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A striking feature of the solar cycle is that at the beginning, sunspots appear around midlatitudes, and
over time the latitudes of emergences migrate toward the equator. The maximum level of activity (e.g.,
sunspot number) varies from cycle to cycle. For strong cycles, the activity begins early and at higher
latitudes with wider sunspot distributions than for weak cycles. The activity and the width of sunspot belts
increase rapidly and begin to decline when the belts are still at high latitudes. Surprisingly, it has been
reported that in the late stages of the cycle the level of activity (sunspot number) as well as the widths and
centers of the butterfly wings all have the same statistical properties independent of how strong the cycle
was during its rise and maximum phases. We have modeled these features using a Babcock-Leighton type
dynamo model and show that the flux loss through magnetic buoyancy is an essential nonlinearity in the
solar dynamo. Our Letter shows that the nonlinearity is effective if the flux emergence becomes efficient at
the mean-field strength of the order of 104 G in the lower part of the convection zone.
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Solar activity, as measured, for example, by the number
of sunspots on the solar surface, takes place in 11-year
cycles. The strength of each cycle (e.g., the maximum
number of sunspots) varies from cycle to cycle. Strong and
weak cycles have systematic differences: compared to weak
cycles, strong cycles begin at higher latitudes, rise more
rapidly, reach their maxima earlier and consequently have a
longer decline phase [1]. This is known as the Waldmeier
effect which has also been confirmed in the reconstructed
solar activity data over millennial timescale [2]. A stronger
constraint is that all cycles behave in the same way toward
the end of the cycle ([3], hereafter CS16). This is illustrated
in Fig. 1, and we refer the reader to the work by Hathaway
[4] and CS16 for the observational analysis. The fact that
the cycles all have the same properties (amplitude, spatial
distribution) in the late phases of the cycle despite having
different amplitudes in the early phase of the cycle indicates
a nonlinearity acting as the cycle progresses. The non-
linearity is particularly important because during the late
phase of the cycle sunspots emerge closer to the equator
and hence contribute more to the buildup of the Sun’s polar
fields [5]. [The magnetic flux of the leading polarity of the
bipolar magnetic regions (BMRs) that emerge closer to the
equator gets easily carried across the equator by small-scale
convective motions. It is the cross-equatorial cancellation
of this flux that changes the net flux in each hemisphere
and the polar fields at the end of each cycle [6] ]. The
nonlinearity hence leads to the change in polar field from
one cycle to the next being only weakly dependent of the
cycle strength [7].

In recent years, Babcock-Leighton dynamo models
have explained many features of the irregular solar cycle
[9]. For example, Karak and Choudhuri [10] explained the
Waldmeier effect using a Babcock-Leighton type flux
transport dynamo model. More recently, Mandal et al.
[11] reproduced the basic correlations described above
using a Babcock-Leighton dynamo model. However, why
they were successful in this regard was not discussed. Here,
we shall employ a Babcock-Leighton type dynamo model
to explain the features reported by Waldmeier [12] and
CS16. We shall further show that in order to reproduce
these features, some constraints on the nonlinearity in terms
of the equipartition field strength and the variation of
meridional flow can be inferred.
For our Letter, we use an updated version of the code

SURYA [13,14], which solves the following equations:

∂A
∂t

þ 1

s
ðvp · ∇ÞðsAÞ ¼ ηp

�
∇2 −

1

s2

�
Aþ αB; ð1Þ

∂B
∂t

þ 1

r

�
∂ðrvrBÞ

∂r
þ ∂ðvθBÞ

∂θ

�

¼ ηt

�
∇2 −

1

s2

�
Bþ sðBp · ∇ÞΩþ 1

r
dηt
dr

∂ðrBÞ
∂r

; ð2Þ

where r is radial distance from the center of the Sun, θ is the
colatitude, Bðr; θÞ is the toroidal field, and Aðr; θÞ is the ϕ
component of the magnetic vector potential of the poloidal
magnetic field Bp, s ¼ r sin θ, vp ¼ vrr̂þ vθθ̂ is the
meridional circulation, Ωðr; θÞ is the local rotation rate,
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ηpðrÞ and ηtðrÞ are the turbulent diffusivities for the
poloidal and toroidal fields. The coefficient αðr; θÞ captures
the generation of the poloidal field near the solar surface
through the decay and dispersal of the tilted BMRs
(Babcock-Leighton process) in our axisymmetric model.
As the profiles of all parameters are given in many

publications (e.g., [10,14–17]), we discuss them in
Supplemental Material [18] except α and magnetic buoy-
ancy, which play important roles in the present Letter.
In the regular model, the α has the following form:

αðr; θÞ ¼ α0
4
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where α0 ¼ 30 ms−1.

In the Babcock-Leighton dynamo, generation of the
poloidal field involves some randomness, primarily due to
scatter around Joy’s law and the random flux emergences.
To capture these effects in our model, we include stochastic
noise in the above α by replacing α0 by α0½1þ σðt; τcorrÞ�,
where σðt; τcorrÞ is a random number drawn from a uniform
distribution in the range ½−1; 1� and τcorr is the coherence
time over which the value of α is constant. In all
simulations, τcorr ¼ 1 month (typical lifetime of sunspots).
With these parameters, the variations in the solar cycle
remain consistent with what is seen in the last 300 years.
We take the profile for meridional circulation to be of the

same functional form as in [14] with one change in the
parameters: we take ϵ ¼ 3 instead of ϵ ¼ 2 as given there.
This change makes the meridional circulation to increase
slightly at the lower latitudes and decrease at higher
latitudes compared to the previous profile [14]; see
Ref. [18] for details. With this slight modification in the
flow, the equatorward migration of the sunspot belt is in
better agreement with the observations.
Finally, we describe the only nonlinearity that has been

included in the model. The nonlinearity concerns the time
at which flux is assumed to emerge. Every 0.6 days, the
code checks the amplitude of the toroidal field at each grid
point above the base of the convection zone (BCZ). If the
value is above a to-be-described critical value (Bc) then it is
assumed that half of the flux emerges—its value at that grid
point is halved and this half is added to the toroidal field
near the surface at the same latitude. This is how the
sunspot eruptions are modeled and this mechanism ensures
that with each eruption a part of the toroidal flux from the
CZ is lost. When the threshold is met, the toroidal flux is
removed from the lower CZ so that it is no longer available
to emerge at lower latitudes. This flux loss associated with a
threshold is the only nonlinearity we have included. Such a
nonlinearity tends to make all cycles behave in the same
way during the late phases of the cycles because in the late
phase a lot of the toroidal flux associated with a strong
cycle has already been removed. It acts to saturate the
dynamo because emergences at high latitudes tend to be
ineffective in terms of changing the polar fields [5].
We now discuss the results of the dynamo simulation.

The latitudinal distribution of the surface radial field
for eight cycles from a long run of 40 cycles is shown
in Fig. 2(a). We observe that this plot resembles the basic
features of the solar cycle reasonably well [9,19]. We find
that when Bc ¼ 0.8 × 104 G, the strength of the radial field
on the surface is in agreement with the observed range [20]
and the subsurface flux loss through magnetic buoyancy
becomes consistent with the observed flux loss through
BMR emergences [21]. We use this value of Bc for the rest
of this Letter.
We compute the theoretical sunspot number by tracking

the latitudes of eruptions of the toroidal flux (where the
bottom field surpasses Bc) and with this number, we

FIG. 1. Illustration of the behavior of cycles of different
strengths. Upper panel: the three colored curves show the sunspot
number for cycles of weak (blue), moderate (green), and high
(red) levels of activity. The curves are based on the empirical
curve fitting of Hathaway et al. [8]. The sunspots appear in
butterfly wings, and the central latitude of the butterfly wings
drift toward the equator in a way which is independent of cycle
strength (black curve) [4]. Finally, the width of the butterfly
wings (light vertical lines) depends on the cycle strength early in
the cycle but is independent of the cycle strength late in the cycle
[3]. The properties of the butterfly diagram in the late phase of all
the cycles are the same, i.e., all cycles die in the same way
although they have different properties during the rise phase of
the cycle [3]. Lower panel: because all cycles drift toward the
equator in the same way, the central latitude of the butterfly wings
can be used as the independent variable rather than time from the
start of the cycle. The solid light lines indicate the width of the
butterfly wings as a function of latitude. The dashed light lines are
the upper limit for the width during the early phases of the cycle:
the width increases as the cycle progresses until it reaches this
level. Thereafter, the cycle begins to decline.
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perform the same analyses as done in CS16 for the
observed data. In Figs. 2(c) and 2(d), we show that the
latitudinal distribution of annual (model) sunspot emer-
gence can be approximated with a Gaussian distribution.
The solar cycle variations of the total annual sunspot
number and the width of sunspot distribution with the
central latitudes of distribution are shown in Fig. 3. These
behaviors largely agree with the observations (CS16).
We now explain these results based on the dynamo

theory. In our model, cycles vary in strength due to the
fluctuations introduced in the Babcock-Leighton α term.
Suppose for some time α is large in a cycle, then more
poloidal field will be produced in that cycle. The poloidal
field is sheared by the differential rotation to produce the
next cycle’s toroidal field (we note that the shear is
strongest at about 55° [22]). In our model, this toroidal
field emerges once a critical threshold is reached, and gives
rise to the (pseudo) sunspots on the solar surface. Hence, a
high value of α in a cycle produces a strong poloidal field.
This generates a strong toroidal field for the next cycle and
the eruption condition (B > Bc) is satisfied at earlier times
when the field is at high latitudes. This explains why, for a
strong cycle, sunspots start appearing at high latitudes and
the width of the latitude belt is large. On the other hand,
when a cycle is weak, the model takes a long time for the
toroidal field to satisfy the spot-eruption condition by that
time the meridional circulation drags the toroidal field
toward the low latitudes. Hence, in a weak cycle, the

sunspot belt begins at lower latitudes. The band of the
sunspot latitudes is also narrow when the toroidal field is
weak (as the spot eruption condition is satisfied only in a
narrow latitude band).
Now we consider the effect of the loss of toroidal flux

due to flux emergence [21]. Again we consider a strong
cycle for which emergence begins early in the cycle at high
latitudes. Each emergence reduces the subsurface toroidal
flux [21] so that a strong cycle which has many early flux
emergences rapidly loses toroidal flux until the subsurface
mean field strength is just above Bc. Thereafter the cycle
begins to decline and the toroidal flux is advected equator-
ward by the meridional flow while maintaining a strength
just above Bc. The decrease in the meridional flow as we
approach the equator will tend to increase the subsurface
field strength, but this will be compensated for by further
flux loss due to flux emergence.
On the other hand, in a weak cycle, there will be very few

eruptions early in the cycle, and the field strength will
simply build up as the flux is advected toward the
stagnation point at the equator. At some point, however,

(a)

(b)

(c) (d)

FIG. 2. A typical portion from our simulation. Latitudinal
distributions of (a) the surface radial field and (b) the toroidal
field at BCZ (the contour represents B ¼ Bc). (c) and (d) show
the annual latitudinal distributions of sunspots for the years 343
and 362, respectively, and the fitted Gaussian profiles (black
curves).

(a)

(b)

FIG. 3. (a) Model (pseudo) sunspot number for each year
(based on the number of flux emergences) as a function of the
central latitude of the Gaussian distribution. Different curves
correspond to different cycles. (b) Same as (a) but for the
distribution width (FWHM). Cycles begin at the left side of
the plots and migrate to the right as they evolve. Vertical lines
guide the average of the Gaussian-mean latitudes for strong (red),
moderate (blue), and weak (green) cycles at their peaks.
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the mean field will be comparable to Bc and the cycle will
enter its decline phase. During this phase, the situation is
entirely the same as for a strong cycle: the increase in the
field strength as the flux builds up near the stagnation point
is balanced by the loss of flux due to emergence, and the
mean field strength is kept around Bc. A nonlinear process
which causes flux emergence rates to be enhanced when the
mean field exceeds Bc can explain why all cycles decline in
the same way as is evident from the right part of the curves
in Fig. 3. The value of Bc ¼ 0.8 × 104 G was chosen so
that the model matches the observed range of the radial
magnetic field on the solar surface and the amount of flux
loss. Incidentally, this value is close to the equipartition
field strength at BCZ (∼104 G). Although we did not
choose the value of Bc keeping this in mind, it is interesting
to note that just by constraining our model parameters
through observations, we get a value of Bc, which is close
to the equipartition field strength. A nonlinearity is
expected because at this field strength the magnetic field
has an energy density comparable to the kinetic energy
density of the turbulent motions.
One quantitative discrepancy between our model pre-

sented in Fig. 3(b) with respect to the observations (CS16)
is that in the latter, we observe that as soon as the distance
between the center of the Gaussian and the equator is
roughly equal to the FWHM, all cycles begin to decay. The
width of the butterfly wings is substantially smaller in our
model; see Fig. 3(b). In this Letter, we have been interested
in investigating the role of flux loss in combination with a
threshold for the emergence of active regions. For this
purpose we have used a simple sharp threshold which
involves two parameters Bc and the fraction of flux which
emerges when an emergence takes place. A better match
with the observed widths might be possible if the flux
emergence recipe had more degrees of freedom, however,
the basic physical idea is captured with this simple thresh-
old. An additional possibility is that the butterfly wing
widths are broadened by convective buffeting of the rising
flux tubes before they reach the surface.
We have also checked the Waldmeier effect, i.e., WE1

and WE2 [18]. We find linear (Pearson) correlation
coefficients −0.30 and 0.51 for these two cases (Fig. 4).
Thus, the classical Waldmeier effect is also reproduced in
this simulation. Earlier, Karak and Choudhuri [10] showed
that fluctuations in meridional circulation are needed to
reproduce WE1. Our result differs from this because WE1
is a weak anticorrelation and is sensitive to the way in
which the data (and simulations) are treated. We find that a
weak anticorrelation in WE1 exists even without including
fluctuations in the meridional circulation. When fluctuation
in meridional circulation is introduced, it enhances this
anticorrelation. However, it leads to the model disagreeing
with the fact that the widths of the sunspot latitude bands of
all cycles are the same function of the central latitudes of
the sunspot bands (CS16; Fig. 3). Hence, observational

features of sunspot cycle [12] as analyzed in CS16 suggest
that there was no large variation in the deep meridional
circulation in the past 300 years.
In this Letter we have focused on explaining why all

cycles are statistically the same in their decay phase. The
dynamo simulation can be modified to include other effects
such as a time delay between the start of the rise of a flux
tube and when it emerges at the surface. This delay time can
be of the order of months [23]. Such a delay can affect the
properties of the dynamo cycles [24,25]. We show [18] that
the inclusion of such a delay in our model does not
substantially affect the conclusions of this Letter, although
it does have a weak effect on the latitudes at which the
emergences take place.
In conclusion, we have shown that the main features of

the latitudinal distribution of sunspots as reported in
Waldmeier [12] and CS16 are reproduced in a Babcock-
Leighton type flux transport dynamo model with stochastic
fluctuations in the poloidal field source. We find that a
constant equatorward flow near BCZ and a reduction of
toroidal field due to flux emergence are essential to
reproduce these results. Further, the critical strength of
the mean magnetic field for the flux emergence through
buoyancy is found to be of the order of 104 G. This is about
the equipartition value where the magnetic energy density
is equal to the kinetic energy density of the turbulent
convective motions.

(a)

(b)

FIG. 4. The scatter plots between the peak of sunspot cycle
(amplitude) and (a) the rise time and (b) the rise rate, i.e., WE1
and WE2, respectively.
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