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Introduction 

From the title of the thesis “Study of Some Transport Phenomena Problems in Porous 

Media”, it is clear that the transport models appear in porous media are studied here. For 

that reason, the models that describe the solute movement in groundwater are 

considered. Mainly, a drive has been taken to solve these models numerically subject to 

initial and boundary conditions. During numerical computation, the existing spectral 

approach is considered and the extension of the approach is made according to the 

considered problems. Due to the seriousness of groundwater contamination problems, it 

seeks the attention of a lot of scientists and researchers in the last few decades. It has 

motivated the author to choose a solute transport model for study. The seriousness of 

the groundwater contamination is discussed in the next section.  

1.1 Groundwater Contamination 

It is known that water is one of the primary elements for life on earth with two-thirds of 

the earth‟s surface is covered by water and the human body consisting of 75% of the 

same. The water on the earth presents itself in two forms viz., surface water and 

groundwater, of which only 2.5% is fresh water. More than two third of this fresh water 

is covered by the glacier and ice caps (see Fig 1.1). So the groundwater is one of the 

most important sources of freshwater towards the fulfillment of basic needs like 

agriculture, industries and also as an important source of drinking water in both urban 
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and rural areas. For drinking water half of the population of the United States depends 

on groundwater. Ninety-seven percent of the freshwater comes from groundwater, so it 

is important compared to surface water.  

 

Fig 1.1 Distribution of earth‟s water, taken from the USGS, USA site 
(https://water.usgs.gov/edu/watercycle.html) 

Unfortunately, it is getting polluted every day due to various reasons. The source of 

groundwater contaminations can be natural or human activities. This form of 

environmental degradation occurs when pollutants are directly or indirectly discharged 

into the water bodies. Our country is one of the worst affected countries in terms of 

contaminated water due to factors like urbanization, industrialization and agriculture 

which play crucial roles. The natural contamination depends on material through which 

the groundwater moves. During movement, it may pick up a wide range of compounds 

such as magnesium, calcium and chlorides. Naturally occurring minerals and metallic 

deposits in rock and soil also create groundwater contamination. Very often, 

neighborhood ponds, streams, rivers get polluted due to industries. Moreover infiltrated 

the chemical ingredients of the industries get mingled with the groundwater and create 
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contamination. Humanmade products like gasoline, oil, road salts and chemicals get 

mingled with groundwater and create groundwater contamination (See Fig. 1.2). Due to 

increase of population it is overexploited and become thus contaminated by various 

point and non-point sources like storage tank, disposal sites, industry waste disposal 

sites, accidental spills, leaking gasolines, landfills, fertilizers, pesticides and herbicides 

(Fried (1975); USEPA (1989, 1990); Anderson and Woessner (1992); Charbeneau 

(2000); Kebew (2001); Sharma and Reddy (2004); Rai (2004); Rausch et al. (2005); 

Thangarajan (2006)).  

 

Fig. 1.2 Sources of groundwater contamination, taken from the site of groundwater 
foundation 2018 (www.groundwater.org) 

Near the coast, a vacuum is created by overpumping an aquifer which can quickly be 

filled up with salty sea water due to which water supply may become undrinkable and 

useless for irrigation. Groundwater pumping has exceeded the rate of replenishment. In 
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our country the contamination of groundwater is caused by human activities such as 

sewage disposal, refuse disposal, pesticides and use of fertilizers, industrial discharges, 

and toxic waste disposal. Improper management of groundwater resources is also a 

major issue leading to increase in the problem of drinking water and as a result, the 

water level is getting down fast in several parts of India because of excessive extraction 

of groundwater as reported by National water policy (1987). Since non-point source 

materials are used over a large area, hence it can have a large impact on the water in an 

aquifer compared to point-source. Contaminated groundwater is very harmful for the 

environment, human health and widely affect the wildlife. It may not damage human 

and animal health immediately but can be harmful after long-term exposure. 

Groundwater contamination through septic tank waste can have serious effects on 

human health. Various diseases like cancer, hepatitis and dysentery may be caused by 

polluted water. Different actions are being taken by different countries to remediate the 

surface and groundwater. Compared to surface water, groundwater contamination is 

more difficult to abate because it can move very large distance in unseen aquifers.  

If groundwater is contaminated overall, then the rehabilitation is deemed to be too 

difficult and expensive. As a result, it may become unusable for decades. Then finding 

the other source of water is the only option which is seen as impossible. So it is 

important to develop a mathematical model that predicts the solute movement in 

aquifers and its effect on human health and the environment. To accomplish this, a 

thorough understanding of the physical, chemical and biological processes that control 

the transport of solute in groundwater is necessary at the outset. Careful attention is very 

much required for describing the problem domain, boundary conditions and 

modelparameters for creating the numerical groundwater models of field problems.  
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Solute transport through the groundwater is topic encountered in the interdisciplinary 

branch of science and engineering, called hydrogeology. The word hydrogeology is the 

combination of three words hydro meaning water; geo means earth and logy means 

study. This branch of science is the combination of two separate branches viz., 

hydrology where one study about water and the geology where one study about the 

earth. In hydrology, basically water movement, distribution and quality of water present 

in the earth and other planets are studied. This branch is also subdivided into many 

branches like chemical hydrology, echo hydrology, surface hydrology, hydrogeology, 

hydro informatics, hydrometeorology and isotope hydrology. In geology, the study is 

concerned about the earth structure, beneath, rocks of which it is composed and the 

processes by which those are changed over time. From this, we get the knowledge about 

the age of the earth, the history of the earth and also the properties of materials of which 

earth is composed. In practical terms, geology is important for minerals and 

hydrocarbon exploration and exploitation, evaluating water resources, understanding the 

natural hazards, the remediation of environmental problems and providing insights into 

past climate change. Both the fields, hydrology and geology, have their own historical 

background. In hydrogeology, we mainly study about the water and solute that moves 

into a beneath of earth. The water that moves below the earth surface is called 

groundwater and the area where it moves generally called aquifer. In throughout the 

study, I have considered porous aquifer.  

In science, as in all other departments of human knowledge and inquiry, no thorough 

grasp of a subject can be gained, unless the history of its development is appreciated. 

History provides a window through which the rise and decline of any aspect of the 
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society can be seen. So in the next two sections, the history of “Hydrogeology” and 

“Theory of porous media” are discussed. 

1.2 History of Hydrogeology 

The modern science of hydrogeology is considered, to begin with, measurements of 

rainfall, evaporation, and river discharge by area-velocity method etc. But the concept 

of the hydrological cycle (see Fig. 1.3) was given by many philosophers from over the 

years.  

 

Fig 1.3 The Water Cycle, taken from the USGS, USA site 
(https://water.usgs.gov/edu/watercycle.html) 

If one looks towards the literature to know how the science of hydrogeology was 

developed, various research articles and books can be found on that in which the various 

eminent researchers mainly hydro-geologists have talked about the historical 

development of hydrogeology. Since it is an interdisciplinary branch of science, 

therefore it has contributions on other branches of science like earth science, fracture 
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mechanics, porous media etc. In the research article by American hydro-geologists O. 

E. Meinzer (1934) who is also known as “Father of Hydrogeology” documented the 

history and development of groundwater hydrology where he has documented the 

contribution made by French, German, Italian and British geologists and drillers. James 

E. Hackett (1952) summarized the birth and development of groundwater hydrology in 

his article based on the works of Adams (1938), Baker and Horton (1936), and Meinzer 

(1934). E. Hackett summarized this theory in four parts. First one, the origin of 

underground water, where he started a discussion with the pluvial cycle, then talked 

about original hydrology cycle by Greek philosophers and lastly discussed the 

experimental works by two Frenchmen Perrault and Mariotte in 17th-century who laid 

the foundation of further investigation and the modern concept of the hydrologic cycle. 

The second one, the occurrence of underground water where he talked about the 

fundamental principle of geology which has been established at the beginning of the 

19th-century. The third one is the movement of underground water, where he talked 

about Darcy‟s law. The last one is the development of groundwater hydrology, where he 

talked about the work of Gunther Theim in 1906 in the United States. In the book “200 

Years of British Hydrogeology” edited by J. D. Mather (2004), it is found the historical 

development of the British hydrogeology in which the editor included many research 

articles to clear how the British hydrogeology developed during 1800 to 1975. The 

historical development of the hydrogeology of different countries have been collectively 

illustrated in the book titled “History of Hydrogeology” by Howden and Mather (2013) 

in which the authors included history of hydrogeology of different centuries like 

Australia, Island, China, Czech Republic, French, Central Europe, Hungarian, India, 

Japan, Netherlands, Norway, Poland, Romanian, Russia, Serbia, South Africa, Spain, 
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Sweden and Britain in 21 separate chapters. Review of this book had been done by Li 

Peiyue (2015). Regarding the development of Indian hydrogeology, one should go 

through the work titled “A brief history of Indian hydrogeology” by Dr. Shrikant D. 

Limaye, which was also included in the monograph of Howden and Mather (2013). 

Regarding the overall development of the science of hydrogeology, it is found that up to 

14th-century the concepts on hydrology were confined to constructions of hydraulic 

structure and up to 16th-century, it was confined to observations. Leonardo da Vinci 

gave the better understanding of flow in open channels and later Palissy stated that 

rainfall was the only source of water of spring and rivers. In the 17th-century many 

developments have occurred of which notable work has been contributed by Pierre 

Perrault and Edme Mariotte. In the 18th-century, a number of hydraulic experiments 

have been done and on the basis of those many principles of hydrology were developed 

viz., Bernoulli's piezometer, the Borda tube, the Pitot tube, Bernoulli‟s theorem, 

Chezy‟s formula etc., which vastly contributed towards taking up of quantitative 

hydrologic studies. It is the 19th-century when famous Darcy‟s law of groundwater flow 

given by French civil engineer Henry Darcy which accelerated the research work in the 

field of hydrogeology. Simultaneously, many modernized experimental studies have 

been done and the results of those are Dupit‟s well formula, Hagen-Poiseuille‟s 

equation of capillary flow, Francis weir discharge formula, Manning‟s flow formula, 

development of price current-meter, Dalton‟s law etc. Up to the end of the 19th-century, 

the science of hydrogeology was largely empirical and the work in first three decades of 

the 20th-century was responsible for the advancement of the science of hydrogeology. It 

is mid of 20th-century when many theoretical investigations have been considered in 

this field. After that, the dependency of living things and the ecosystem on groundwater 
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and the degradation of groundwater by pollution landed wings the research in the field 

of hydrogeology. After the advent of high-speed computers, the solutions of 

complicated mathematical hydrogeological theories are current states of research and as 

a result, this area is still a very active area of research. 

1.3 History of Porous Media Theory 

When it is looked the literature to know how the theory of porous media was developed, 

it is found that there are many books and research articles in which development of that 

had already discussed. Mainly the research articles and books of German engineer 

scientist of mechanics Reint de Boer and his doctoral candidate Wolfgang Ehlers, in 

which the development of porous media theory are discussed in details. Contents of 

further discussion have been taken from the research articles of Reint de Boer 

(1998) titled “Theory of Porous Media- Past and Present” and also from the Wolfgang 

Ehlers article titled “Porous Media in the Light of History” included in the monograph 

titled “The History of Theoretical, Material and Computational Mechanics” edited by 

Stein (2014).  

According to them the theory of porous media which is a macroscopic continuum 

mechanical approach was developed in three phases. The first phase was the phase 

when the fundamental principles of mechanics, the concept of volume fraction and the 

theory of mixtures were developed which have been done at the end of 18th-century and 

early days of 19th-century. The second phase was between 1910 and 1960 when the 

mechanical interaction of liquids, gases and rigid porous solids had been clarified the 

first time and deformable saturated porous solids had been treated. The third phase was 

between 1970 and 1980 when the theories of immiscible mixtures were developed.  
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This theory starts with Leonhard Euler in 1762 when he described the geometry of the 

porous bodies and his remarks on the porous bodies are interesting. Later he did not use 

the porous solid in his further work, but he was indirectly participated in creating a 

sequent porous media theory. Also, he developed the axioms of continuum mechanics, 

namely the cut principle, the balance of mass, the balance of momentum and the 

balance of moment of momentum. 

At the end of 18th-century, porous media theory was initiated through the physical 

problems viz., coupled water-solid problems and the dike construction problems. At that 

time, Reinhard Woltman proposed the essential part of the porous media theory, i.e., the 

concept of volume fraction as the ratio of the volumetric portions of the soil and the 

pore water components of any dike construction which was not noticed earlier.  He 

attentively observed totally water-saturated mud and introduced the concept of volume 

fraction. With Woltman‟s concept of volume fraction for volume elements of a 

saturated body, the theory of porous media was already developed in the early days of 

the history of mechanics. However, to evaluate the balance of momentum, it is 

necessary to develop the same concept for surface elements of a saturated body. 

Achille Ernest Oscar Joseph Delesse was the person who created such a concept when 

he was working on a totally different problem. He started a career as a mining engineer 

and became a renowned scientist. He was working on a problem to distinguish between 

the portions of the minerals in mine and observed that the area fraction of the minerals 

is the same as the volume fraction. In the year 1848, by statistical investigation of 

various slices of minerals conglomerates, he found that the area fractions and volume 

fractions are equivalent which leads to 
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da

da
dv

dv
n


        (1.1) 

where n  is the volume fraction, obtained by relating the local volume or the local area 

element of the th  constituent to the overall volume element dv  or the overall area 

element .da  

At the same time, Henry Philibert Gaspard Darcy was working as a hydraulic engineer, 

who published a very famous law which is known as Darcy‟s law (1856), which is 

given by 

,hgradkwn FFF         (1.2) 

where Fn is the fluid volume fraction, Fw  is the seepage velocity and the product of 

that FF wn  known as the filter velocity. Fk  is the Darcy permeability or the hydraulic 

conductivity and hgrad  is the pressure head. Although his investigations were of 

purely experimental nature, his results are essential for a mechanical continuum 

treatment of the motion of a liquid in a porous solid. It seems that only Darcy's law 

justifies the creation of a partial fluid body in the porous media theory. The interaction 

of different constituents in a multiphase continuum - a binary model consisting of a 

rigid porous solid and a liquid in motion was first studied by him which can be found in 

Darcy (1856). Nowadays this law seems like a combination of a constitutive equation 

for the direct momentum production term and the momentum balance of the liquid 

component of a binary system of solid and fluid and widely used in hydraulic 

engineering. The Darcy's law is considered as the basic constitutive relation for the 

problem of running water through a filter bed. The aforementioned Darcy's law is not 

valid in all cases. It discussed later in details in Section 1.12. 
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In the 19th-century, the development of mixture theory started, which is the second 

important branch of porous media theory. Adolf Eugen Fick gave the phenomenological 

theory of mixtures, who first studied the problem of diffusion. According to the 

development of the Fourier equation of the heat propagation, he arrived by an analogy 

procedure at the differential equation of the diffusion stream, from where Fick‟s second 

law of diffusion arrived. In this article, he did not give any hint for constitutive 

equations for diffusive flux vector which is known as Fick‟s first law. Fick‟s first law 

states that the concentration flow of a species in a mixture of two components is 

proportional to its concentration gradient  and this law with the mass conservation 

equation gives Fick‟s second law as 

,cgraddivD
t
c





      (1.3) 

where  is the species concentration,  the diffusion coefficient.  

All investigations and findings by R. Woltman, A.E.O.J. Delesse, H.P.G. Darcy and 

A.E. Fick were based on experimental observations and conclusions from other 

scientific laws. It is seen from the literature survey that Fick did not proceed from 

ensured mechanical principles. This was done by Josef Stefan in 1871, who introduced 

the main assumption concerning the interaction forces between the constituents. He was 

the first who studied the diffusion behavior in the sense of continuum mechanics. He 

enhanced Fick‟s diffusion laws through investigation of mixtures of three components 

and extended his findings to the diffusion of gases across porous walls. J. Stefan 

described the gas diffusion through rigid membranes. The relation of the effective (free) 

gas pressure compared to the partial pressure of the pore gas in the porous wall was 

described on the basis of the porosity of the porous solid. Thus he was the first who 
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included the concept of volume fractions into a continuum theory of porous media and 

created the mixture theory consequently treating the different phases as individual 

constituents considering the interaction forces. However, his investigations were 

restricted to the description of the purely mechanical behavior of the constituents. The 

thermal effects had been incorporated in the second half of the 19th-century. 

Thus the basic background of porous media theory was developed by Woltman, 

Delesse, Darcy, Fick and Stefan. Apart from them a lot of scientists contributed to 

developing the porous media theory in 19th-century. The Scottish scientist William 

John Macquorn Rankine contributed to the evolution of thermodynamics. Rankine 

(1857) was involved in the field of soil mechanics. The work of Rudolf Julius Emanuel 

Clausius had important contribution to merge the continuum mechanics and 

thermodynamics. A series of articles published between 1876 and 1878 by Josiah 

Willard Gibbs, who used thermodynamical methods to interpret chemo-physical 

phenomena. Gibbs is not only be considered as the father of vector calculus but, 

together with Hermann Ludwig Ferdinand von Helmholtz, he established the entire field 

of physical chemistry which is also part of modern porous media approaches.  

In 1911, Gustav Jaumann worked on continuum mechanics of the complex system and 

included the “Jaumaan derivative” which is still in use in various plasticity approaches. 

Based on previous work of Gibbs, he was the first who used the tensor calculus 

extensively which was called dyade calculations. He is known as the pioneer of 

continuum mechanics and mixture theories as the bearing pillar of the modern theory of 

Porous Media.  

At the end of 19th-century, the basic theory of porous media was developed to treat 

empty and saturated porous solids and it is established in 20th-century with the 
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contributions of many scientists. Now the geotechnical problems seek the attention of 

geotechnical experts like Terzaghi and Biot in this field. In 1912, Civil engineer Karl 

von Terzaghi visited dam construction sites in the USA because of his deep interest in 

geotechnical problems. Though he was aware of the complexity of soil as a binary 

medium of solid grains and water, but he was not an expert in the theoretical description 

of porous-media problems. However, Terzaghi, an engineer always tried to combine 

theory and practice. Thus, Terzaghi‟s work led to scientific oppositions.  

In 1913, P. Fillunger published a scientific article on buoyancy forces in gravity dams, 

where he considered the problem as a binary medium of two interacting continua, soil 

and water. From this point of view, Fillunger can be regarded as the pioneer of the 

modern Theory of Porous Media. However, there is a tragedy of Fillunger‟s work, 

which his buoyancy equation included a mistake by presenting the buoyancy force as a 

linear function of the difference between the volume and the surface porosity. This 

mistake was recognized by Terzaghi, which was supported by a scientific commission 

of the Technical University of Vienna, who concluded that Fillunger was wrong (Boer 

(2004)). 

The geotechnically-based porous media work of Fillunger‟s and Terzaghi‟s have been 

continued by a lot of scientists, namely Belgian-American applied physicist Maurice 

Anthony Biot, the Austrian Gerhard Heinrich etc. This dissociation of the porous-media 

society is, by the way, still active. While the procedure of Terzaghi and Terzaghi and 

Fröhlich is, from a modern point of view, more or less unsatisfactory, Fillunger‟s 

approach is still modern, because he started with the balance equations of two 

overlaying constituents, soil and water, and treated this aggregate in the sense of a 

mixture with immiscible but interacting constituents. The research work of Biot (1935, 
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1941) are based on the basic ideas of Terzaghi‟s and his very famous works (1955, 

1956) are still highly cited by young researchers for basic materials to solve the porous 

media problems. Only Reint de Boer recovered these articles during his visits in Vienna 

in 1987 and later. The detailed review of the history of porous media theory can found 

in Boer and Ehlers (1988). 

The modern era of porous media theory was started in 1950 when US-American 

scientist Clifford Ambrose Truesdell III entered in this field by considering the work of 

Jaumann on continuum mechanics and recovered the continuum mechanics after 46 

years elapsed. However, in those days without powerful computers, researchers would 

prefer the simple numerical computational methods to handle the complex continuum-

mechanical equations. C. A. Truesdell originated the modern view on continuum 

mechanics and thermodynamics including mixture theories. His early work has attracted 

a variety of young researchers namely Richard Toupin, Walter Noll etc. His work with 

Toupin (1960) and Noll (1965) included in the famous book “Handbuch der Physik” 

which contained the complete continuum-mechanical knowledge. 

In 1957, C. Truesdell described a closed mixture system where the single component 

behaves like open system on the basis of his work where local balances of mass, 

momentum and energy for arbitrarily constituted mixtures are presented. 

However, in Truesdell‟s description of mixtures, there was no relation for a balance of 

moment of momentum for the mixture constituents. Moreover, an entropy inequality 

was also missing, although the entropy principle of Clausius was part of the description 

of standard single-phasic materials for a long time. Without raising their hypothesis to a 

principle, Truesdell and Toupin summarised that the entropy inequality of 
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heterogeneous media would basically be the same as that of a single-component 

medium. However, this assumption turned out to be wrong later. 

In 1964, Truesdell‟s mixture theory was generalized by Kelly (1964). He derived the 

balance equations for the multi-component system on the basis of so-called fundamental 

balance law and formulated angular-momentum balances for the components. Thus, the 

partial stress tensors of the components turned out to be non-symmetric, whereas the 

overall stress obtained from the partial stresses was symmetric. Due to the contribution 

of Kelly, the continuum-mechanical frame of mixtures was built apart from the 

formulation of a sound version of the entropy inequality. 

The inclusion of an angular-momentum production yielding non-symmetric partial 

stresses in the sense of the contributions made by Cosserat brothers between 1907 and 

1909, is somehow contradictory to the fact that the whole system has symmetric stresses 

in the sense of a standard Cauchy continuum.  

Based on Truesdell‟s mixture theory, Adkins (1963, 1964) and Green and Adkins 

(1964) developed purely mechanically motivated approaches for mixtures of fluids, and 

for a mixture of a single fluid and an elastic solid. Although these models have been 

subjected to certain invariance criteria obtained from the “principle of objectivity”, a 

thermodynamic investigation of the constitutive equations for mixtures was missing and 

had only been introduced to standard continua by Coleman and Noll (1963). 

In the research works of Eringen and Ingram (1965), and of Green and Naghdi (1965), 

the substantial theory of mixtures is used in the frame of thermodynamics. For this, it is 

necessary to transfer the entropy principle from single to heterogeneous media which 

was very difficult on those times. The basic procedure by Green and Naghdi in 

formulating only one single entropy inequality for the whole mixture proved to be right 
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which used as a basic for the general theory of mixtures. The assumption of Eringen and 

Ingram which states that each constituent of a mixture with different constituent 

temperatures is associated with an individual entropy inequality, which cannot be 

accepted from a modern point of view. In 1969, Bowen and Wiese (1969) pointed out 

that the theory of Green and Naghdi lacked the free-energy transport produced by the 

diffusion process. 

R. M. Bowen formulated his version of a mixture theory on the basis of so-called 

tensors of chemical potentials, thus extended the notion “chemical potential”, originally 

introduced by Gibbs as a scalar. The entropy inequality formulated by Bowen later was 

proved as the first fully correct version of an entropy inequality for mixtures. His work 

was criticized by Green and Naghdi with the argument that the introduction of tensors 

of chemical potentials instead of partial stresses would not lead to a basically different 

theory. It was seen that Bowen‟s entropy postulates were identical to Truesdell‟s result, 

especially the entropy inequality of mixtures which was called as Bowen-Truesdell 

form. 

Around 1970, the basis of a general “Theory of Mixtures” was found. The theory of 

mixture was given by Bowen (1976), based on which he published on incompressible 

and compressible porous media models, where he extended the “Theory of Mixtures” 

by the concept of volume fractions (Bowen (1980,1982)). 

With Bowen‟s articles, porous media theories were split into two directions, the first 

one following the Terzaghi-Biot line and the other one following Bowen‟s line which 

was based on the old ideas of Fillunger and  Heinrich. The works of Truesdell, Noll and 

Coleman led to some confusion when the components of the mixture were treated like 

standard first-grade materials. Later Müller (1968) stated that mixture components 
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always have to be treated as materials of second grade if one does not want to describe 

only simple mixtures. Although this concept is conductive, it leads to considerable 

confusion when complicated aggregates are investigated. To avoid this problem, 

Wolfgang Ehlers (1989) introduced the concept of phase separation. 

In the present time, the theory of porous media is applied to various branches of science 

and engineering like civil engineering, environmental engineering, geoscience, 

geomechanics, biology etc. In geoscience, it has applied to investigate the deformation 

and stability behavior of fully and partially fluid-saturated soil constructions, such as 

dikes, embankments, railroad dams, or foundation and settlement problems.   In 

mechanical engineering, this theory is applied when foamed materials and smart 

materials like electro-active polymers are taken under consideration. In biomechanics 

porous media play a dominant role because of the living tissues have more than 90% of 

fluids, interstitial fluid and blood, so to examine that this theory plays a dominant role. 

This theory is even very important to solve the complex coupled problems of different 

areas like solid mechanics, fluid mechanics, thermodynamics, computational 

mechanics, etc. 

1.4 Aquifer  

The term aquifer came from the Latin language where „aqua‟ means water and „fer‟ i.e., 

ferre which means to bear. The aquifer is a geological formation that contains water and 

allows a significant amount of water to move through it under ordinary field conditions. 

The impervious formation of aquifer called aquiclude which contains water but does not 

allow to move through it under ordinary field conditions, for example, a clay layer. A 
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semi-pervious formation is called aquitard (see Fig. 1.4) which allows the transmission 

of water at a very slow rate compared to the aquifer. 

 

Fig. 1.4 The different types of aquifers, taken from the site of CEGN 
(www.cgenarchive.org) 

 

However, over a large horizontal area, it may permit the passage of large amounts of 

water between adjacent aquifers, which are separated from each other and often known 

as a leaky formation. An aquifuge is an impervious formation that neither contains nor 

transmits water. 

1.5 Groundwater 

Water presents below the ground surface considered as groundwater. However, many 

scientists and engineers have their considerations, for example, the hydrologist uses the 

term groundwater for the water present in saturation zone and in the drainage of 

agriculture lands, the term groundwater is also used to denote the water in the partially 

saturated layers above the water table (see Fig. 1.5). 

http://www.cgenarchive.org/
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Fig. 1.5 The distribution of sub-surface water (Bear, 1992) 

 

1.6 Void Space/ Pore Space/ Pores/ Interstices/ Fissures 

The interstices of a rock can be grouped into two classes: original interstices, mainly in 

sedimentary and igneous rock, created by geological processes at the time the rock was 

formed, and secondary interstices, mainly in the form of fissures, joints and solution 

passages, developed after the rock was formed (see Fig. 1.6).  

 

Fig. 1.6 Diagram showing several types of Rock Interstices. (A) well-sorted 
sedimentary deposit having high porosity; (B) Poorly sorted sedimentary deposit having 
low porosity; (C) Well-sorted sedimentary deposit consisting of pebbles that are 
themselves porous, so that the deposit as a whole has a very high porosity; (D) Well-
sorted sedimentary deposit whose porosity has been diminished by the deposition of 
mineral matter in the interstices; (E) Rock rendered porous by solution; (F) Rock 
rendered porous by fracturing (Bear, 1972) 
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1.7 Porous 

If something full of tiny holes or openings through which fluids can pass easily is called 

porous, the sponge is an example of it. If the border between countries is open for 

everyone to cross easily, it is also called porous. When potters make a mug, they use 

special glazes to seal the porous clay, which otherwise would absorb the liquid when it 

will be put in the mug. So porous can describe any barrier that allows easy passage in 

and out.  

1.8 Porous Medium  

By a porous medium, we mean a material consisting of a solid matrix with an 

interconnected void. The skeleton portion of the material is often called the matrix or 

frame. It is supposed that the matrix is either rigid or it undergoes small deformation. A 

structure like foams is often also usefully analyzed using the concept of porous media. 

The interconnectedness of the void allows the flow of one or more fluids through the 

material. The solid phase should be distributed throughout the porous medium within 

the domain occupied by a porous medium. An essential characteristic of a porous 

medium is that the specific surface of the solid matrix is relatively high. In many cases, 

this characteristic dictates the behavior of fluids in porous media. Another feature of a 

porous medium is that the various openings comprising the void space are relatively 

narrow. At least some of the pores comprising the void space should be interconnected. 

The interconnected pore space is sometimes termed as the effective pore space. As far 

as flow through porous media is concerned, unconnected pores may be considered as 

part of the solid matrix. Certain portions of the interconnected pore space may be 

ineffective as far as flow through the medium is concerned. For example, pores or 
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channels with only a narrow single connection to the interconnected pore space, so that 

almost no flow occurs through them. Another way to define this porous medium 

characteristic is by requiring that any two points within the effective pore space may be 

connected by a curve that lies completely within it. Moreover, except for special cases, 

any two such points may be connected by many curves with an arbitrary maximal 

distance between any two of them. For a finite porous medium domain, this maximal 

distance is dictated by the domain‟s dimensions. In a natural porous medium, the 

distribution of pores with respect to shape and size is irregular. Examples of the natural 

porous medium are beach sand, sandstone, limestone, rye bread, soil (e.g., aquifers, 

petroleum reservoirs), wood and the human lung (see Fig. 1.7).  

 

Fig. 1.7 Examples of natural porous materials: (A) beach sand, (B) sandstone, (C) 
limestone, (D) rye bread, (E) wood, and (F) human lung. Bottom: Granular porous 
materials used in the construction industry, 0.5-cm-diameter Liapor spheres (left), and 
1-cm-size crushed limestone (right) (Nield and Bejan (2006)) 
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The human-made materials such as cement and ceramics can be treated as a porous 

medium. When the pore space is completely full of water, then it is saturated, but if it 

contains both water and air, then it is unsaturated media. A porous medium most often 

characterized by its porosity. 

1.9 Porosity 

The porosity of the medium is defined as the fraction of the total volume of the medium 

that is occupied by void space. For an isotropic medium, the surface porosity (i.e., the 

fraction of void area to total area of a typical cross-section) will normally be equal to 

porosity. In defining porosity, one has to assume that all the void spaces are connected. 

If one has to deal with a medium in which some of the pores is disconnected from the 

remainder, then it is needed to introduce an “effective porosity”, defined as the ratio of 

the connected void to the total volume. The value of porosity lies between 0 &1. For 

natural media, it does not normally exceed 0.6. For beds of solid spheres of uniform 

diameter, it can vary between the limit 0.2595 (rhombohedral packing) and 0.4764 

(cubic packing). For humanmade materials such as metallic foams, it can approach the 

value 1.  

1.10 Hydraulic Head 

Hydraulic head or piezometric head is the combination of pressure head and elevation 

head. It is a specific measurement of liquid pressure above a geodetic datum. The 

gradient of the head is the change in hydraulic head per length of the flow path and 

proportional to the discharge, appears in Darcy‟s law. Therefore, it also called Darcy 

slope. In an aquifer, hydraulic head determines where the groundwater will flow. 
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1.11  Transport Through Porous Media  

In science and engineering, transport through porous media is the manner in which 

transported species behave when transport through a porous medium. For example, 

when a fluid passes through a porous material, it is observed that some fluid flows 

through the media while some mass of the fluid is stored in the pores present in the 

media. Flow through porous media is a topic encountered in many branches of science 

and engineering, e.g., groundwater hydrology, reservoir engineering, soil science, soil 

mechanics, rock mechanics, acoustic, filtration, biology and biophysics, material 

science, chemical engineering, etc. On the pore scale, i.e., on a microscopic scale, the 

flow quantities will be clearly irregular. But in typical experiments, the quantities of 

interest are measured over areas that cross many pores, and such space-averaged 

(macroscopic) quantities change in a regular manner with respect to space and time, and 

hence are amenable to theoretical treatment.  

Flow through a porous structure is largely a question of distance, the distance between 

the problem solver and the actual flow structure. When the distance is short, the 

observer sees only one or two channels or one or two open or closed cavities. In this 

case, it is possible to use conventional fluid mechanics and convective heat transfer to 

describe what happens at every point of the fluid, and solid-filled spaces.  But when the 

distance is large, there are many channels and cavities in the problem solver field of 

vision, the complications of the flow paths rule out the conventional approach. As 

engineers focus more and more on designed porous media at decreasing pore scales, the 

problems tend to fall between the extremes noted above. In this intermediate range, the 

challenge is not only to describe coarse porous structures, but also to optimize flow 

https://en.wikipedia.org/wiki/Fluid_mechanics
https://en.wikipedia.org/wiki/Porous_medium
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elements and to assemble them. The resulting flow structures design the porous media 

(Nield and Bejan (2006)). 

The usual way of deriving the laws governing the macroscopic variables is, to begin 

with, the standard equations obeyed by the fluid and to obtain the macroscopic 

equations by averaging over volumes or areas containing many pores. There are two 

ways to do the averaging spatial and statistical. In the spatial approach, a macroscopic 

variable is defined as an appropriate mean over a sufficiently large representative 

elementary volume (r.e.v). This operation yields the value of that variable at the 

centroid of that volume. In the statistical approach, the averaging is over an ensemble of 

possible pore structures that are macroscopically equivalent. A difficulty is that usually 

the statistical information about the ensemble has to be based on a single sample, and 

this is possible only if statistical homogeneity (stationarity) is assumed. If one is 

concerned only with deriving relationships between the space-averaged quantities and is 

not concerned about their fluctuation, then the results obtained by using the two 

approaches are essentially the same. Thus in this situation, one might as well use the 

simpler approach, namely the one based on the r.e.v.  

1.12  Governing Law 

The basic law governing the flow of fluids through porous media is Darcy’s Law which 

was formulated by the French civil engineer Henry Darcy in 1856 on the basis of his 

experiments on vertical water filtration through sand beds (see Fig. 1.8). From the 

experiments, he concluded that the flow rate is proportional to the applied pressure 

difference. It has been derived from the Navier–Stokes equations through 

homogenization. It is similar to Fourier's law in the field of heat conduction, Ohm's 

https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://en.wikipedia.org/wiki/Homogenization_(mathematics)
https://en.wikipedia.org/wiki/Fourier%27s_law
https://en.wikipedia.org/wiki/Heat_conduction
https://en.wikipedia.org/wiki/Ohm%27s_law
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law in the field of electrical networks, or Fick's law in diffusion theory. It is refined by 

Morris Muskat for single-phase flow and given as  

,
)(

L

ppA
Q ab



 
       (1.4) 

where Q (m3/s) is the total discharge, κ (m2) is the intrinsic permeability of the medium, 

A (m2) is the cross-sectional area to flow,  ab pp   (pascals) is the total pressure drop, μ 

(Pa·s) is the viscosity, and L (m) is the length over which the pressure drop is taking 

place. The negative sign is needed because fluid flows from high pressure to low 

pressure. 

 
Fig. 1.8 Darcy‟s experiment (Bear (1972)) 

Dividing both sides of the equation (1.4) by the area, we get  

,pq 



       (1.5) 

https://en.wikipedia.org/wiki/Ohm%27s_law
https://en.wikipedia.org/wiki/Electrical_networks
https://en.wikipedia.org/wiki/Fick%27s_law
https://en.wikipedia.org/wiki/Diffusion
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where q is the flux (m/s) and 𝜵𝑝 is the pressure gradient vector (Pa/m). The value of 

flux, which is also known as Darcy flux or Darcy velocity, is not the velocity which the 

fluid travelling through the pores is experiencing. The fluid velocity (v) related to Darcy 

flux (q) by the porosity (φ) is  

,


q
v          (1.6) 

which means only a fraction of the total formation volume is available for flow. 

From Darcy‟s law, one can conclude that  

(i) In the absence of a pressure gradient over a distance, no flow occurs. 

(ii) If the pressure gradient is there, the flow will occur from high pressure towards 

low pressure. 

(iii) Due to the high-pressure gradient, the discharge rate is high. 

(iv) The discharge rate of fluid will often be different through different formation 

materials even if the same pressure gradient exists in both cases.  

(v) Darcy's law is valid only for laminar flow. Due to that, it can apply for 

groundwater flow.  Any flow with Reynolds number less than one is laminar, and 

it would be valid to apply Darcy's law. Experimental tests have shown that flow 

with Reynolds numbers up to 10 may still be Darcian, as in the case of 

groundwater flow. The Reynolds number for porous media flow is 

,Re 30



vd
          (1.7) 
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where ρ(m/V) is the density of water, v(L/t) is the specific discharge (not the pore 

velocity), d30(L) is a representative grain diameter for the porous media, and μ is the 

viscosity of the fluid. 

Darcy's law is used to analyze water flow through an aquifer and equivalent to the 

groundwater flow equation with conservation of mass principle. 

1.13 Additional Forms of Darcy’s law 

1.13.1 Darcy’s Law in Petroleum Engineering 

To determine the flow through permeable media, the most simple equation of one-

dimensional homogeneous rock formation with a single fluid phase and constant fluid 

viscosity is 

,













x
pA

Q



       (1.8) 

where Q is the flow rate of the formation (V/t), k is the permeability of the formation 

(typically in milidarcys), A is the cross-sectional area of the formation, μ is the viscosity 

of the fluid (centipoise), ∂p/∂x represents the pressure change per unit length of the 

formation. This equation can also be solved for permeability and is used to measure it, 

forcing a fluid of known viscosity through a core of a known length and area, and 

measuring the pressure drop across the length of the core. 

Approximately all oil reservoirs have a water zone below the oil leg, but few of them 

also have a gas cap above the oil leg. A simultaneous flow and immiscible mixing of all 

fluid phases in the oil zone occur due to the reservoir pressure drops. To improve oil 

production, operator of the oil field may also inject water (and/or gas). The petroleum 

https://en.wikipedia.org/wiki/Aquifer
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industry is, therefore, using a generalized Darcy equation for a multiphase flow that was 

developed by Morris Muskat, an American petroleum engineer. 

1.13.2 Darcy – Forchheimer Law 

To analyze the non-linear behavior of the pressure difference vs. flow data, an 

additional inertial term is added to Darcy's equation, known as the Forchheimer term.  

,2

1

qq
x
p













      (1.9) 

where the additional term 1  is called inertial permeability.  

The gas flows into a gas production well, the irregular surface of the fracture walls, and 

high flow rate in the fractures may be high enough to justify the use of Forchheimer's 

equation.  

1.13.3 Darcy's Law for Gases in Fine Media (Knudsen Diffusion or Klinkenberg 

Effect)  

For gas flow in small characteristic dimensions, giving rise to additional wall friction 

(Knudsen friction). For a flow in this region, where both viscous and Knudsen friction 

is present, Knudsen presented an equation, given as  

,
1

2 L

pp

TR
D

pp
N ab

g

eff
K

ba 















   (1.10) 

where N is the molar flux, Rg is the gas constant, T is the temperature, eff
KD is the 

effective Knudsen diffusivity of the porous media. The model can also be derived from 

the first-principal-based binary friction model (BFM). The differential equation of 

transition flow in porous media based on BFM is given as 

https://en.wikipedia.org/wiki/Morris_Muskat
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    (1.11) 

Above equation is valid for capillaries and porous media.  This Knudsen effect and 

Knudsen diffusivity are useful in mechanical, chemical, geological, and petrochemical 

engineering. Using the definition of molar flux, the above equation can be re-written as 

.
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D
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
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
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






    (1.12) 

1.13.4 Darcy's Law for Short Time Scales  

Similar to a modified form of Fourier‟s law in Heat transfer, an additional term, i.e., the 

time derivative of the flux may be added to Darcy's law for very short time scales, 

which gives valid solutions at very small times, which is defined through the following 

equation: 

,hq
t
q





     (1.13) 

where τ is a very small time constant. The main reason for doing this is that the regular 

groundwater flow equations have singularities at constant head boundaries at very small 

times which lead to a hyperbolic groundwater flow equation, which is more difficult to 

solve and is only useful for an infinitesimal time. 

1.13.5 Brinkman Form of Darcy's Law  

Brinkman introduced an additional term in 1949 to figure out transitional flow between 

boundaries,  

,2 pqq 



      (1.14) 
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where β is an effective viscosity term. When the grains of the media are porous, this 

additional term is encountered. Since it is difficult to use, so it is generally neglected. 

1.14  Mathematical Modeling 

The declination of groundwater has increased research interests in the field of solute 

transport in natural or artificial porous media (Bear (1972); Vafai (2005)), since most of 

the structure through which groundwater moves is porous type structure. The areas 

where some works have already been done are the contamination of water by substances 

of many kinds and the study of the behavior of compounds into the porous domain. 

The pollutant creates a contaminant plume within an aquifer which spreads over a wide 

area due to dispersion and movement of water. The movement of the plume called a 

plume front, can be analyzed through a transport model, called the solute transport 

model. Mathematical modeling of solute transport in groundwater is an important area 

of research, where a number of powerful techniques are used to solve the existing 

problems on contamination. Many mathematical models for solute transport in 

groundwater were presented by a number of engineers and scientists like Fried (1975), 

Bear and Verruijt (1987) and Javendal et al. (1984), Raj et al. (2002), Kumar et al. 

(2003), etc. The research article of Rai (2004) contains discussions on the role of 

mathematical modeling in groundwater resources management. Hydrologists, civil 

engineers and researchers have especially used groundwater modeling for the analyses 

of the resource potential and prediction of future impact on the environment under 

different conditions. Many experiments and theoretical studies are already done to 

predict the movement and behavior of the solute in the groundwater system. Many 

engineers and scientists are involved in doing their best to solve these types of serious 
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issues. Anderson and Woessner (1992) described the applied groundwater models, 

simulation of flow and advective transport in their monograph. In 2000, Charbeneau 

(2000) explained the groundwater hydraulics and pollutant transport in his book. Kebew 

(2001) explained the applied chemical hydrology in the year 2001. In 2005, Rausch et 

al. (2005) described the modeling of solute transport and also provided an analytical 

solution. Solute transport modeling is helpful to predict the solute concentration in 

aquifers, rivers, lakes and streams too. All these investigations concern about possible 

contamination of the subsurface environment and have enhanced the research of solute 

transport phenomena in porous media.  

The general solute transport model is the reaction-advection-dispersion equation 

(RADE) since it has the combined effects of advection, dispersion and reaction 

processes due to which solutes are transported down with the stream along the flow also 

get dispersed and sometimes react with the medium through which it moves. 

Mathematically it is represented as 

    ,.. Rvccd
t
c




     (1.15) 

where c describes the species concentration for mass transfer problem and temperature 

for heat transfer problem, d is the mass diffusivity for particle motion and thermal 

diffusivity for heat transfer, v is the average velocity and for flows in porous media v is 

the superficial velocity, R is the reaction term for the species c. 

Here the first term on the right-hand side of the equation (1.15) is accounting for 

dispersion phenomena, the second term accounting for the advection process and the 
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last one is the reaction kinetics. When the solute does not react with the medium 

through which it moves and does not show any type of radioactive decay then it is 

called conservative system otherwise non-conservative for which reaction term has been 

encountered in above model.  If only diffusion process is responsible for the movement 

of solute, then it is known as diffusion equation and is given as 

 ... cd
t
c





    (1.16) 

If the transport of solute in an aquifer due to the combined effects of advection and 

dispersion then it is described by advection-dispersion equation (ADE), which is 

mathematically represented by 

   ... vccd
t
c




    (1.17) 

ADE is a deterministic equation which is parabolic in nature. If the transport of solute in 

an aquifer is due to the combined effects of reaction and dispersion, then it is described 

by reaction-dispersion equation (RDE), which is mathematically represented by 

  .. Rcd
t
c




     (1.18) 

For the constant parameters of transport with respect to position and time, ADE is linear 

and provides explicit closed-form solution. A solution of the equation yields the solute 

concentration as a function of time and distance from contamination source. The 

equations are ultimately solved using the data of the groundwater velocity, coefficients 

of dispersion, the rate of chemical reactions, the initial concentration of solutes in the 

aquifer and boundary conditions along with the physical boundaries of the groundwater 

flow system. RADEs have broad applications in different areas such as medical science, 
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mechanical engineering, environmental engineering, petroleum engineering, chemical 

engineering, heat transfer, soil sciences, as well as in biology.  

1.14.1 Dispersion  

The first term on the right-hand side of the equation (1.15) denotes the dispersion 

phenomena due to the spreading of the solute plume. It is composed of both mechanical 

dispersion and molecular diffusion which cannot be distinguished on the Darcy scale. 

1.14.1.1 Mechanical Dispersion 

In the case of flow through porous media, the solute containing water is not moving at 

the same velocity as that of water. As a result, additional mixing occurs along the flow 

path. This additional mixing is called mechanical dispersion. Or we can say, true 

velocities at points in the aquifer will differ from this average value, in both magnitude 

and direction. Local variations in ground-water velocity may not greatly affect the bulk 

movement of groundwater, but they do control the fate of solute particles. It describes 

the mixing and spreading of solutes along and transverse to the direction of flow in 

response to local variations in interstitial fluid velocities. On a microscopic scale it 

results from (i) the distribution of velocities within an individual pore due to friction 

effects along the surface of soil grains, (ii) difference in size of pores, (iii) difference in 

path length for individual solute particles, and (iv) the effect of converging and 

diverging flow paths (Wexler (1992)). On a macroscopic scale, it results from local 

variations in hydraulic conductivity, and thus fluid velocity, owing to the heterogeneity 

of aquifer material. It is described by Fick‟s first law. The mixing that occurs in the 

direction of flow is called longitudinal dispersion and spreading normally to the 

direction of flow is called transverse dispersion. 
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1.14.1.2 Molecular Diffusion 

The term Diffusion comes from the Latin language which means “to spread out”. 

Diffusion is a fundamental process result from the random collision of solute molecules 

and produces a flux of solute particles from areas of higher to lower solute 

concentration (Bear, 1979). Bear and Bachmat (1967) state that the coefficients of 

molecular diffusion in an isotropic medium are dependent on the diffusion coefficient of 

the particular solute in water and tortuosity of the medium. Rates of molecular diffusion 

are independent of ground-water velocity, and diffusion occurs even in the absence of 

fluid movement. Typically not as large as mechanical dispersion.  

To see this process easily, one can do a simple experiment. A flask may be taken with 

full of clear water where water at rest, when a drop of ink is added in top of the flask in 

such a way that no convection current is set up then in starting it can be seen that a clear 

boundary between the ink and water but as the time passes it is seen that the ink gets 

faint towards the bottom, i.e., from area of higher to lower concentration and after some 

time the whole water will have the same colour (see Fig. 1.9). It is due to the spreading 

of ink molecules throughout the water by the process of diffusion. This spreading of 

molecules cannot be seen through natural way, but through a microscope, an individual 

molecule of ink can be seen. From where the movement of the individual molecule due 

to its kinetic energy and collision with the other molecules of ink and water are 

observed. Another interesting example is if someone uses the perfume then the nearby 

person can smell it due to the diffusion process. 
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Fig. 1.9 Example of the diffusion process 

 

1.14.1.3 Derivation of Dispersion Equation 

According to Fick‟s first law, the dispersion coefficient is the proportionality constant 

between the molar flux and the concentration gradient and is given by 

,
x
C

DF



      (1.19) 

where F is the mass flux of solute per unit area per unit time, C is the solute 

concentration, x is the spatial coordinate measured normal to the section and D is the 

dispersion coefficient. Here a negative sign indicates that the dispersion occurs in the 

opposite direction of increasing concentration. This dispersion coefficient is sometimes 

taken as constant for example in dilute solutions, while in other cases it depends on 

concentration for example in high polymers. 

The fundamental differential equation of dispersion in an isotropic medium is derived 

from equation (1.19) as follows following the geometry is given in Fig. 1.10: 

Solutes entering into the control volume in the x-direction, y-direction, and z-direction 

due to dispersion are given by ,dydzFx ,dzdxFy and ,dxdyFz  respectively. 
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Fig. 1.10 Elementary control volume 

Solutes out from the control volume in the x-direction, y-direction, and z-direction due 

to dispersion are ,dydzdx
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Similarly, net fluxes in the y-direction and z-direction are given by ,dxdydz
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
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The total net flux of the representative elementary volume due to dispersion is 
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The rate of change of mass is the representative elementary volume is  

.dxdydz
t
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     (1.21) 
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As per the law of conservation of mass, 
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Now, substituting the value of yx FF , and zF according to the equation (1.19), we get 
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which is the classical dispersion equation. 

1.14.2 Advection 

Advective transport describes the bulk movement of solute particles along the mean 

direction of fluid flow at a rate equal to the average interstitial fluid velocity. In a 

saturated medium, this velocity can be calculated from Darcy‟s law as 

,
dx
dhk

v


      (1.24) 

where v is the average fluid velocity, k is the permeability of the porous medium,   is 

the effect1ive porosity and dh/dx is the gradient of the pressure head.  

1.14.2.1 Derivation of Advection Equation 

The amount of solute transported by the advection process is a function of the quantity 

of fluid flowing and the concentration of solute in the fluid. Therefore, the mass flux 

due to advection in x-direction, y-direction, and z-direction are ,CvF xx  ,CvF yy   

and ,CvF zz  respectively. 

The total net flux of the representative elementary volume due to advection is 
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The rate of change of mass is the representative elementary volume is  
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As per the law of conservation of mass, 
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Now, substituting the value of ,, yx FF  and zF , we get 
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which is the classical advection equation. For the homogeneous aquifer, v is constant 

then the above equation can be written as 

.



























z
C

v
y
C

v
x
C

v
t
C

zyx     (1.29) 

1.14.3 Derivation of Reaction-Advection-Dispersion Equation 

The total mass of solute transported per unit cross-sectional area due to advection and 

dispersion in the x-direction is 

  ./ xxxxx DCvdydzdydzDCdydzvF     (1.30) 

Similarly, the total mass of solute transported per unit cross-sectional area due to 

advection and dispersion in the y-direction is 

  ./ yyyyy DCvdzdxdzdxDCdzdxvF     (1.31) 

Similarly, the total mass of solute transported per unit cross-sectional area due to 

advection and dispersion in the z-direction is 
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  ./ zzzzz DCvdxdydxdyDCdxdyvF     (1.32) 

The total net flux of the representative elementary volume due to advection is 

.dxdydz
z

F

y

F

x

F zyx
























     (1.33) 

The rate of change of mass is the representative elementary volume given by  
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As per the law of conservation of mass, 
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Now, putting the value of ,, yx FF and zF in the equation (1.35), we get 
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This is the classical advection-dispersion equation for the conservative solute in porous 

media. The conservative solute means that the solute does not interact with the porous 

medium or it does not undergo biological or radioactive decay. For a non-conservative 

solute, one more term be added in the last equation known as the reaction term and the 

above equation 
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 (1.37) 

where R denotes the reaction term and this equation is known as reaction-advection-

dispersion equation. 
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1.15 Volume Averaging Method 

Multiphase systems dominate nearly every area of science and technology, and the 

method of volume averaging provides a rigorous foundation for the analysis of these 

systems. The development is based on classical continuum physics, and it provides both 

the spatially smoothed equations and a method of predicting the effective transport 

coefficients that appear in those equations. The method of volume averaging is 

rigorously used to model the solute transport in porous media. Stephen Whitaker and his 

co-workers have done great work in this field, the details of which can be found in the 

monograph by Whitaker (1999) entitled “The Method of Volume averaging”. The other 

numerical methods to correlate the macroscopic transport coefficients to the 

microstructure using the closure formulations can be found in Plumb and Whitaker 

(1988a,b); Quintard and Whitaker (1967, 1994a,b,c, 2000); Wood et al. (2003) . The 

solute transport problems in homogeneous porous media using the single-equation and 

two-equation approaches have been given by Caillabet et al. (2001); Quintard and 

Whitaker (1993); Quintard et al. (1997), Quintard et al. (2001). 

1.16  Special Functions 

In this section, some definitions of special functions are given which are normally used 

in fractional calculus as well as in the subsequent chapters during numerical 

computation. 

1.16.1 Gamma Function 

The Euler‟s Gamma function is the generalization of n! by )1(  n which allows n to 

take non-integer value as well as complex value (Kilbas et al. (2006)). It is given as  
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  dxzxxez     (1.38) 

Gamma function follows the following reduction formula  

).()1( zzz      (1.39) 

1.16.2 Mittag-Leffler Function 

In 1903, Mittag-Leffler defined a function )(zE which is the generalization of the 

exponential function and one parameter function. It is known as a Mittag-Leffler 

function of the first kind and is given by 
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The Mittag-Leffler function of the second-kind )(, zE  (Kilbas et al. (2006)) which is a 

two parameters function is given by 
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For ,1  

).()( 1, zEzE        (1.42) 

1.16.3 Celling Function 

In 1962, this function was introduced by Kenneth E. Iverson in his book titled “A 

Programming Language”. The celling function of real number x maps x to the least 

positive integer greater than or equal to x and is denoted by 

   ,Zmin xnnx      (1.43) 

where Z denotes the set of integers.    

   



 
 

Chapter 1: Introduction 
 

43 

 

1.16.4 Generalized Hypergeometric Function 

A generalized hypergeometric function );,...,;,...,( 11 xbbaaF qpqp  can be defined by 

convergent generalized hypergeometric series, in which ratio of successive coefficients 

indexed by n  is a rational function of n  for example   
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The function );;,(12 xcbaF  is the first hypergeometric function to be studied and known as 

the hypergeometric function. 

1.16.5 Hypergeometric Function 

It is a special type of function which is represented by the hypergeometric series. It is a 

solution of a second-order linear ordinary differential equation with regular singular 

points at the origin. It is defined for 1z  as 
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where n)(  is the Pochhammer symbol defined by 
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It is undefined if c  equals a non-positive integer and the series terminates if either a  or 

b  is a non-positive integer.  

1.17  Fractional Calculus 

Fractional calculus is as old as integer order calculus in which the order of 

differentiation and integration can be any real or complex number instead of only 

integer order. The birth year of fractional calculus is considered as 300 years back at the 
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end of 17th-century with the letter exchange between G. de L‟Hospital and G. W. 

Leibniz. In 1695, G. W. Leibniz wrote a letter to L‟Hospital in which he raised the 

following question: “Can the meaning of derivatives with integer order be generalized 

to derivatives with non-integer orders?” L‟Hospital was interested about that question 

and replied by another question to Leibniz: “What if the order will be ½”? In a reply 

dated September 30, 1695, the exact birth date of fractional calculus, Leibniz wrote: “It 

will lead to a paradox, from which one-day useful consequences will be drawn”. The 

question raised by L‟Hospital has been the topic of research for more than 300 years. 

From 1695 to till date more than 300 years are gone in which a lot of works have been 

done in that field by many renowned mathematicians like Leonhard Euler, Lagrange, 

Laplace, S.F. Lacroix, J. Fourier, N.H. Abel,  J. Liouville,  O. Heaviside, B. Riemann, 

H. Weyl, G. Leibniz, A. K. Grunwald and A.V. Letnikov. 

Furthermore, it leads to a new branch of mathematics, namely fractional calculus 

(Miller and Ross (1993)), in which only fractional order differentiation and integration 

are considered in starting. But nowadays, arbitrary real and complex numbers can be 

considered as an order of differentiation and integration (Kilbas (2006)). 

From the end of 17th-century to 18th-century, no work has been found in this field in 

literature. Leonhard Euler and Joseph Fourier mentioned about the derivative of 

arbitrary order, but they did not consider it in their further work. In the second decade of 

the 19th-century, S. F. Lacroix defined the derivative of arbitrary order in 1819 using 

Gamma function as 
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In 1822, Joseph Fourier expressed the function f(x) in integral form as  
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Using the last expression, he found 
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Fourier stated that the number   that appears in the above would be regarded as any 

quantity whatsoever, positive or negative.   

In the monograph of B. Ross (1975) titled “Fractional Calculus and Its Applications”, it 

is mentioned that, in 1823, Niels Henrik Abel used the fractional derivative during the 

solution of an integral equation arising infamous Tautochrone problem. In 1832, J. 

Liouville was first to give the definition of a fractional derivative and he defined the 

fractional derivative of the special class of functions which can be expanded in the 

series form. In 1844, G. Boole developed the symbolic method for solving linear 

differential equations with constant coefficient using fractional calculus. In 1847, 

Bernhard Riemann was the first who proposed the definition of fractional integration as 
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where )(x is the Riemann‟s complementary function. 

In 1869, Riemann-Liouville definition of fractional derivative appeared in the work of 

Sonin (1869) using Cauchy integral formula. In 1893, the fractional derivative was used 
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in electromagnetic theory by Oliver Heaviside and he developed the generalized 

operator in his work. In 1917, H. Weyl and G.H. Hardy studied some properties of 

fractional differentiation and integration. But the work in the field of fractional calculus 

accelerated in the second half of the 20th-century. In June 1974, B. Ross organized the 

first conference on fractional calculus and its application at the University of New 

Haven after his Ph.D. dissertation on fractional calculus and after that lot of research 

articles have been published in this field. The second conference on this field organized 

in 1984, where some open questions were raised by eminent mathematicians. After the 

book “An Introduction to the Fractional Calculus and Fractional Differential Equations” 

by K. S. Miller and B. Ross (1993) and the book “Fractional Differential Equations” by 

Igor Podlubny (1999), this field seeks the attention of a lot of researchers from a 

different background. These books with the books “Application of Fractional Calculus 

in Physics” by Hilfer (2000), “The Analysis of Fractional Differential Equation” by 

Diethelm (2004), “Theory and Application of Fractional Differential Equation” by 

Kilbas et al. (2006) are tremendously popularised the fractional calculus in different 

fields of science and engineering like Electromagnetics, Robotics and Controls, 

Acoustics, Viscoelasticity, Electrochemistry, Biology, Signal and Image Processing, 

Fluid Dynamics etc. It is noticed that many physical phenomena are greatly described 

by the theory of fractional calculus. The integer order differential operator is a local 

operator whereas fractional order differential operator is a non-local operator in the 

sense that it takes into account the fact that the future state not only depends upon the 

present state but also upon all the history of its previous states. Therefore, it leads to 

model many natural phenomena containing long memory for example atmospheric 

diffusion of pollution, cellular diffusion process, network traffic, dynamics of a visco-
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elastic material, electronics etc. All these systems have non-local dynamics which 

cannot be modeled correctly with classical calculus theory. So, fractional calculus plays 

an important role during the modeling of these systems. Also, a fractional derivative of 

a function depends on the values of the function over the entire interval due to which it 

is suitable for modeling of the systems with long-range interactions both in space and 

time. Fractional differential equation greatly describes the anomalous phenomena in 

nature and in a complex system such as transport in porous media and provides an 

excellent instrument for the description of memory and inherent properties of various 

materials and processes.  

In last few decades, many researchers applied the fractional calculus in different areas 

of science and engineering. In biology and bio-engineering, fractional calculus plays an 

important role to design artificial biological equipment, describing the complexity of 

cells and tissues and also encoding the multi-scale pattern of muscle fibers and nerve 

fibers. The book “Fractional Calculus in Bioengineering” by R. Magin (2006) shows the 

various applications of fractional calculus in the field of bioengineering. In the field of 

viscoelasticity, the application of fractional calculus can be seen in the research articles 

of G.W. Scoot Blair (1947), A. N. Gerasimov (1948), A. Gemant (1950), R. L. Bagley 

and P. J. Torvik (1984) and many others. The recent book of F. Mainardi (2010) 

describes the role of fractional calculus in the field of viscoelasticity in more details. In 

the field of control theory, the work by A. Oustaloup (1983) has a great contribution. In 

the field of electrical engineering, fractional calculus gave more flexibility for circuits 

modeling which can be found in the work of A. Le Mehaute and G. Crepy (1983). With 

the application of fractional calculus, T. Hartley et al. (1995) gave the Hartley-Chua 
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circuit of the system whose order less than three that exhibits chaos behavior. In 

modeling of nonlinear electrical circuits, Ivo Petras (2010) applied the fractional 

calculus and presented a fractional order memristor-based Chua‟s equation where he 

showed that the system with total order less than three, i.e., less than the number of 

differential equations exhibits chaos. In the field of transport phenomena, the time 

fractional order diffusion-wave equation is one of the models that greatly describes the 

anomalous phenomena such as diffusion through disordered media like porous media, 

amorphous through fractals, percolation clusters etc. It represents the fractional 

diffusion equation if the order of time fractional derivative lies between 0 to 1 and 

fractional wave equation if the order of time fractional lies between 1 and 2. R. W. 

Schneider and W. Wyss (1986) converted the diffusion-wave equation into the integro-

differential equation and derived the corresponding Green functions in the form of Fox 

function. Y. Fujita (1990) gave the existence and uniqueness of the solution of the 

space-time fractional diffusion equation. F. Mainardi (1996) obtained the analytical 

solution for the fractional diffusion-wave equation in one space dimension. To see the 

more work in the field of fractional calculus we can see the research works of Caputo 

(1967), Caputo and Mainardi (1971), Heaviside (1971), Oldham and Spanier (1974), 

Mainardi (1996, 1997), Gorenflo and Mainradi (2000), Carpinteri et al. (2004), Debnath 

(2003, 2004), Machado et al. (2011) and many others.  

1.18 Some Important Definitions of Fractional Derivative and Integral 

In Fractional calculus, time to time many definitions of fractional derivative and 

integration are given by many renowned researchers out of them Riemann-Liouville and 

Caputo fractional definitions are mostly used nowadays compared to other definitions.  
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1.18.1 Reimann-Liouville Integral  

Let )(xf be a locally integrable function then the Reimann-Liouville integral of 

fractional order 0  is defined by  
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where ,ax  ,, xa and )(  is gamma function. 

1.18.2 Some Properties of Reimann-Liouville Integral Operator 
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1.18.3 Caputo Fractional Derivative  

It is introduced by M. Caputo in the year 1967 as  
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where ax  ,0  and .,,,  nRxa   It is a fractional derivative of order .  

1.18.4 Some Properties of Caputo Fractional Derivative  

(i) Linearity: It follows the linearity property as integer order differentiation as 

),()())()(( 2121 xgDaxfDaxgaxfaD       
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where 
1a and

2a are constants. 

(ii) ,0aD
 where a is a constant. 

(iii) 
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where the function    is used to denote the ceiling function, i.e., the smallest 

integer greater than or equal to  . Also  ....,2,1,00 N  
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1.19  Spectral Methods 

In literature, lot of methods viz., finite difference method, finite element method, finite 

volume method, integral equation method, implicit method, explicit method, multigrid 

method, spectral method, meshfree method etc. are encountered to solve the linear/non-

linear standard as well as fractional order partial differential equations (PDEs) 

numerically. Among those spectral methods have a sharp edge over all the methods due 

to its exponential rate of convergence, easy to implement, and have excellent accuracy 

during the solution of integral and differential equations in the finite or infinite domain. 

Spectral methods were developed in a long series of papers by Steven Orszag starting in 

1969. In this method the solution of the problem is given as a sum of some basis 

functions like orthogonal functions (Legendre polynomial, Jacobi polynomial, 

Chebyshev polynomial etc.) and then to choose the coefficients; in such a way that the 

error between the exact solution and approximate solution will be minimized. Spectral 

methods and finite element methods are closely related and built on the same ideas. The 

main difference between them is that the basis functions used in spectral methods are 
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non-zero over the whole domain, while the basis functions used in finite element 

methods are nonzero only on small sub-domains. Spectral methods are computationally 

less expensive than finite element methods. In other words, spectral methods take on 

a global approach while finite element methods use a local approach. Partially for this 

reason, spectral methods have excellent error properties, with the so-called "exponential 

convergence" being the fastest possible when the solution is smooth. The 

implementation of the spectral method is normally accomplished either 

with collocation (Guo et al. (2012); Bhrawy (2014, 2016)) or a Galerkin (Shields et al. 

(2017); Chung et al. (2017); Rad and Parand (2017); Doha et al. (2011)) or a Tau 

approach (Bhrawy et al. (2016); Saadatmandi and Dehgan (2011)). Operational matrix 

approach with these spectral methods reduces the numerical calculation and save much 

time. For this reason, the operational matrices for differentiation and integration are 

found. The operational matrices for different orthogonal polynomials can be found in 

the literature (Bhrawy (2015, 2016); Saadatmandi and Dehgan (2010, 2011); Bhrawy et 

al. (2016); Doha et al. (2011, 2012); Saadatmandi et al. (2012)). Out of these spectral 

methods, spectral collocation method is widely used to solve standard as well as 

fractional order PDEs because of its easy applicability and high accuracy. In spectral 

collocation method, collocation points play a significant role because the convergence 

of the method depends on it. This method is also useful to provide the highly accurate 

solutions for nonlinear partial differential equations (NPDEs) even using a small 

number of grids.  

1.20  Orthogonal Polynomials 

The orthogonal polynomials are the most important polynomials which are frequently 

used in numerical analysis. 
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1.20.1 Chebyshev Polynomials of the First-Kind 

The Chebyshev polynomial )(xTn of the first-kind of a degree n  in x defined on the 

interval [-1, 1] is given by         

),coscos()( 1 xnxTn
     (1.53) 

where cosx and ],0[    (Mason (1993); Mason and Handscomb (2003)). The 

polynomials )(xTn  are orthogonal on [-1, 1] with respect to the inner products 
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where 
21

1

x
 is weight function. )(xTn  may be generated by using the recurrence 

relations 

),()(2)( 21 xTxxTxT nnn    ,........;3,2n    (1.55) 

with ,1)(0 xT .)(1 xxT   

1.20.2 Chebyshev Polynomials of the Second-Kind 

The Chebyshev polynomial )(xUn of the second-kind of degree n in x defined on the 

interval [-1, 1] as                  

,
sin

)1sin(
)(






n
xUn     (1.56) 

where cosx and ],0[    (Mason (1993), Mason and Handscomb (2003)). The 

polynomials )(xUn  are orthogonal on [-1, 1] with respect to the inner products as 


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where 21 x  is weight function. )(xU n  may be generated by using the recurrence 

relations 

,........;3,2),()(2)( 21   nxUxxUxU nnn   (1.58) 

with       .2)(,1)( 10 xxUxU   

 The explicit form of the second-kind Chebyshev polynomials )(xUn of degree n is 

given by 

 

,)2()1()( 2
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p
n x
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




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

 
    .0n    (1.59) 

Using Gamma function, the above equation can be re-written as 

 

,
)12()1(

)1(
2)1()( 22
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p
n x

pnp
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xU 

 


  ,0n   (1.60) 

where  2/n  denotes an integral part of n/2. 

1.20.3 Legendre Polynomials 

The classical Legendre polynomials are defined on  and given by the following 

recurrence relation 

),(
1

)(
1
12

)( 11 zL
p

p
zzL

p
p

zL ppp 






  ,,...2,1p   (1.61) 

with 1)(0 zL and .)(1 zzL   

1.20.4 Jacobi Polynomials 

The classical Jacobi polynomials are represented by 
),( 

iP over the interval ]1,1[  where 

1,1   , and i denotes the degree of the polynomial and can be defined by 

hypergeometric function as 
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or 

.
2

1
)1(

)1(
)1()1(

)1(
)(

0

),(
ji

j
i

z
j

ji
j

i

ii
i

zP 






 
















 

 







  
(1.63)

 

It can be generated from the following recurrence relation
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It forms a class of orthogonal polynomials with respect to the weight function 

 )1()1()(),( zzzw  over the interval ]1,1[  , i.e., 
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   (1.65) 

where ij  
is the Kronecker function and  
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Some properties of the Jacobi polynomials 
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1.21 Shifted Orthogonal Polynomials 

The classical orthogonal polynomials discussed above are defined in the interval ]1,1[  

and to define these polynomials in any arbitrary interval like ],,[ ba  we make this 

arbitrary interval ],[ ba  corresponding to the interval ]1,1[  with the help of the 

transformation as  

,
)(2

ab
bax




     (1.67) 

where ].,[ bax  These newly defined polynomials are called shifted orthogonal 

polynomials. 

1.22 Linear/Non-linear Partial Differential Equation 

A differential equation is said to be a PDE in which unknowns are the function of two 

or more independent variables. If the domain of the problems contains the space and 

time variables both as independent variables, then the PDE defined in this domain is 

known as evolution equation whereas if the domain contains only space variable as an 

independent variable, then the PDE define in this domain is known as equilibrium or 

steady-state equation.  

A PDE is said to be linear if the unknowns and its derivatives involved in the equation 

are linear as well as the coefficients present in the equation depend on independent 

variables only not to unknown. In another way, if the PDE satisfies the law of 

superposition and law of homogeneity, then it called linear otherwise non-linear. 
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1.22.1 Law of Superposition 

It states that for different inputs x and y in the domain of the function f, 

).()()( yfxfyxf      (1.68) 

1.22.2 Law of Homogeneity 

It states that for a given input x in the domain of the function f and any real number k,  

).()( xkfkxf       (1.69) 

1.23 Fractional Differential Equations 

Fractional differential equations are the generalization of differential equations with the 

use of fractional calculus. Those are considered as superset as it contains integer order 

differential equations and has more potential to describe the natural phenomena 

accurately which cannot be done with integer order differential equations. In literature, 

a number of books and research articles are present where different definitions and 

applications of fractional differential equations are given. In the book “An Introduction 

to the Fractional Calculus and Fractional Differential equations” by Miller and Ross 

(1993), the fractional differential equation is defined as  

  ,0)(... 021
21   tyDbDbDbD r

m
rrr mmm   (1.70) 

where 021 ,...,,, rrrr mmm   be the sequence of strictly decreasing non-negative integers 

and mbbbb ,...,,, 321  are the constants. But due to the complexity of this equation some 

conditions are imposed as let ir  be the rational number and if q is the least common 

multiple of all the denominators of non-zero ir , we can re-write equation (1.70) as 
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   ,0)(... 0)2(
2

)1(
1   tyDaDaDaD m

vnvnnv  where 0t and ./1 qv    (1.71) 

This equation is known as fractional order linear differential equation with constant 

coefficients of orders ).,( qn  For ,1q  the equation will be converted into a standard 

order differential equation. In the monograph of Kilbas et al. (2006), they have 

excellently explained the applications of fractional order differential equations and up-

to-date development of fractional differential and fractional integro-differential 

equations.    

1.24 Applications of Fractional Differential Equations 

Nowadays, no field of science and engineering are available where the fractional 

differential equation is not applicable. In present time these can be seen in the fields like 

Anomalous Transport, Solid Mechanics, Bioengineering, Continuum and Statistical 

Mechanics, Electric Transmission, Ultrasonic Wave Propagation in Human Cancellous 

bone, Fluid Dynamic, Economics, Non-linear Oscillation of Earthquakes, Colored 

Noise, Speech Signals, Cardiac Tissue Electrode Interface, Viscoelasticity, Material 

Science, Electromagnetic Theory, Control Theory and Dynamical system, Optics and 

Signal Processing, Astrophysics, Geology, Bio-Science, Probability and Statistics, 

Chemical physics, Solute Transport in porous type structure and so on (Kilbas et al. 

(2006); Dalir and Bashour (2010); Baillie (1996); He (1998, 1999); Magin (2004); 

Mainardi (1997); Mandelbrot (1967); Metzler and Klafter (2004)). In all these areas, 

microscopic behaviors are very complex and the physical phenomena show strange 

kinetics which cannot be modeled by the classical differential equation for that 

fractional differential explain their macroscopic dynamics. The fractional order form of 

the law of conservation of mass is described in the research article of Wheatcraft and 
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Meerschaert (2008) in which they explained that the fractional conservation of mass 

equation is needed to model fluid flow when the control volume is not large enough 

compared to the scale of heterogeneity and when the flux within the control volume is 

non-linear.  The fractional order form of groundwater flow problem can be seen in the 

work of Atangana et al. (2013, 2014) in which they generalized the classical Darcy law 

by taking the water flow as a function of a non-integer derivative of the piezometric 

head. Benson et al. (2000a, 2000b, 2001) have explained that the fractional order form 

of advection-dispersion equation is useful for contaminant flow in heterogeneous 

porous media. Atangana and Kilicman (2014) extended it to variable order fractional 

advection-dispersion equation which shows that the extended form is more reliable to 

explain the movement of solute in the deformable aquifer. To explain the anomalous 

diffusion in complex media time-space fractional diffusion models have been 

considered by Metzler and Klafter (2000), Mainardi et al. (2001), Das (2009 a, 2009b), 

Das and Kumar (2011), Das et al. (2011), Vishal and Das (2012), Vishal et al. (2013), 

where time derivative term is corresponding to long-time heavy tail decay and the 

spatial derivative for diffusion nonlocality. A simple extension of this model to variable 

order can be found in the research articles of Gorenflo and Mainardi (2003) and 

Atangana et al. (2014). 


