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Numerical Solution of Two-Dimensional Solute Transport 

System Using Operational Matrices  

3.1 Introduction 

Lots of researchers from different parts of the world have involved to tackle the 

physically relevant two-dimensional solute transport models both analytically and 

numerically. A large number of analytical solutions are available for solving these 

problems (Carslaw and Jaeger (1971); Cleary and Ungs (1978); Kumar (1983); 

Carnahan and Remer (1984); Barry and Sposito (1989); Lindstrom and Boersma (1989); 

Leij and Dane (1990); Basha and El-Habel (1993); Fry et al. (1993); Serrano (1995); 

Chrysikopoulos and Sim (1996); Flury et al. (1998); Sim and Chrysikopoulos (1999); 

Sanderson et al. (2004, 2006, 2009); Singh et al. (2008, 2009a, 2009b); Srinivasan and 

Clement (2008); Chrysikopoulos (2011); Shen and Reible (2015)). The analytical and 

experimental investigations of longitudinal and lateral dispersion in an isotropic porous 

medium were presented by Harleman and Rumer (1963). In semi-infinite absorbing 

porous media, Bruce and Street (1967) studied longitudinal and lateral dispersion with 

constant input concentration. The analytical solution for one-dimensional multi-species 

contaminant transport subject to sequential first-order decay reaction in finite porous 

media for constant boundary conditions is discussed by Guerrero et al. (2009), and same 

authors (2010) discussed it for time-varying boundary conditions in the year 

2010. Konikow (2010) used the method of characteristics to solve the groundwater 

                                                      
The contents of this chapter have been published in TIPM – Transport in Porous 
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transport models by applying dispersive changes in Lagrangian particles. Lugo-Mendez 

et al. (2015) solved the transport model in homogeneous porous media by revisiting the 

up-scaling process of diffusive mass transfer of solute. The solutions of the spatially 

variable ADE could be found in many research articles (Ebach and White (1958); Yates 

(1992); Logan (1996); Lin and Ball (1998); Chen et al. (2003); Neelz (2006); Guerrero 

et al. (2013)). But all time it is not easy to get the analytical solutions, so one should 

look forward for numerical solutions (Zhao and Valliappan (1994a, 1994b); Lee (1999); 

Dehghan (2004); Karahan (2006); Walter et al. (2007); Huang et al. (2008); Savović 

and Djordjevich (2012); Djordjevich and Savović (2013); Dhawan et al. (2012); Geback 

and Heintz (2014); Jaiswal et al. (2017)). The solutions for two-dimensional and three-

dimensional solute transport models are also available in literature (Goltz and Roberts 

(1986); Wexler (1992); Batu (1989, 1993); Leij et al. (1991); Chrysikopoulos (1995); 

Aral and Liao (1996); Anderman et al. (1996); Tartakovsky and Federico (1997); Hunt 

(1998); Hantush and Marino (1998); Sim and Chrysikopoulos (1998); Zoppou and 

Knight (1999); Tartakovasky (2000); Park and Zhan (2001); Sander and Braddock 

(2005); Kumar et al. (2006); Massabo et al. (2006); Singh et al. (2010); Chen et al. 

(2011); Assumaning and Chang (2012); Yadav et al. (2012)). In 1970, Bruce (1970) 

conducted an experiment for two-dimensional problems in the porous domain. A semi-

analytical solution for linearized multi-component cation exchange transport in steady 

one, two or three-dimensional groundwater flow had been given by Samper-Calvete and 

Yang (2007). Fedi et al. (2010) analytically solved the two-dimensional advection-

dispersion equations in porous media by considering parallel plate geometry. It is solved 

by the application of Laplace transform in regard to the temporal dimension and the 

introduction of a theta function. Discretized numerical methods are commonly used for 

the problems related to transport of solutes in saturated porous media, which are 
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commonly described by the advection-dispersion equation in real domains. Xu et al. 

(2012) simulated the three-dimensional transport model contaminated by 

perchloroethylene subject to multi permeable reactive barrier remediation. Though few 

research works in the conservative system, have already been done, but the literature on 

non-conservative systems related to two-dimensional problem is not available. 

In this chapter, to solve the considered two-dimensional solute transport system, the 

one-dimensional numerical approach is extended that has already been used in Chapter 

2. Here, two-dimensional shifted Chebyshev polynomial of the first-kind is considered 

for approximation along with an unconditionally stable finite difference scheme 

discussed in the monograph of Guo et al. (2012). The numerical results are depicted 

graphically for different particular cases for both conservative and non-conservative 

systems.  

3.2 Problem Formulation 

For more general case, the solute transport system is given in Section. 1.14 of Chapter 1 

takes place in three space dimensions, but for mathematical simplicity here two space 

dimensions are considered where cR   denotes the sink term with   being 

reaction rate coefficient. Thus the resulting transport equation is a time-dependent 

reaction-advection-dispersion equation in space-time domain ,I where ,2R    

is the boundary of , and ),0( TI   is described as  
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     ftyxc ),,(  on 
 )( I ,      (3.3) 

    ftyxc ),,(
  

or  ftyxcn ),,(  on 
 )( I ,    (3.4) 

where c is the species concentration. d, v and are the positive quantities, and in more 

general case these are the functions of space and time. ,0c
 f  and

f  are the given data. 

 )( I  is the inflow boundary and
 )( I is the outflow boundary of the space-

time boundary )( I . 

The equation (3.1) in two-dimensional form can be written as 
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with boundary conditions 

   0),,( ctyxc   ,,0 yy lylx       (3.6) 
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c
             ,0, xy lxly        (3.9) 

and initial condition  

,0)0,,( yxc   ,,0 yyx lyllx     (3.11) 

where ,,,, yxyx vvdd and 0c  are constants. 

3.3 Preliminaries 

3.3.1 One-Dimensional Chebyshev Spectral Collocation Method 

In approximation theory, Chebyshev polynomials are important for approximating the 

function )(x over the finite interval ]1,1[  as 
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
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p

pp xTax       (3.12) 

where pâ  is known as pseudo-spectrum of the function )(x . 

Generally the first )1( N -terms of the Chebyshev polynomials are considered during 

the approximation. Thus, we have  
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In spectral collocation method, the governing equation is spatially discretized at discrete 

Chebyshev Gauss-Lobatto points in most of the cases with the fact that the numerical 

solution is forced to satisfy the considered equation exactly at collocation points which 

are extreme points of the Chebyshev polynomials. It is defined as 
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Since it is a technique of interpolation, it can also be expressed in terms of Lagrange 

polynomials of degree N as 
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where )(xl N

p  
is Lagrange polynomial of degree N defined by  
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and pa
 

and pâ are unknown coefficients. pâ
 

is known as pseudo-spectrum of the 

function )(x  defined by 
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The spatial derivative of the function )(x  at the Chebyshev collocation points px
 
is 

calculated using the derivatives of the Lagrange polynomials as 
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where D  is the Chebyshev collocation derivative matrix discussed in Section. 3.3.6, 

D̂ is differentiation matrix in the pseudo-spectral space.  

The relationship between D  and D̂  can be found using equation (3.17) and is given as 

TDTD 1ˆ  ,          (3.20) 

where the matrix T and its inverse are given by 
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The matrix form of equation (3.19) can be written as 

,ˆˆ' ADADU NN       (3.22) 

where ,))(,),...(( 0

t

NxxU  t
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0

t

NaaA   

The higher order derivatives are given as 

,ˆ.ˆ. ADADU k

N

k

N

k            (3.23) 

where k

ND
 
is the kth-order Chebyshev collocation derivative matrix and k

ND̂
 
can be 

obtained easily from the relation (3.20). 

3.3.2 Two-Dimensional Chebyshev Polynomials of the First-Kind 

Let us define a 
2)1( N  set of two-dimensional Chebyshev polynomials of the first-kind 

as 

),()(),( yTxTyxT qppq    .,...,0 Np            (3.24) 
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These polynomials are also orthogonal with respect to weight function 

22 11
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on the interval ]1,1[]1,1[  as 
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3.3.3 Two-Dimensional Chebyshev Spectral Collocation Method 

Similar to a one-dimensional problem, the Chebyshev polynomials approximation can 

be extended for more variables. Let us consider a two-dimensional function ),( yx  on 

the physical space ]1,1[]1,1[  , which can be approximated as 
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As one-dimensional case here also first )1()1(  yx NN
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which can be collocated with discrete Chebyshev Gauss-Lobatto points defined as 
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where pqa
 
and pqâ

 
are unknown coefficients. pqâ

 
is the two-dimensional pseudo-

spectrum of the function ),( yx  given by 
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The spatial derivative of the two-dimensional function is discussed later in Section. 

3.3.6. 

 

3.3.4 Shifted Chebyshev Polynomials of the First-Kind 

The first kind Chebyshev polynomials can be defined in any given finite range ],[ ba  of 

x  by making this range corresponding to the range ]1,1[  taking the transformation as 
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Thus the shifted Chebyshev polynomials of the first kind are denoted by  )(* xTn , 
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This shifted Chebyshev polynomials of the first kind satisfy all the properties satisfied 

by the Chebyshev polynomials of the first kind and also satisfy the orthogonal condition 

as similar to Chebyshev polynomial with respect to weight function )(* xw  corresponding 

to the interval ],[ ba . It may be generated through the recurrence relation given by 
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3.3.5 Chebyshev Collocation Spectral Method Correspond to the Shifted 

Chebyshev Polynomials  

A two-dimensional function ),( yx  can be approximated by shifted Chebyshev 

polynomials of the first kind on any arbitrary physical space ],[],[ 2211 baba  as 

similar to Chebyshev polynomials of the first kind as 
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which may collocate at discrete Chebyshev Gauss-Lobatto points on the space 

],[],[ 2211 baba  defined as  
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where pqâ  is the two-dimensional pseudo-spectrum of the function ),( yx defined by 
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3.3.6 Derivative Matrix 

The first-order Chebyshev collocation derivative matrix (Guo et al. (2012)) at 

)1()1(  NN  grid points is defined as 
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To minimize the round-off errors during the calculation of first derivatives, one can use 

correction technique given by Bayliss et al. (1995) in which the diagonal entries are 

given as 
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The use of this technique will improve the accuracy in getting the higher-order 

derivatives. The second-order derivative (Peyret (2002)) can be defined as 
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The nth-order derivative matrix n

ND
 
is equal to the product of ND

 
in

 
n-times, i.e., 

timesnDDD NN

n

N  ... . The main difficulty arises when we go from one-

dimensional case to two-dimensional case to find the derivative matrix, and it is not as 

simpler as the one-dimensional case. To find the derivative matrix for two-dimensional 

case, Kronecker product comes into the picture. The first-order partial derivative 

relative to first space variable is obtained by using Kronecker product between 
yNI
 
and 



 

 

                                 Chapter 3: Numerical Solution of Two- dimensional Solute  

97 

 

xND denoted by 
xy NN DI   where 

yNI  is the identity matrix of order yN . The partial 

derivative related to second space variable is obtained by using the Kronecker product 

between 
yND
 
and 

xNI
 
and denoted by .

xy NN ID  The same procedure is followed to 

obtain the higher order derivative matrix for the two-dimensional case in which ND
 
is 

replaced by its higher-order derivative as the one-dimensional case. For example, 

n

NN xy
DI   denotes the nth-order partial derivative with respect to first space variable 

and 
xy N

n

N ID   denotes the nth-order partial derivative with respect to second space 

variable. The mixed-order derivative, i.e., mth-order in first variable and nth-order in the 

second variable, is followed by Kronecker product .n
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3.3.7 Derivative Matrix Corresponding to the Shifted Chebyshev Polynomials of 

First-Kind defined over the Interval ],[ xx ll  and the Physical Space 

],[],[ yyxx llll   

The above discussed derivative matrix is only valid over the interval ]1,1[  and the 

physical space ]1,1[]1,1[   for the one-dimensional case and two-dimensional case, 

respectively. For one-dimensional case, if the given interval of interest is of the form 

],,[ xx ll  then the first order derivative matrix is given as ,
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first-order partial derivative matrix corresponding to the second space variable is given 

by .
1

xy NN

y
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  The same procedure is followed to compute the nth-order partial 

derivative matrix for two-dimensional problem by replacing the ,,,
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3.3.8 Derivative Matrix Corresponding to the Shifted Chebyshev Polynomials of 

First-Kind defined over the Interval ],[ ba  and the Physical Space 
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inverse of the half of the length of the interval. The nth-order derivative matrix is given 

by n

Nn

n

D
ab )(

2


. For two-dimensional case, if the given physical space of interest is 

],,[],[ 2211 baba   then the partial first-order derivative matrix corresponding to first 

space variable is given by 
xy NN DI

ab


 )(

2

11  

and the partial first-order derivative matrix 

corresponding to the second space variable is given by .
)(

2

22
xy NN ID

ab



 The same 

procedure is followed to compute the nth-order partial derivative matrix for two-
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dimensional problem by replacing the ,
)(

2

11 ab 
,

)(

2

22 ab  xND

 

and 
yND
 

by 

,
)(

2

11

n

n

ab 
,

)(

2

22

n

n

ab 

n

N x
D  and n

N y
D

 
respectively. The mixed-order partial derivative 

matrix, i.e., mth-order in first space variable and nth-order in second space variable, is 

given by .
)()(

2

2211

n

N

m

Nnm

nm

yx
DD

abab






 

3.4 Numerical Method 

The considered solute transport system (3.5) can be re-written as 

ccvcvcdcdc yyxxyyyxxxt      (3.41) 

Let us approximate ),,( tyxc  toward finding the solution of the considered problem in 

the physical domain ],[],[),( 2211 babayx   as 

),()(ˆ)()(),,( **

0 00 0

yTxTcylxlctyxc qp

N

p

N

q

pq

N

q

N

p

N

p

N

q

pq

x y

yx

x y


  

 ,,...,0 xNp 
 
and ,,...0 yNq 

  

(3.42) 

where )(* xTp  
and )(* yTq  

are shifted Chebyshev polynomials over the interval ],[ 11 ba  

and ],,[ 22 ba  respectively. 

To overcome with the time derivative present on the left-hand side of the governing 

equation, let us use finite difference scheme as discussed in the monograph of Guo et al. 

(2012) as 

,
2

1
2

2

3 11

t

ccc

c

kkk

t
















with tkt   and .,...,1,0 k  (3.43) 

Therefore, the time-discrete version of equation (3.41) is 
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11111

11

2

1
2

2

3

















kk

yy

k

xx

k

yyy

k

xxx

kkk

ccvcvcdcd
t

ccc




, .,...,1,0 k  (3.44) 

or, 

,
2

1
2

1

2

3 1111111








  kkkkk

yy

k

xx

k

yyy

k

xxx cc
t

c
t

ccvcvcdcd


 .,...,1,0 k (3.45) 

with the initial condition  

.),(),()0,,( 0

)0( yxcyxcyxc      (3.46) 

The polynomial ),(0 yxc can be determined by equation (3.42) together with the pseudo-

spectrum relation given in equation (3.37). During numerical computation ),()1( yxc   

arising for 0k  is given as 

).,(),( )0()1( yxcyxc       (3.47) 

Equation (3.45) indicates that we evaluate equation (3.41) at the time tkt )1(  . 

This temporal scheme is unconditionally stable and accurate up to second order in time 

(Isaacson and Keller (1966); Canuto et al. (1988)). 

Before discretizing the above equation at Chebyshev collocation points, we need to 

approximate ,,, xyyxx ccc
 
and yc  using Chebyshev differentiation matrix as discussed 

above. We get 

CDI
ab

c
xy NNxx .

)(

2 2

2

11

2














 , CID

ab
c

xy NNyy .
)(

2 2

2

22

2














 , 

 CDI
ab

c
xy NNx .

)(

2

11











 , and  ,.

)(

2

22

CID
ab

c
xy NNy 










       (3.48) 

where 1)1)(1(][ 
Yx NN

t

pq McC
 

will denote the matrix representation of pqc
 

at 

Chebyshev collocation points defined as 
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,),,...,,...,...,,...,,,...( 0101000

t

NNNNN yxyxx
ccccccC     (3.49) 

in which each block corresponds to a given y position in C. 

Equation (3.44) gives the matrix representation as 

,
2

1
2

1
.)

2

3
( 11


















  kkk CC

t
CI

t
HGFE


   (3.50) 

where 












 2

2

11

2

)(

2
xy NNx DI

ab
dE ,  ,

)(

2 2

2

22

2
















xy NNy ID
ab

dF

 














xy NNx DI
ab

vG
)(

2

11

, 












xy NNy ID
ab

vH
)(

2

22  

and 
yx NN III  .     

(3.51) 

The matrix representation (3.50) is taken only for inner elements of the matrix ],[ pqcC   

which is corresponding to inner Chebyshev collocation points of space grid, i.e., those 

with 11  xNi
 
and 11  yNj  (Fig. 3.1). The boundary conditions are used to 

calculate ,,, 00 pqNq ccc
x  

and ,
ypNc  which are the outer elements corresponding to boundary 

Chebyshev collocation points of space grid. 

 

 

 

 

 

 

 

 

Fig. 3.1 Chebyshev Gauss-Lobatto grid for yx NN  3
 
together with scpq '
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3.4.1 Implementation of Boundary Conditions 

General forms of boundary conditions are 





















).(),(),(

),(),(),(

),(),(),(

),(),(),(

42424

32323

21212

11111

xfbxcbxc

xfaxcaxc

yfybcybc

yfyacyac

y

y

x

x









    (3.52) 

If ,0,0  ii 
 
then it simply denotes the Dirichlet boundary condition, if ,0,0  ii 

 

then it denotes the Neumann boundary condition and if 0,0  ii 
 
then it denotes the 

Robin boundary conditions. 

For the implementation of given boundary conditions, let us first approximate it with 

considered approximation function given in equation (3.42) then collocate at Chebyshev 

collocation points given in equation (3.36). For xc
 
and yc

 
Chebyshev derivative matrix 

is used as discussed in Section 3.3.8. From here a matrix representation of considered 

boundary values is obtained which corresponds to boundary Chebyshev collocation 

points of space grid. The first two equations of (3.52) give ,0qc
 
and ,qNx

c  yNq 0
 
and 

the last two equation of (3.52) give ,0pc
 
and ,

ypNc xNp 0 . From here we get matrix 

form for given boundary conditions as 

,. FCA           (3.53) 

where A is the matrix of the order )1)(1()1)(1(  yxyx NNNN
 
corresponding to the 

boundary points of space grid. C is the column matrix discussed in equation (3.49) and 

1)1)(1(][ 
Yx NN

t

i MfF  is the column matrix corresponding to the R.H.S of equation 

(3.52).  

The considered boundary conditions are  
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If we take ,3 yx NN 
 
then the matrix form of the corresponding boundary conditions is 
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These boundary conditions along with equation (3.50) give a system of linear equations 

which completely describe the considered problem. From here the unknown coefficients 

pqc  are obtained and use those in equation (3.42) to get the approximate solution of the 

considered problem. 
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3.5 Numerical Results and Discussion 

The numerical values of normalized solute concentration 0t)/cy,c(x,  in the two-

dimensional finite-length homogeneous porous medium system for different time are 

calculated for both conservative )0(   and non-conservative )0(   systems with 

0c  being equal to unity. During numerical computation, a porous medium is assumed 

with the following arbitrary transport parameters: ,/25 2 daycmd x   
,/5 2 daycmd y   

,/50 daycmvx   
,0yv  for the conservative system and for the non-conservative system 

in the physical space ]10,10[]40,0[  . The inlet concentration is ./1 cmmgci   
The 

graphical plots of normalized concentration 0t)/cy,c(x,  vs. physical domain ),( yx  

are depicted through Fig. 3.2(a) – (d) for the conservative system and through Fig. 

3.3(a) – (d) for the non-conservative system at various time 75.0,5.0,25.0t   

and 1 day. Figures 3.4 and 3.5 show the comparisons at different time levels for 

conservative and non-conservative systems, respectively. Figure 3.6 shows the 

comparison between conservative and non-conservative system at 5.0t  day which 

shows that the rate of transportation for the non-conservative system  0  is less 

compared to the conservative system  0  due to the effect of reaction term.   

 It is seen from the figures that the solute covers the more space in both the 

directions as time increases which is physically justified. Also, it is clear from the 

graphs that the slope of planes is going to be more flat as time increases due to the prior 

existence of solute concentration in the physical space, i.e., it moves towards the 

saturation. Fig. 3.7(a) – (d) and Fig. 3.8(a) – (d) show the nature of the normalized 

concentration 0t)/cy,c(x,  based on similar choices of parameters for fixed 10y cm 

at a various time 75.0,5.0,25.0t and 1 day for conservative and non-conservative 
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systems, respectively. Figures 3.9 and 3.10 show the comparisons for 10y cm at 

different time levels for conservative and non-conservative systems, respectively. 

 

            
 

Fig. 3.2(a)       Fig. 3.2(b) 

 

                
Fig. 3.2(c)       Fig. 3.2(d) 

 

Fig. 3.2 Normalized concentration distributions for conservative system at different 

time levels (a) 25.0t day, (b) 5.0t day, (a) 75.0t day, (a) 1t day 

 

                
Fig. 3.3(a)       Fig. 3.3(b) 
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Fig. 3.3(c)       Fig. 3.3(d) 

 

Fig. 3.3 Normalized concentration distributions for non-conservative system at different 

time levels (a) 25.0t day, (b) 5.0t day, (a) 75.0t day, (a) 1t day 

 

 

 
Fig. 3.4 Comparison of normalized concentration distributions for the conservative 

system at different time levels 

 

 
Fig. 3.5 Comparison of normalized concentration distributions for the non-conservative 

system at different time levels 

 

t=0.75 day 

t=0.25 day 

t= 0.5 day 

t= 1 day 

t=0.25 day 

t= 0.5 day 

t=0.75 day 

t= 1 day 
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Fig. 3.6 Comparison between conservative and non-conservative system at 5t day 

 

  

Fig. 3.7(a)       Fig. 3.7(b) 

 

   

Fig. 3.7(c)       Fig. 3.7(d) 

 

Fig. 3.7 Normalized concentration distributions for conservative system for 10y cm 

at different time levels (a) 25.0t day, (b) 5.0t day, (a) 75.0t day, (a) 1t day 

 

 

Non-conservative System 

Conservative System 
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Fig. 3.8(a)       Fig. 3.8(b) 

 

  

Fig. 3.8(c)       Fig. 3.8(d) 

 

Fig. 3.8 Normalized concentration distributions for non-conservative system for 

10y cm at different time levels (a) 25.0t day, (b) 5.0t day, (a) 75.0t day, (a) 

1t day 

 

 

Fig. 3.9 Normalized concentration distributions for a conservative system for 10y cm 

at different time levels 
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Fig. 3.10 Normalized concentration distributions for a non-conservative system for 

10y cm at different time levels 

 

3.6 Conclusions 

Through the present scientific contribution, five goals have been achieved. First one is 

the effective use of shifted Chebyshev polynomials of the first kind. Second one is the 

derivation of the Chebyshev differentiation matrix in an arbitrary physical space. Third 

one is the effective use of Chebyshev differentiation matrix to overcome the spatial 

derivative. Fourth one is the use of unconditionally stable difference scheme to 

overcome the temporal derivative. The last one is the graphical exhibition of the lesser 

rate of transportation for non-conservative system compared to the conservative system 

due to the effect of sink term. 

 

 

 

 


