different value of 

 ,  and 3 NM  at 1t hr 

ER(x, t) 
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5.6 Conclusions 

In the present chapter, a method is proposed to solve a class of fractional partial 

differential equations viz., advection-diffusion equations with linear/non-linear reaction 

terms subject to initial and boundary conditions. The considered problems are converted 

into a system of algebraic equations using shifted Jacobi polynomials together with 

shifted Jacobi operational matrix. The Newton iterative method is used during the 

solution of nonlinear algebraic equations. The author is optimist that the present 

demonstration of simplicity, efficiency, and reliability of the proposed method towards 

the solutions of a number of linear/nonlinear FPDEs subject to initial and boundary 

conditions with constant or variable coefficients will be appreciated by the researchers 

working in the area of modeling of fractional order systems. To validate the efficiency 

of the proposed method a comparative study of each problem with the existing result is 

evaluated numerically through error analyses, which is displayed graphically.  


