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Numerical Solution of Non-Linear Partial Differential 

Equations Arising in Porous Media Using Operation 

Matrices  

4.1 Introduction 

To understand the physics of many complex physical problems in porous media, non-

linear partial differential equations (NPDEs) plays a vital role, e.g., Burgers equation, 

Fisher equation, Huxley equation, Burgers-Fisher, and Burgers-Huxley. Burgers’ 

equation introduced by a Dutch physicist J.H. Burgers to explain the nature of shock 

waves, traffic flow, and acoustic transmission. Later it is found that it is a fundamental 

NPDE appears in different fields of mathematics viz., fluid mechanics, non-linear 

acoustic, gas dynamics and traffic flow. It describes the discrepancy of vehicle density 

in highway traffic and the propagation of weak shock-waves in a fluid. Because of the 

non-linear convection term and the diffusion term with viscosity coefficient, Burgers 

equation roughly looks like Navier-Stokes equation. So it is considered as a simplified 

form of Navier-Stokes equation. It also arises when pure and contaminated water 

disperses in the longitudinal direction of the porous medium. This dispersion 

phenomenon may be miscible or immiscible fluid flow through the porous medium. 

When a fluid of lesser viscosity displaced a fluid flowing through a porous medium, 

then in place of usual displacement of the whole front protuberance occurred, which 

emit through the porous medium at a comparatively very high speed. This incident is 
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known as instability phenomenon or fingering which yields to NPDE in Burgers 

equation form. In 1937, Fisher (1937) proposed a non-linear reaction-diffusion model to 

explain the spreading of a viral mutant in an infinitely long habitat. Later it is found that 

it has excellent applications in various fields like travelling wave behavior (Pablo and 

Sanchez (1998)) combustion (Aggarwal (1985)), autocatalytic chemical reactions 

(Aronson and Weinberger (1988)), gene propagation (Caonsa (1973)), tissue 

engineering (Maini et al. (2004)), and neurophysiology (Tuckwell (1988)). It also used 

as a mathematical model of reacting flow in the porous medium. Huxley equation is 

also a nonlinear reaction-diffusion model which also has important applications in 

various fields, e.g., biology, chemistry, fluid dynamics. The combined form of Burgers, 

Fisher and Huxley equations give nonlinear reaction-advection-diffusion models which 

are important NPDEs. In the fluid dynamic model, Burgers-Fisher equation has a sharp 

edge due to which many researchers study this model to understand the physical flows 

and calibrate the different numerical methods. It has various applications in number 

theory, gas dynamics, heat transfer, elasticity. Burgers-Fisher and Burgers-Huxley 

equations are also used as mathematical models of solute transport through the porous 

medium.   

Wealthy literature is available in which these NPDEs are solved with various initial and 

boundary conditions representing different physical phenomena of nature. Some of 

those are explained here. The perturbation method has been applied to longitudinal and 

lateral dispersions in no uniform seepage flow through heterogeneous aquifer by Hunt 

(1978). Joshi et al. (2012) used the theoretical approach during the solution of Burgers’ 

equation for longitudinal dispersion phenomena occurring in miscible phase flow 

through porous media. New integral transform with homotopy perturbation method is 

used by Kunjan and Twinkle (2015) to find the solution of Burgers’ equation arising in 
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the longitudinal dispersion phenomenon in fluid flow through porous media. Burgers’ 

equation arising in longitudinal dispersion phenomena occurring in miscible phase flow 

through porous media has been solved by Meher and Mehta (2010) using Backlund 

transformation and by Patel and Mehta (2005) using Hope-Cole transformation. Many 

other researchers have also solved the Burgers’ equation (Benton and Platzman (1972); 

Mittal and Singhal (1993); Kutluay et al. (1999); Ozis et al. (2003); Kutluay et al. 

(2004)). Due to various applications of Fisher equation, the solutions are given by many 

authors (Abtowitz and Zeppetella (1979); Wang (1988); Puri et al. (1989); Parekh and 

Puri (1990); Puri (1991); Tang and Weber (1991); Mavoungou and Cherruault (1994); 

Carey and Shen (1995); Qiu nad Sloan (1998); Al-Khalid (2001); Wazwaz and Gorguis 

(2004); Olmos and Shizgal (2006); Mittal and Jiwari (2009); Bastani and Salkuyeh 

(2012)).  Time to time many researchers have solved the Burgers-Fisher as well as 

Burgers –Huxley equation (Wang et al. (1990); Wang and Lu (1990); Kaya and El-

Sayed (2003); Ismail et al. (2004); Wazwaz (2005, 2008); Batiha et al. (2007, 2008); 

Babolian and Saeidian (2009); Olayiwola et al. (2010)). Due to the vast applications of 

NPDEs to explain the natural phenomena, lots of researchers are trying to get the 

solutions of these models from the last half-century, and it is an open field of research 

nowadays also.   

In this chapter, a new numerical method based on spectral collocation approach is 

proposed to get the approximate solutions of considered NPDEs subject to initial and 

boundary conditions. For that, double shifted Chebyshev polynomials of the first-kind 

with spatial and temporal variables are used to approximate the solutions of the 

considered problems together to apply spectral collocation method in which shifted 

Chebyshev operational matrix in space as well as in temporal discretization are used for 

derivatives. The main advantage of choosing the double shifted Chebyshev polynomials 



 

 

                                 Chapter 4: Numerical Solution of Non-Linear Partial Differential  

114 

 

of the first-kind is that the considered problems are directly converted in the system of 

non-linear equations instead of a system of ordinary differential equations as shown in 

last two chapters due to which there is no need to apply any finite difference scheme. 

Since it converts the considered problem into a system of nonlinear algebraic equations 

which are ultimately solved applying Newton’s iterative method. The exponential 

convergence rate of the considered method is analyzed through the considered examples 

for both spatial and temporal discretization. To show the efficiency and accuracy of the 

considered method, it has applied to a number of physical problems, and a comparison 

of the approximate solutions with the existing analytical solutions present in literature 

are shown through the graphical presentations as well as tables.  

4.2 Preliminaries 

4.2.1 Shifted Chebyshev Polynomials of the First-Kind 

In most of the numerical problems, the interval of interest is ].,0[ L  In order to use 

shifted Chebyshev polynomial in that interval, introducing the change of variable as 

discussed in Chapter 1 and denoted it by ),(, xT nL
which are satisfying the orthogonality 

condition as 

 

L
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0
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The analytical form of the shifted Chebyshev polynomials )(, xT nL is given by 
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where 
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4.2.2 Shifted Chebyshev Spectral Collocation Method 

Let ),0()( 2 LLxu
Lw  is expressed in terms of shifted Chebyshev polynomials as 

),()( ,
0

xTcxu iL
i

i


        

(4.3) 

where the coefficients ic  are given by 

,)()()(
1

0
, dxxTxuxwc

L

iLL

i

i 


;,...1,0i      (4.4) 

Again for approximation, we have taken a finite number of terms, so the first )1( M -

terms of the shifted Chebyshev polynomials are taken during approximation. Thus we 

have
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The matrix representation of above equation is 

),(~)( , xCxu ML

T

M             (4.6) 

with   

],,...,,[ 10 M

T cccC   .)](,...),(),([)( ,1,0,,

T

MLLLML xTxTxTx 
 

4.2.3 Derivatives 

The first order derivative of the column vector )(, xML is given as 

),()( ,, xDx
dx

d
MLML        (4.7) 

where D  is the )1()1(  MM order operational matrix of derivative given as 




















,0

,,1,...,5,3,1

,,,...,5,3,1
,,...,1,0,

4

)(

otherwise

evenisMifMr

oddisMifMr
rqpq

L

p

dD qpq     (4.8) 

For even M , we have 
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and for odd M , we have 
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The higher order derivative of the column vector )(, xML  is given as 

),()( ,, xDx
dx

d
ML

m

MLm

m

    (4.11) 

where m  is a natural number and mD  denotes the mth-order derivative of ).(, xML
 
 

4.3 Application of the Spectral Method Based on Chebyshev Operational Matrix 

In this section, Chebyshev operational matrix together with spectral collocation method 

is applied to solve the nonlinear differential equations subject to initial and boundary 

conditions with variable coefficients of the form 
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,bxa  ,0t  (4.12) 

or 

),()( uuuu xxxt    ,bxa  ,0t    (4.13) 

with the boundary conditions  

),(),( tftau    ,0t                    (4.14) 

),(),( tgtbu    ,0t    (4.15) 

and initial condition 

         ),()0,( xhxu    ,bxa                   (4.16) 

where   is the diffusivity, )(u and )(u are the nonlinear expressions in terms of .u  

Here   may be considered as constant to simplify the considered problems. 

Equation (4.13) with the use of initial condition (4.16) can be rewritten as  

),()0,()()( xhxuuuuu xxxt    ,bxa  ,0t  (4.17) 

which has to solve along with the given boundary conditions. 

To solve the problem (4.17) with the given boundary conditions, let us approximate the 

solution ),( txu  by )1()1(  NM  terms of shifted Chebyshev polynomials series 

as 
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where C  is the )1()1(  NM order matrix of the coefficients ,pqc
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The entries of the matrix C are obtained from 
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Derivative of the approximate solution can be expressed as 
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Employing equations (4.21)-(4.24) in equation (4.17), we get 
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with the boundary conditions 
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According to the spectral Chebyshev collocation method, equation (4.25) is to be 

satisfied at )1()1(  NM  collocation points, and the considered boundary 

conditions (4.26) are satisfied at )1(2 M  collocation points as follows 
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with the boundary conditions 
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where ,pt Mp ,...,1,0 are the roots of  )(1, tT M  
and ,qx 2,...,1,0  Nq  are the 

Gauss-Lobatto points.  

From here we get the system of )1()1(  NM  non-linear algebraic equations in pqc
 

in which )1()1(  NM  equations come from equation (4.27), and )1(2 M  

equations come from the equation (4.28). Now )1()1(  NM  equations are a non-

linear system of algebraic equations, can be solved using Newton’s iterative method for 

pqc . Consequently ),(, txu NM given in equation (4.18) can be calculated. 

4.4 Illustrative Examples 

To demonstrate the effectiveness and accuracy of the proposed method, some important 

nonlinear models are solved using the proposed method, and the results are compared 

with the existing exact solutions. 

 

Example 1. Consider the Burgers equation 

   ,xxxt uuuu   ,10  x  ,0t  

with the boundary conditions 
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The exact solution of this problem is 
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(Babolian and 

Saeidian (2009)). In Table 4.1, the absolute error ),(),(max),( ,

10
10

txctxctxER NM

t
x






 

for 

various values of M  and N  at 1t hr are presented. The plot of the approximate 

solution vs. x and t of this problem is shown in Fig. 4.1. Also in Fig. 4.2, the comparison 

of the approximate solution with the existing analytical solution vs. x and t is shown. 

The variations of absolute error vs. x and t are shown through Fig. 4.3. All the pictorial 

presentations are for .3 NM  

Table 4.1 The absolute error )1,(xER with various choices of M and N  

x 3 NM  5 NM  7 NM  

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

7.42e-04 

9.93e-04 

8.75e-04 

5.11e-04 

2.27e-05 

4.67e-04 

8.37e-04 

9.64e-04 

7.25e-05 

6.32e-06 

7.43e-06 

7.12e-06 

4.11e-06 

3.12e-07 

3.98e-06 

5.24e-06 

5.67e-06 

6.52e-07 

2.42e-11 

4.23e-09 

4.89e-08 

3.12e-08 

1.57e-11 

3.67e-08 

6.62e-08 

7.54e-09 

8.57e-11 

 

 

 
Fig. 4.1 Plot of the approximate solution of Example 1 vs. x and t for 3 NM  
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Numerical

Exact  
Fig. 4.2 Comparison between exact and approximate solutions of Example 1 vs. x and t 

for 3 NM  

 

 

Fig. 4.3 Absolute errors of Example 1 vs. x and t for 3 NM   

 

Example 2. Consider the Fisher equation 

   ),1( uuuu xxt   ,10  x ,0t  

with the boundary conditions 
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(Babolian and Saeidian (2009)). The absolute errors are presented through Table 4.2 for 

various values of M  and N  at 1t hr. The approximate solution of this problem vs. x 

and t is shown through Fig. 4.4. The comparison between the existing analytical 

solution and the approximate solution vs. x and t is displayed through Fig. 4.5. The 

variation of the absolute error vs. x and t is shown though Fig. 4.6. The graphs are 

drawn for .3 NM  

 

Table 4.2 The absolute error )1,(xER  with various choices of  M  and N  

x 3 NM  5 NM  7 NM  

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

8.93e-04 

1.17e-03 

1.02e-03 

5.81e-04 

6.50e-06 

5.93e-04 

1.03e-03 

1.18e-03 

8.91e-04 

7.48e-07 

2.35e-07 

1.08e-06 

3.54e-06 

2.78e-08 

5.24e-06 

2.98e-06 

7.34e-06 

7.42e-07 

9.57e-10 

8.23e-09 

4.32e-09 

1.94e-09 

1.06e-12 

2.54e-11 

6.52e-10 

4.55e-11 

6.24e-12 
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Fig. 4.4 Plot of the approximate solution of Example 2 vs. x and t for 3 NM  

 

 

Numerical

Exact  
Fig. 4.5 Comparison between the exact and approximate solution of Example 2 vs. x 

and t for 3 NM  

 

 
Fig. 4.6 Absolute errors of Example 2 vs. x and t for 3 NM   
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Example 3. Consider the Huxley equation 

    ),1)(1(  uuuuu xxt  ,10  x ,0t  

with the boundary conditions 
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and initial condition 
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The exact solution of this problem is 
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and Saeidian (2009)). The absolute errors for above example are given in Table 4.3 for 

various values of M  and N  at 1t hr. The approximate solution and its comparison 

with the exact solution vs. x and t are presented in Fig. 4.7 and Fig. 4.8, respectively. 

The variation of absolute error vs. x and t is displayed through Fig. 4.9. The graphs are 

drawn for .3 NM  

 

Table 4.3 The absolute error )1,(xER with various choices of M and N  

x 3 NM  5 NM  7 NM  

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.16e-03 

1.57e-03 

1.41e-03 

8.79e-04 

1.46e-04 

5.98e-04 

1.16e-03 

1.38e-03 

1.05e-03 

1.27e-05 

2.40e-06 

1.76e-06 

4.22e-06 

3.58e-07 

5.52e-06 

4.38e-05 

2.14e-06 

1.10e-07 

5.42e-08 

1.12e-10 

1.94e-07 

3.32e-11 

1.86e-11 

5.72e-09 

7.42e-10 

6.54e-09 

2.06e-12 
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Fig. 4.7 Plot of the approximate solution of Example 3 vs. x and t for 3 NM  

 

Numerical

Exact  

Fig. 4.8 Comparison between the exact and approximate solution of Example 3 vs. x 

and t for 3 NM  

 

Fig. 4.9 Absolute errors of Example 3 vs. x and t for 3 NM  
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Example 4: Consider the Burgers-Fisher equation  

 
),1( uuuuuu xxxt  ,10  x ,0t  

with the boundary conditions 
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This problem has the exact solution 
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(Babolian and 

Saeidian (2009)).  The absolute errors are given in Table 4.4 for various values of M  

and N  at 1t hr. The approximate solution of this problem vs. x and t is presented 

through Fig. 4.10.  In Fig. 4.11, the comparison between the existing analytical solution 

and the approximate solution vs. x and t is shown.  The variation of absolute error vs. x 

and t is shown through Fig. 4.12. All the plots are drawn for .3 NM  

Table 4.4 The absolute error )1,(xER  with various choices of M and N  

x 3 NM  5 NM  7 NM  

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.43e-04 

1.94e-04 

8.85e-05 

1.13e-04 

3.54e-04 

5.73e-04 

7.12e-04 

7.13e-04 

5.15e-04 

2.21e-05 

2.34e-06 

3.42e-06 

8.12e-07 

8.19e-06 

4.26e-06 

5.24e-05 

6.22e-07 

4.27e-07 

1.11e-09 

1.26e-08 

6.15e-10 

7.14e-09 

8.21e-09 

3.56e-11 

3.53e-08 

4.23e-10 

6.45e-11 
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Fig. 4.10 Plot of the approximate solution of Example 4 vs. x and t for 3 NM  

Exact

Approximate  
Fig. 4.11 Comparison between the exact and approximate solution of Example 4 vs. x 

and t for 3 NM  

 

 
Fig. 4.12 Absolute errors of Example 4 vs. x and t for 3 NM  

ER(x, t) 
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Example 5. Consider the Burgers-Huxley equation 

   ),1)(1(  uuuuuuu xxxt  ,10  x ,0t  

with the boundary conditions 
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The exact solution of this problem is 
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(Babolian and 

Saeidian (2009)).  In Table 4.5, the absolute errors are presented for different values of 

M  and N  at 1t hr. The approximate solution of this problem and the comparison 

with the exact solution vs. x and t are shown through the Fig. 4.13 and Fig. 4.14, 

respectively. The variation of absolute error vs. x and t is presented through Fig. 4.15. 

All the plots are drawn for .3 NM  

 

Table 4.5 The absolute error )1,(xER with various choices of M and N  

x 3 NM  5 NM  7 NM  

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

3.83e-04 

4.76e-04 

3.42e-04 

6.32e-05 

2.77e-04 

5.97e-04 

8.13e-04 

8.43e-05 

6.05e-05 

2.34e-07 

3.35e-07 

4.47e-06 

4.35e-07 

5.28e-07 

6.23e-07 

6.87e-06 

7.15e-06 

5.24e-07 

3.24e-10 

3.87e-09 

4.25e-10 

5.64e-09 

6.21e-09 

2.57e-10 

8.64e-09 

7.36e-10 

5.27e-11 
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Fig. 4.13 Plot of the approximate solution of Example 5 vs. x and t for 3 NM  

 

Exact

Approximate  
Fig. 4.14 Comparison between the exact and approximate solution of Example 5 vs. x 

and t for 3 NM  

 

Fig. 4.15 Absolute errors of Example 5 vs. x and t for 3 NM  

ER(x, t) 



 

 

                                 Chapter 4: Numerical Solution of Non-Linear Partial Differential  

130 

 

4.5 Conclusions 

In the present chapter, a method is proposed to solve some NPDEs subject to initial and 

boundary conditions. The considered problems are converted into a system of algebraic 

equations using shifted Chebyshev polynomials together with shifted Chebyshev 

operational matrix. The Newton iterative method is used during the solution of 

nonlinear algebraic equations. The author strongly believes that the present 

demonstration of efficient and reliable method towards the solutions of a number of 

NPDEs subject to initial and boundary conditions with constant or variable coefficients 

will be appreciated by the researchers working in the area of modeling of nonlinear 

physical and engineering problems. Also, this method can be extended to solve time, 

space and space-time fractional order differential equations by considering the fractional 

order operational matrix of derivative, which is discussed in next chapter. To validate 

the efficiency of the proposed method a comparative study of each problem with the 

existing analytical result is evaluated numerically through error analysis which is 

displayed graphically. The error analysis shows the exponential convergence rate of the 

proposed method. 

 


