LIST OF TABLES

Table No. Page No	•
Table 1.1 Comparison between Conventional Extruder and Continuous Extruder [Agrav (2002)]	wal et al.
Table 3.1: Material data for Pure Aluminum Rod for Continuous Extrusion simulations	40
Table 3.2: Chemical composition of Pure Aluminum Rod for Continuous Extrusion sin	nulations
40	
Table 3.3 Details of mesh elements for 8 mm diameter feedstock	42
Table 3.4: The results of simulation for 8 mm diameter Aluminum feedstock.	47
Table 3.5: Simulation parameters for 9.5 mm feedstock	50
Table 3.6: Details of mesh elements for 9.5mm diameter feedstock	50
Table 3.7: Simulation results in tabular form representing effect of feedstock tempe	rature in
Continuous Extrusion of Aluminum feedstock	60
Table 3.8 Simulation results in tabular form for 9.5 mm Aluminum feedstock	66
Table 3.9: Data for the numerical simulation of 12.5 mm Copper feedstock	66
Table 3.10: Mesh elements details for 12.5 mm diameter of Copper feedstock	67
Table 3.11: Results in tabular form for Simulation of 12.5 mm Copper feedstock	72
Table 3.12: Power consumption from initial entry to abutment chamber	103
Table 3.13: Power consumption inside the abutment die chamber	104
Table 3.14: Power consumption from initial entry to abutment chamber	105
Table 3.15: Power consumption inside the abutment die chamber	105
Table 3.16: Power consumption from initial entry to abutment chamber	106
Table 3.17: Power consumption inside the abutment die chamber	106
Table 3.18: Power consumption from initial entry to abutment chamber	107
Table 3.19: Power consumption inside the abutment die chamber	108
Table 3.20: Power consumption from initial entry to abutment chamber	109
Table 3.21: Power consumption inside the abutment die chamber	109
Table 3.22: Power consumption from initial entry to abutment chamber	110
Table 3.23: Power consumption inside the abutment die chamber	111
Table 3.24: Power consumption from initial entry to abutment chamber	112

Table 3.25: Power consumption inside the abutment die chamber	112
Table 3.26: Comparison of Analytical and Simulation Power required for extrusion of Alun	ninum
feedstock	113
Table 4.1: Chronological Development of Continuous Extrusion Setup at IIT (BHU)	116
Table 5.1: Specification of Commercial Setup (Setup 1)	144
Table 5.2: Specification of Design Developed and fabricated Setup (Setup 2)	144
Table 5.3: Composition of the feedstock used	147
Table 5.4: Results of experiments for Aluminum alloy	148
Table 5.5: Validation for Aluminum alloy	149
Table 5.6: Chemical Composition of the Copper feedstock used for extrusion experiments	150
Table 5.7: Results of experiments for Copper feedstock	151
Table 5.8: Validation of results for Copper feedstock	151
Table 5.9: Tensile test result of Aluminum samples	167
Table 5.10 Chemical composition of Pure Copper feedstock before and after extrusion	167
Table 5.11: Tensile test result of Copper samples	168
Table 5.12: Hardness test result of Aluminum alloy samples	171
Table 5.13: Hardness test result of Copper samples	172
Table 6.1: Experimental parameter and levels	190
Table 6.2: Experimental plan and result for Ultimate Tensile Strength based on C	entra
Composite second order rotatable design	191
Table 6.3: Test for significance of UTS	192
Table 6.4: Test result of ANOVA for UTS	192
Table 6.5: Test for significance of Hardness	196
Table 6.6: Experimental plan and result for Hardness based on Central Composite second	orde
rotatable design	197
Table 6.7: Test result of ANOVA for Hardness	198
Table 6.8: Experimental plan and result for Yield Strength based on Central Composite s	second
order rotatable design	202
Table 6.9: Test for significance of Yield Strength	203
Table 6.10: Test result of ANOVA for Yield Strength	203

Table 6.11: Test for significance of % Elongation	207
Table 6.12: Experimental plan and result % Elongation based on central composite	e second order
rotatable design	208
Table 6.13: Test result of ANOVA for % Elongation	209
Table 6.14: Experimental parameter and levels	214
Table 6.15: Experimental plan and result for Ultimate Tensile Strength base	ed on Central
Composite second order rotatable design	215
Table 6.16: Test for significance of UTS	216
Table 6.17: Test result of ANOVA for UTS	216
Table 6.18: Experimental plan and result for Hardness based on Central Composite	e second order
rotatable design	220
Table 6.19: Test for significance of Hardness	221
Table 6.20: Test result of ANOVA for Hardness	222
Table 6.21: Experimental plan and result for Yield Strength based on Central Con	nposite second
order rotatable design	225
Table 6.22: Test for significance of Yield Strength	226
Table 6.23: Test result of ANOVA for Yield Strength	227
Table 6.24: Test for significance of % Elongation	229
Table 6.25: Test result of ANOVA for % Elongation	230
Table 6.26: Experimental plan and result for % Elongation based on central com-	nposite second
order rotatable design	231
Table 6.27: Experimental parameter and levels	235
Table 6.28: Development of experimental plan design matrix based on CCD	237
Table 6.29: Experimental plan and result based on CCD	238
Table 6.30: Test of significance for Extrusion Load	240
Table 6.31: Test of ANOVA for Extrusion Load	241
Table 6.32: Test of significance for Torque required	245
Table 6.33: Test of ANOVA for Torque required	246
Table 6.34: Test of significance for Effective stress	250
Table 6.35: Test of ANOVA for Effective stress	251
Table 6.36: Test of significance for Damage value	255

Table 6.37: Test of ANOVA for Damage value	256
Table 6.38: Test of significance for Product Temperature	260
Table 6.39: Test of ANOVA for Product Temperature	261
Table 6.40: Results of comparison of R ² value for RSM and ANN	270
Table 6.41: RSM results for Aluminum and Copper feedstock	272
Table 7.1: RSM results for Aluminum and Copper feedstock	276