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Numerical Solution of Solute Transport System  

2.1 Numerical solution of One-Dimensional Finite Solute 

Transport System with First-Type Source Boundary 

Condition 

2.1.1 Introduction 

In this chapter, a sincere attempt has been taken to find the numerical solution of one-

dimensional ADE for a finite system with first-type source boundary conditions, i.e., the 

inlet boundary has time-dependent concentration and at the outlet boundary, the 

concentration gradient is supposed to be zero. Initially, it is supposed that there is no 

solute in the aquifer. The mathematical representation of the described problem is as 

follows  
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under the boundary conditions 
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and initial condition 

   ,0at0,0  tLxC                          (2.1.4) 

                                                      
The contents of this chapter have been published in IACM – International Journal of 

Applied and Computational Mathematics, 3, 3035-3045 (2017), Springer. 
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where ),( txC  is the solute concentration, D is the coefficient of hydro-dynamic 

dispersion, V is the velocity of groundwater and   is the reaction rate coefficient. 

During numerical computation, it is considered that the system in which velocity (V) of 

the groundwater is assumed to be uniform, aligned with the x-axis and constant. The 

coefficient of hydro-dynamic dispersion (D) is also considered to be constant. The 

analytical solution of the given mathematical model for the conservative system, i.e., for 

0  is given as (E. J. Wexler (1992))  

  ,

22

expsin

.
42

exp21),(
1

2

2

2

2

2

0










































































 



i

i

ii
i

D

VL

D

VL

L

Dt

L

x

D

tV

D

Vx
CtxC






   (2.1.5) 

where i  are the roots of the equation .0
2

cot 
D

VL
  

We know that analytical solution is always useful for validating the numerical results. 

But on many occasions, it is hard to get the analytical solutions, and for those cases, the 

numerical solutions using various tools are very much useful. Here, the aim is to 

validate the proposed numerical method with the existing analytical solution for a 

conservative system which confirms the accuracy and efficiency of our proposed 

method and then applies the method to find the numerical solution of the considered 

problem for a non-conservative system for different particular cases.  

The mathematical model considered in this chapter is a simple reaction-advection-

dispersion equation. In literature, a number of analytical and numerical methods are 

present to solve such types of problems subject to initial and boundary conditions. In 

1982, Van Genucheten and Alves (1982) considered the one-dimensional solute 

transport models and the computer programs had been used to solve these models. They 
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have collectively presented most common numerous analytical solutions of the general 

transport models where the term accounting for convection, dispersion, linear 

equilibrium absorption and in some cases the effects of zero-order production and first-

order decay have been taken into account. Cleary and Adrian (1973) used integral 

transform method to analytically solve the cation adsorption soil problem. Runkel 

(1996) derived the exact solution for constant parameter advection-dispersion equation 

(ADE) with a continuous load of finite duration. Baeumer et al. (2001) have discussed 

the solution of subordinated ADE for contaminant transport in their research article. 

Mojtabi and Deville (2014) discussed the solution of one-dimensional linear ADE with 

Dirichlet homogeneous boundary conditions using separation of variables for an 

analytical solution and finite element method for numerical solution. Luce et al. (2013) 

have presented an explicit analytical solution of the diurnally forced ADE to estimate 

bulk fluid velocity and diffusivity in streambeds. Singh et al. (2010) solved the solute 

transport along and against time-dependent source concentration in homogeneous finite 

aquifers. In 2010, Kumar et al. (2010) have given the analytical solutions of ADE 

converted into a diffusion equation by emitting the advective terms. In 2012, the 

numerical solution of one-dimensional ADE in semi-infinite media was given by 

Savovic and Djordjevich (2012) using explicit finite difference method for three types 

of dispersion problems viz., solute dispersion along steady flow through 

inhomogeneous medium, temporally dependent solute dispersion along uniform flow 

through homogeneous medium and solute dispersion along temporally dependent 

unsteady flow through inhomogeneous medium. In 2013, Savovic and Djordjevich 

(2013) numerically solved the one-dimensional ADE with variable coefficients in a 

semi-infinite medium using explicit finite difference method for two types of dispersion 
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problems, temporally dependent dispersion along a uniform flow and spatially 

dependent dispersion along a non-uniform flow.  

Here, the spectral collocation method viz., Chebyshev collocation method along with 

finite difference method is used to solve the considered problem. Using this method, the 

solution of the considered problem is approximated as a sum of shifted Chebyshev 

polynomial of second-kind and the roots of the second-kind shifted Chebyshev 

polynomial are taken as collocation points. This problem is first converted into a system 

of ordinary differential equations which are ultimately solved using finite difference 

method. The numerical results are depicted graphically for different particular cases for 

both conservative and non-conservative systems.  

2.1.2 Preliminaries 

2.1.2.1 Shifted Chebyshev Polynomials of the Second-Kind 

In order to use Chebyshev polynomials in the interval ],12,0[x let us define the so-

called shifted Chebyshev polynomials of the second kind )(* xUn
by introducing the 

change of variable with 1
6


x
z , which gives rise to 

)1
6

()(* 
x

UxU nn ,               (2.1.6) 

where the logic of choosing the above length of the interval is to validate the proposed 

method with the existing analytical result (2.1.5) while solving the considered problem. 

These polynomials are orthogonal in the interval [0, 12] as  
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where 
363

2xx
  is weight function. )(* xUn

 satisfies the following recurrence relations 
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2.1.2.2 Function Approximation 

If g(x) is squared integrable in [0, 1], it can be expressed in terms of the shifted 

Chebyshev polynomials of the second kind as 
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where the coefficients ia , i = 0,1,……, are given by 
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Generally, the first (m+1)-terms of shifted Chebyshev polynomials of the second kind 

are considered in the approximate case. Thus we have 
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2.1.3 Solution of the Problem  

To solve the considered problem (2.1.1) subject to the boundary conditions (2.1.2)-

(2.1.3) and initial condition (2.1.4), let us approximate the solute concentration factor 

),( txC  by  
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which reduces the equation (2.1.1) to 
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Collocating equation (2.1.13) with )1( nm   points as xp, equation (2.1.13) becomes 
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(2.1.14) 

where n represents the order of the problem. 

The roots of the shifted Chebyshev polynomials of the second kinds )(*

)1( xU nm  are 

suitable for the collocation points. Using equations (2.1.10) and (2.1.12), we get initial 

values of )(tui  in the initial case at .0t  Also substituting (2.1.12) in the boundary 

conditions (2.1.2)-(2.1.3), we get the following equations for the case .120  x  
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Equations (2.1.14) with the help of equation (2.1.15) give rise to (m+1) ordinary 

differential equations, which can be solved using finite difference method to get the 

unknowns .,........,1,0),( mitui   

Let us make an approximation with m=3. Equations (2.1.14) and (2.1.15) are reduced to 
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with     )()(),( *
3

0

3 xUtutxC i
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 ,                     (2.1.18) 

where xp’s are the roots of the shifted Chebyshev polynomial of the second-kind ).(*

2 xU  

Using equations (2.1.16) and (2.1.17), we obtain the following system of ordinary 

differential equations 
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where )()}({)}({)( *'*''*

pipipipi xUxUVxUDxH  . 

Equations (2.1.19)-(2.1.22) are solved using finite difference method with the notations 
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system of equations (2.1.19)-(2.1.22) is discretized in time, which gives rise to 
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03210 432 Cuuuu nnnn               (2.1.25) 

.03/103/43/1.0 3210  nnnn uuuu                        (2.1.26) 

The above system of equations (2.1.23)-(2.1.26) can be re-written in the following 

matrix form as 

,1 EBUAU nn  

 or ),( 11 EBUAU nn             (2.1.27) 
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In order to obtain the initial solution 0U  of equation (2.1.27), we use the initial 

condition )0,(xC  combined with equation (2.1.10). Moreover, the approximate solution 

of the equation (2.1.18) is obtained by substituting the analytical form of the series of 

the shifted Chebyshev polynomials of the second kind 3,2,1,0),(* ixU i  
and the 

coefficients 3,2,1,0),( itui  which are computed through equation (2.1.27). 

2.1.4 Physical Problem 

 
Fig. 2.1.1 Physical problem 

Longitudinal dispersion (D) = 0.6 in2/h, Velocity (V) = 0.6 in/h, System length (L) = 12 

in, Rate coefficient ( ) = 2/1/693.0 t (for Non-conservative system), Solute 

concentration at inflow boundary (C0) = 1.0 mg/L. 
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2.1.5 Numerical Benchmarking 

A comparison of the numerical results of the concentration factors versus column 

lengths with the existing analytical result for hrst 5.2  and hrst 5 is depicted 

through Fig. 2.1.2 and Fig. 2.1.3 respectively for the conservative case ).0(   

 
Fig. 2.1.2 Plots of analytical and numerical results of concentration factor vs. column 

length for the conservative system at hrst 5.2  

 

 
Fig. 2.1.3 Plots of analytical and numerical results of concentration factor vs. column 

length for the conservative system  at hrst 5  

  

 

2.1.6 Results and Discussion 

In this section, the numerical values of the solute concentration factor ),( txC  in finite-

length system vs. column length x  for different time are calculated for both 

C(x,t) 

C(x, t) 
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conservative and non-conservative systems, which are depicted through Fig. 2.1.4 and 

Fig. 2.1.5 respectively. Here Fig. 2.1.4 depicts the concentration with respect to column 

length for different time level 2015,10,5,5.2 andt  hrs for the conservative system. 

Through the figures, it is seen that as the time increases normalized concentration 

covers more length of the column which is physically justified. Again it is clear from 

the figure that as the time increases the slopes of the graphs are seen to be more flat due 

to the prior existence of concentration of solute in the column.  The plots in the figure 

depict that the results obtained by our proposed numerical method are quite similar to 

the existing analytical results given in equation (2.1.5).  

For the non-conservative system, the results depicted through Fig. 2.1.5 are similar to 

previous one. Here the magnitude of normalized concentration factor is less due to the 

presence of the sink term ).0(   
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Fig. 2.1.4 Plots of concentration profiles vs. column length for a conservative finite-

length system with first-type source boundary conditions at 2.5,5,10,15 and 20 hours 
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Fig. 2.1.5 Plots of concentration profiles vs. column length for a non-conservative 

finite-length system with first-type source boundary conditions at 2.5,5,10,15 and 20 

hours 

2.1.7 Conclusions 

The aim of this chapter is to find the numerical solution of one-dimensional ADE 

having sink term with given first-type source boundary conditions and initial condition 

in a finite medium using spectral collocation method. The shifted Chebyshev 

polynomials of second-kind are properly used to reduce the considered problem into a 

system of ordinary differential equations which are finally converted into a system of 

linear equations using finite difference method. The salient feature of the present 

contribution is the comparison of the numerical result with the existing analytical result 

to validate the efficiency of the proposed method for the conservative case and then to 

apply the proposed method to find the approximate solution of the considered non-

conservative system.  Thus it can be concluded that the spectral collocation method is 

effective, accurate and easy to implement for solving the considered one-dimensional 

ADE in the finite domain and even can be useful to solve the partial differential 

equations with arbitrary initial and boundary conditions. 

x 

C(x, t) 



 

 

 

 

2.2 Numerical Solution of Space Fractional Order Solute 

Transport System  

2.2.1 Introduction 

In this chapter, space fractional order form of the model already considered in Section 

2.1 is discussed. The fractional order form of the ADE has not yet been studied much. 

The growing interest in fractional advection-dispersion equation (FADE) because of 

their useful applications in the areas like electromagnetics, robotics and controls, 

acoustics, viscoelastic damping and electrochemistry and in material science has 

motivated the researchers to take up this exercise. The FADE is promising for an 

accurate description of the transportation of solute in complex media such as a porous 

aquifer. In the real world, fractional order ADE has comprehensive applications in 

engineering, physics, economics, etc. due to the non-local property of fractional order 

derivative. Because of this property, fractional order ADE has much more memory 

effect compared to standard order ADE. FADEs in time, space, time-space have been 

extensively applied in describing physical and engineering problems such as anomalous 

diffusion, medicine, biology, solute transport, random and disordered media, control, 

signal processing and so on. To describe and understand the dispersion phenomena, 

time, space, time-space FADEs have fundamental importance and have received 

considerable attention in recent years. The researchers and engineers are actively 

engaged to find the solution of ADE in fractional order system due to its greater 

flexibility in models, non-local behavior and ultimate convergence to the integer order 

system. 

                                                      
The contents of this chapter have been accepted in JPM – Journal of Porous Media, 

Begell House. 
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Through literature survey few methods are found for solving FADE like variable 

transformation by Liu et al. (2003), the Green function by Huang and Liu (2005), the 

implicit and explicit difference method by Meerschaert and Tadjeran (2004) and the 

Adomian decomposition method (Momani and Odibat (2008), El-Sayed et al. (2010), 

Hikal and Ibrahim (2015)) etc. A new technique to solve the FADE in the reproducing 

kernel space is found in the research article of Jiang and Lin (2010). In 2010, El-Sayed 

et al. (2010) have given a numerical algorithm for the solution of an intermediate 

FADE. A new numerical algorithm for FADE with variable coefficients using Jacobi 

polynomials was given by Bhrawy (2013). A high-order numerical method for Riesz 

space FADE has been given by Feng et al. (2016). Analytical modeling of FADE 

defined in a bounded space domain has been discussed by Golbabai et al. (2011). Also 

some numerical methods for solving space, time and space-time FADEs can be found in 

Refs. (Roop (2008), Zheng and Wei (2010), Zhang et al. (2014), Parvizi (2015)). In the 

year 2015, Sweilam et al. (2015) solved the fractional diffusion equation using 

Chebyshev polynomial of the second kind, and in the next year, they solved the similar 

problem using Chebyshev polynomial of the third kind (Sweilam et al. (2016)). The 

space-dependent coefficients and the order of fractionality of time fractional order 

advection-diffusion solute model which shows the abnormalities of tracer in normal 

porous media is recently given by Maryshev et al. (2016). 

Due to physical relevance and important applications, there is still plenty of scope for 

researchers to explore fractional order ADE, which has motivated me to propose a 

model of physical interest and then predict the physical nature. The proposed one-

dimensional space fractional order solute transport equation having a source/sink term 

with given initial and boundary conditions as follows: 
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under the boundary conditions  

,0CC   0x                (2.2.2) 

    ,0
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x

C
 Lx                                      (2.2.3)   

and initial condition          

,0C   00  tatLx                                               (2.2.4) 

In this chapter, to solve the considered problems (2.2.1)-(2.2.4), the same method used 

in Section 2.1 is applied. In the spectral method, Chebyshev polynomial forms an 

orthogonal basis, and thus the coefficients can easily be determined through the 

application of the inner product. Since Chebyshev series or expansion is related to the 

Fourier cosine transform through a change of variables, the Chebyshev polynomials 

have eventually become important tools in numerical computation and help to achieve 

faster convergence of the solution. Thus due to their high accuracy and closeness to the 

minimax polynomials and especially for better goodness to fit, the Chebyshev 

polynomials are becoming more useful to the scientists and engineering compared to 

other orthogonal polynomials like Legendre, Hermite, and Laguerre. The convergence 

properties and stability analysis for Chebyshev polynomials can be found in the 

monographs of Canuto et al. (1988), Boyd (2000), Trefethen (2000), Peyret (2002) and 

Guo et al. (2012). 

The considered problem is solved under the assumptions that fluid is of constant density 

and viscosity, the flow of the fluid is in the x-direction with constant velocity and also 

the longitudinal dispersion coefficient D is constant. The numerical results which are 

depicted through figures for different specific cases clearly exhibit that the method is 
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effective and reliable for the solution of ADE in fractional order system. The author is 

optimist that the outcomes of their present model will be useful to the scientists and 

engineers working in the area of ADE and also to the mathematicians working in the 

field of applications of FDE. 

2.2.2 Preliminaries 

2.2.2.1 Relation between Chebyshev Polynomials and Shifted Chebyshev 

Polynomials of the Second-Kind 

An important relation of second-kind shifted Chebyshev polynomials )(* xUn
 defined in 

the interval ]12,0[  with Chebyshev polynomials of the second-kind )(xU n  defined in 

the interval ]1,1[  is 

.)()12(2 12

2*

1 xUxUx nn                 (2.2.5) 

2.2.2.2 The Explicit Form of the Second-Kind Shifted Chebyshev Polynomials 

The explicit form of the second-kind shifted Chebyshev polynomials )(* xUn
over the 

interval ]12,0[   is given by 

,
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2.2.2.3 Evaluation of the Fractional Derivative Using Second-Kind Shifted 

Chebyshev Polynomials 

If h(x) be a squared integrable over [0,12], then we can derive a formula for the 

fractional derivative of )(xhm , which is approximated through the equation (2.1.11). 

Now using the linearity property of the Caputo fractional derivative as discussed in 

Chapter 1 on )(xhm , we have 
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Now using the linearity property of the Caputo fractional derivative with other property 

of Caputo derivative defined in Section 1.17.4 of Chapter 1, we get 

   ,0))(( * xUD i

    ,1,........,1,0  i  .0                       (2.2.8) 

and      
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Again, using the properties of Caputo fractional derive in equation (2.2.9), we get 
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Now combining the equations (2.2.7) to (2.2.10), we get 
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which can be re-written as 
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where 
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2.2.3 Solution of the Problem  

During the solution of one-dimensional space fractional solute transport equation (2.2.1) 

using Chebyshev collocation method, with first type source boundary conditions (2.2.2) 

and (2.2.3), and initial condition (2.2.4), let us approximate the solute concentration 

C(x,t) as given in the equation (2.1.12) of Section 2.1. Equation (2.2.1) with the aid of 

equations (2.2.12) and (2.1.12) reduces to 
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Now, collocating equation (2.2.14) with  )1( m  points as kx , we get 
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Using the roots of second-kind shifted Chebyshev polynomials 
 

)(*

)1( xU m   which are 

suitable for the collocation points and also using equations (2.1.10) and (2.1.12), we get 

initial values of )(tui  at 0t and on substituting (2.1.12) in the boundary conditions 

(2.2.2)-(2.2.3) with the aid of equations (2.2.12) and (2.2.13), we get the following 

equations for the case .120  x  
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Equation (2.2.15) with the boundary conditions given by equation (2.2.16) gives rises to 

 1m  ordinary differential equations, which can be solved using finite difference 

method to get the unknowns .,........,1,0),( mitui   

Let us make an approximation with 3m . Then the equations (2.2.15)-(2.2.16) are 

reduced to 
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with  txC ,3  already given in equation (2.1.18) of Section 2.1. 
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Here k=0,1 and kx ’s are the roots of the second-kind shifted Chebyshev polynomial 

).(*

2 xU  Taking ,10    we obtain the following system of ordinary differential 

equations as 
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Now, the equations (2.2.19)-(2.2.22) are solved using finite difference method with the 

notations TtTT jfinal  0,  and ,/ NTt  for .,,.........,1,0 Nj   Defining 

,)( n

ini utu  the system of equations (2.2.19)-(2.2.22) are discretized in time and gives 

rise to 
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The above system of equations (2.2.23)-(2.2.26) can be re-written in the matrix form as 
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In order to obtain the initial solution 0U  of the above matrix equation, the initial 

condition C(x,0) is used. Ultimately the approximate solution  txC ,3  is obtained after 

substituting analytical form of the series of the shifted Chebyshev polynomials of the 

second-kind 3,2,1,0),(* ixU i
 and the coefficients 3,2,1,0),( itui  which are computed 

through the above matrix equation. 

2.2.4 Numerical Results and Discussion 

The numerical values of the solute concentration ),( txC  in the finite-length system for 

various time and for different values of fractional order space derivative 

0.1and,9.0,8.0,7.0  are calculated for both conservative and non-conservative 

systems. During numerical computation, the model values as given in Section 2.1.4 for 

a standard order physical problem are used.  A comparison of the results of ),( txC vs. 
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x  between the existing analytical results given by Wexler (1992) and the results 

obtained by our proposed method for the standard order conservative system 

( 0,1   )  are same as depicted through Fig. 2.1.2 and Fig. 2.1.3 for hrst 5.2  and 

hrst 5.2 , respectively of Chapter 1 which clearly exhibit that our proposed method is 

reliable and effective. Thus we may conclude that the result obtained using the proposed 

method is authentic for the conservative system.  

The graphical plots of ),( txC  vs. x  for different t’s for specific values of   are 

depicted through Figs. 2.2.1(a) – (d) for the conservative system ( 0 ) and Figs. 

2.2.2(a) – (d) for non-conservative system ( 0 ). It is observed that the nature of 

curves for fractional order ( 10   ) are similar to that for the standard order case 

( 1 ). The variations of ),( txC  vs. x  for various fractional order   at specific time 

20,15,10,5,5.2 andt  hrs are shown through Figs. 2.2.31(a) – (d) and Figs. 2.2.4(a) – 

(d) for the conservative system and non-conservative system respectively. It is seen 

from the figures that for both conservative and non-conservative systems, the 

transportation rate of solute concentration becomes faster as the system goes from 

standard order to fractional order, mainly due to fractional order creates closer to the 

actual description of porosity and permeability matrix in micro-scale. Again due to the 

effect of the sink term, the transportation rate is less for the non-conservative system as 

compared to the conservative system. 
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Fig. 2.2.1(a)  
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Fig. 2.2.1(b) 

 

t = 2.5h

t = 5h

t = 10h

t = 15h

t = 20h

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

 

Fig. 2.2.1(c) 

t = 2.5h

t = 5h

t = 10h

t = 15h

t = 20h

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

x 

C(x, t) 

C(x, t) 

x 

C(x, t) 

x 



 

 

                                 2.2: Numerical Solution of Space Fractional Order Solute  

81 

 

t = 2.5h

t = 5h

t = 10h

t = 15h

t = 20h

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

 

Fig. 2.2.1(d) 

Fig. 2.2.1 Concentration profiles ),( txC  vs. x  at 20,15,10,5,5.2 andt  hrs for (a) 

,1  (b) ,9.0  (c) ,8.0  (d) ,7.0  for a conservative solute 

 

 
 

Fig. 2.2.2(a)  
 

t = 2.5h

t = 5h

t = 10h

t = 15h

t = 20h

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

 
 

Fig. 2.2.2(b)  
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Fig. 2.2.2(c)  
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Fig. 2.2.2(d)  

Fig. 2.2.2 Concentration profiles ),( txC  vs. x  at 20,15,10,5,5.2 andt  hrs for (a) 

,1  (b) ,9.0  (c) ,8.0  (d) ,7.0  for a non-conservative solute 
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Fig. 2.2.3(a) 
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Fig. 2.2.3(b) 
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Fig. 2.2.3(c) 
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Fig. 2.2.3(d) 

Fig. 2.2.3 Concentration profiles ),( txC  vs. x  for various   at ,5.2)( ta  

,5)( tb  ,10)( tc  and hrstd 20)(   for a conservative solute 

C(x, t) 

C(x, t) 

C(x, t) 

x 

x 

x 

β

β

β

β

β

β

β

β

β

β

β

β



 

 

                                 2.2: Numerical Solution of Space Fractional Order Solute  

84 

 

 = 1  = 0.9
 = 0.8

 = 0.7

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

 
Fig. 2.2.4(a) 
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Fig. 2.2.4(b) 
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Fig. 2.2.4(c) 
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Fig. 2.2.4(d) 

Fig. 2.2.4 Concentration profiles ),( txC  vs. x  for various   at ,5.2)( ta  ,5)( tb  

,10)( tc  and hrstd 20)(   for non-conservative solute 

 

 

2.2.5 Conclusions 

In the present scientific contribution, three goals are achieved. First one is the effective 

use of shifted Chebyshev polynomials of second-degree for the solution of spatial 

fractional order advection-dispersion equation with source/sink term. Secondly, the 

graphical display of fast solute concentration as the system approaches from standard 

order to the fractional order for both conservative and non-conservative systems. The 

third one is the presentation of decay in transportation rate in the non-conservative 

system compared to the conservative system due to the effect of the sink term for 

fractional order as well as standard order case. 
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