L	JS	T (OF	FI	GU	JR	ES

Figure No.	Figure Caption	Page No.
Figure 2.1	The chemical structure of Piroxicam	10
Figure 3.1	Experimental rat	22
Figure 3.2(a)	STEP 1- Focal cerebral ischemia was induced by	
	middle cerebral artery occlusion (MCAo)	
Figure 3.2(b)	STEP 2- Focal cerebral ischemia was induced by	23
	middle cerebral artery occlusion (MCAo)	
Figure 3.2(c)	STEP 3- Focal cerebral ischemia was induced by	24
	middle cerebral artery occlusion (MCAo)	
Figure 3.3	Surgical procedures	24
Figure 3.4(a)	Neurological deficit score was found at 10mg/kg dose of	26
	Piroxicam (* vs control & ** vs stroke)	
Figure 3.4(b)	Representative TTC stains brain sections	27
Figure 3.4(c)	Effect of different doses of piroxicam on cerebral infarct	28
	volume of rat following 1/24hr I/R injury	
	(* vs control & ** vs stroke)	
Figure 3.5	Coronal sections of rat brain (2mm thick each)	29
Figure 3.6	Infarct volume calculation by Image J software	30
Figure 3.7(a)	Neurological deficit score was found at 30 min pre-treatment	31
	(* vs control & ** vs stroke)	
Figure 3.7(b)	TTC stained 2 mm coronal rat brain sections of Control, Stroke	e 32
	and Piroxicam (10 mg/kg b.w) treated with 1/24 h I/R injury	

Figure 3.7(c)	gure 3.7(c) Infarct volume was found at 30 min pre-treatment		
	(* vs control & ** vs stroke)		
Figure 3.8	Experimental rat groups on rota rod test	35	
Figure 3.9	Values are mean \pm SEM. Each groups consist of 8 rats	36	
Figure 4.1	EEG signal recording accessories and data acquisition system	41	
Figure 4.2(a)	Control rat brain EEG waveforms of Frontoparietal, Occipital	43	
	and Temporal region		
Figure 4.2(b)	Power Spectrum Density of Control rat brain EEG signal	43	
Figure 4.3(a)	Stroke rat brain EEG waveforms of Frontoparietal, Occipital	44	
	and Temporal region		
Figure 4.3(b)	Power Spectrum Density of Stroke rat brain EEG signal	44	
Figure 4.4(a)	Drug induced rat brain EEG waveforms of Frontoparietal,	45	
	Occipital and Temporal region		
Figure 4.4(b)	Power Spectrum Density of drug induced rat brain EEG signal	45	
Figure 4.5	Graph of PSD values of Frontoparietal region vs different	46	
	rhythms expressed as mean \pm SD		
Figure 4.6	Graph of PSD values of Occipital region vs different rhythms	47	
	expressed as mean \pm SD		
Figure 4.7	Graph of PSD values of Temporal region vs different rhythms	48	
	expressed as mean \pm SD		
Figure 4.8	Graph of recovery of different rat brain regions after drug	49	
	administration		
Figure 4.9	Graph of PSD values of Frontoparietal region vs different	54	

	rhythms expressed as mean \pm SD	
Figure 4.10	Graph of PSD values of Occipital region vs different rhythms	55
	expressed as mean \pm SD	
Figure 4.11	Graph of PSD values of Temporal region vs different rhythms	56
	expressed as mean \pm SD	
Figure 4.12(a)	Lyapunov Exponents of control rat brain EEG from	59
	fronto-parietal region	
Figure 4.12(b)	Lyapunov Exponents of Stroke rat brain EEG from	60
	fronto-parietal region	
Figure 4.12(c)	Lyapunov Exponents of drug induced rat brain EEG from	61
	fronto-parietal region	
Figure 4.13(a)	Lyapunov Exponents of control rat brain EEG from	62
	occipital region	
Figure 4.13(b)	Lyapunov Exponents of stroke rat brain EEG from	63
	occipital region	
Figure 4.13(c)	Lyapunov Exponents of drug induced rat brain EEG from	64
	occipital region	
Figure 4.14(a)	Lyapunov Exponents of control rat brain EEG from	65
	temporal region	
Figure 4.14(b)	Lyapunov Exponents of stroke rat brain EEG from	66
	temporal region	
Figure 4.14(c)	Lyapunov Exponents of drug induced rat brain EEG from	67
	temporal region	

Figure 4.15	Correlation dimension of frontoparietal region rat brain EEG signal	70
Figure 4.16	Correlation dimension of occipital region rat brain EEG signal	71
Figure 4.17	Correlation dimension of temporal region rat brain EEG signal	72
Figure 4.18(a)	Autocorrelation Dimension of frontoparietal region	75
	control rat brain EEG signal	
Figure 4.18(b)	Autocorrelation Dimension of frontoparietal region	76
	stroke rat brain EEG signal	
Figure 4.18(c)	Autocorrelation Dimension of frontoparietal region	77
	drug induced rat brain EEG signal	
Figure 4.19(a)	Autocorrelation Dimension of occipital region	78
	control rat brain EEG signal	
Figure 4.19(b)	Autocorrelation Dimension of occipital region	79
	stroke rat brain EEG signal	
Figure 4.19(c)	Autocorrelation Dimension of occipital region	80
	drug induced rat brain EEG signal	
Figure 4.20(a)	Autocorrelation Dimension of temporal region	81
	control rat brain EEG signal	
Figure 4.20(b)	Autocorrelation Dimension of temporal region	82
	stroke rat brain EEG signal	
Figure 4.20(c)	Autocorrelation Dimension of temporal region	83
	drug induced rat brain EEG signal	
Figure 4.20(d)	Extraction of DWT Coefficients via convolution	86
Figure 4.20(e)	Wavelet decomposition steps	86

Figure 4.20(f)	Hierarchical decomposition of signal s	87
Figure 4.20(g)	Snapshot of wavemenu GUI	89
Figure 4.21(a)	Discrete wavelet transformation of frontoparietal region	90
	control rat brain EEG signal	
Figure 4.21(b)	Histogram of wavelet coefficients (d1-d4) of frontoparietal region	91
	control rat brain EEG signal	
Figure 4.21(c)	Histogram of wavelet approximation (a4) of frontoparietal region	91
	control rat brain EEG signal	
Figure 4.22(a)	Discrete wavelet transformation of frontoparietal region	92
	stroke rat brain EEG signal	
Figure 4.22(b)	Histogram of wavelet coefficients (d1-d4) of frontoparietal region	93
	stroke rat brain EEG signal	
Figure 4.22(c)	Histogram of wavelet approximation (a4) of frontoparietal region	93
	stroke rat brain EEG signal	
Figure 4.23(a)	Discrete wavelet transformation of frontoparietal region	94
	drug induced rat brain EEG signal	
Figure 4.23(b)	Histogram of wavelet coefficients (d1-d4) of frontoparietal region	95
	drug induced rat brain EEG signal	
Figure 4.23(c)	Histogram of wavelet approximation (a4) of frontoparietal region	95
	drug induced rat brain EEG signal	
Figure 4.24(a)	Discrete wavelet transformation of occipital region	96
	control rat brain EEG signal	
Figure 4.24(b)	Histogram of wavelet coefficients (d1-d4) of occipital region	97

control rat brain EEG signal

Figure 4.24(c)	Histogram of wavelet approximation (a4) of occipital region	97
	control rat brain EEG signal	
Figure 4.25(a)	Discrete wavelet transformation of occipital region	98
	stroke rat brain EEG signal	
Figure 4.25(b)	Histogram of wavelet coefficients (d1-d4) of occipital region	99
	stroke rat brain EEG signal	
Figure 4.25(c)	Histogram of wavelet approximation (a4) of occipital region	99
	stroke rat brain EEG signal	
Figure 4.26(a)	Discrete wavelet transformation of occipital region	100
	drug induced rat brain EEG signal	
Figure 4.26(b)	Histogram of wavelet coefficients (d1-d4) of occipital region	101
	drug induced rat brain EEG signal	
Figure 4.26(c)	Histogram of wavelet approximation (a4) of occipital region	101
	drug induced rat brain EEG signal	
Figure 4.27(a)	Discrete wavelet transformation of temporal region	102
	control rat brain EEG signal	
Figure 4.27(b)	Histogram of wavelet coefficients (d1-d4) of temporal region	103
	control rat brain EEG signal	
Figure 4.27(c)	Histogram of wavelet approximation (a4) of temporal region	103
	control rat brain EEG signal	
Figure 4.28(a)	Discrete wavelet transformation of temporal region	104
	stroke rat brain EEG signal	

Figure 4.28(b)	(b) Histogram of wavelet coefficients (d1-d4) of temporal region		
	stroke rat brain EEG signal		
Figure 4.28(c)	Histogram of wavelet approximation (a4) of temporal region	105	
	stroke rat brain EEG signal		
Figure 4.29(a)	Discrete wavelet transformation of temporal region	106	
	drug induced rat brain EEG signal		
Figure 4.29(b)	Histogram of wavelet coefficients (d1-d4) of temporal region	107	
	drug induced rat brain EEG signal		
Figure 4.29(c)	Histogram of wavelet approximation (a4) of temporal region	107	
	drug induced rat brain EEG signal		
Figure 4.30(a)	Neural network training phase	115	
Figure 4.30(b)	Performance plot of Neural network	116	
Figure 4.30(c)	Training state plot of Neural network	117	