LIST OF FIGURES

Figure Number	Page No.
Figure 1.1: Schematic diagram of Continuous Extrusion process[Green et al. (1974)]	1
Figure 1.2: Principle of Continuous Extrusion process [Bridewater and Maddock, (1992])] 2
Figure 1.3: Schematic Diagram of Design Developed and Fabricated Continuous Extrus	ion
Setup for 9.5 mm Aluminum feedstock material	4
Figure 1.4: Radial extrusion [IR 1, (BWE Ltd, UK)]	6
Figure 1.4(a): Single groove radial	7
Figure 1.4(b):Twin groove radial	7
Figure 1.5: Tangential Extrusion process [IR 1, (BWE Ltd, UK)]	7
Figure 1.6: Pattern of Material flow in process of Extrusion [Lau and Stranger, 1981]	8
Figure 1.7: Extrusion defects (a) Internal cracking[Cocks and Ashby, 1980](b) Piping [7 (1994)] (c) Surface cracking [Lee et al., (1973)]	`ang et al., 11
Figure 1.8: Process variables in continuous extrusion process	11
Figure 3.1: Implementation of CAE process, [Fu et al. (2006)]	36
Figure 3.2: (a) and (b) FEA Simulation mesh model for 8mm diameter Aluminum feeds	tock 41
Figure 3.3: X-Load distribution for 8 mm Aluminum feedstock	42
Figure 3.4: Y-Load distribution for 8 mm Aluminum feedstock	43
Figure 3.5: Z Load distribution for 8 mm Aluminum feedstock	43
Figure 3.6: Effective stress distribution for 8 mm Aluminum feedstock	44
Figure 3.7: Effective strain distribution for 8 mm Aluminum feedstock	44
Figure 3.8: Damage distribution for 8 mm Aluminum feedstock	45
Figure 3.9: Temperature distribution for 8 mm Aluminum feedstock	45

viii

Figure 3.10: Velocity distribution for 8 mm Aluminum feedstock	46
Figure 3.11: Torque distribution for 8 mm Aluminum feedstock	46
Figure 3.12: X Load distribution for 9.5 mm Aluminum feedstock	51
Figure 3.13: Y Load distribution for 9.5 mm Aluminum feedstock	51
Figure 3.14: Z Load distribution for 9.5 mm Aluminum feedstock	52
Figure 3.15: Torque distribution for 9.5 mm Aluminum feedstock	52
Figure 3.16: Effective stress distribution for 9.5 mm Aluminum feedstock	53
Figure 3.17: Effective strain distribution for 9.5 mm Aluminum feedstock	53
Figure 3.18: Effective strain rate distribution for 9.5 mm Aluminum feedstock	54
Figure 3.19: Velocity distribution for 9.5 mm Aluminum feedstock	54
Figure 3.20: Damage distribution for 9.5 mm Aluminum feedstock	55
Figure 3.21: Temperature distribution for 9.5 mm Aluminum feedstock	55
Figure 3.22: Effective stress distribution at 100 °C for 9.5 mm Aluminum feedstock	56
Figure 3.23: Effective stress distribution at 300 °C for 9.5 mm Aluminum feedstock	56
Figure 3.24: Effective stress distribution at 700 °Cfor 9.5 mm Aluminum feedstock	57
Figure 3.25: Torque distribution at 100 °C for 9.5 mm Aluminum feedstock	58
Figure 3.26: Torque distribution at 300 °C for 9.5 mm Aluminum feedstock	58
Figure 3.27: Torque distribution at 700 °C for 9.5 mm Aluminum feedstock	59
Figure 3.28: Damage distribution at 100 °C for 9.5 mm Aluminum feedstock	60
Figure 3.29: Damage distribution at 300 °C for 9.5 mm Aluminum feedstock	61
Figure 3.30: Damage distribution at 700 °C for 9.5 mm Aluminum feedstock	61
Figure 3.31: Temperature distribution at 100 °C for 9.5 mm Aluminum feedstock	62
Figure 3.32: Temperature distribution at 300 °C for 9.5 mm Aluminum feedstock	63

ix

Figure 3.33: Temperature distribution at 700 °C for 9.5 mm Aluminum feedstock	63
Figure 3.34: Velocity distribution at 100 °C for 9.5 mm Aluminum feedstock	64
Figure 3.35: Velocity distribution at 300 °C for 9.5 mm Aluminum feedstock	65
Figure 3.36: Velocity distribution at 700 °C for 9.5 mm Aluminum feedstock	65
Figure 3.37: X-Load distribution for 12.5 mm Copper feedstock	67
Figure 3.38: Y-Load distribution for 12.5 mm Copper feedstock	68
Figure 3.39: Z-Load distribution for 12.5 mm Copper feedstock	68
Figure 3.40: Torque distribution for 12.5 mm Copper feedstock	69
Figure 3.41: Effective stress distribution for 12.5 mm Copper feedstock	69
Figure 3.42: Effective strain distribution for 12.5 mm Copper feedstock	70
Figure 3.43: Effective strain rate distribution for 12.5 mm Copper feedstock	70
Figure 3.44: Damage distribution for 12.5 mm Copper feedstock	71
Figure 3.45: Temperature distribution for 12.5 mm Copper feedstock	71
Figure 3.46: Velocity distribution for 12.5 mm Copper feedstock	72
Figure 3.47: Effect of die temperature on total Load for 9.5 mm Aluminum feedstock	73
Figure 3.48: Effect of die temperature on Torque required for 9.5 mm Aluminum feedstock	73
Figure 3.49: Effect of die temperature Effective stress for 9.5 mm Aluminum feedstock	74
Figure 3.50: Effect of die temperature on effective strains for 9.5 mm Aluminum feedstock	74
Figure 3.51: Effect of die temperature on Damage value for 9.5 mm Aluminum feedstock	75
Figure 3.52: Effect of die temperature on Product temperature for 9.5 mm Aluminum feedsto	ck75
Figure 3.53: Effect of die temperature on strain rate for 9.5 mm Aluminum feedstock	77
Figure 3.54: Effect of feedstock temperature on total Load for 9.5 mm Aluminum feedstock	77
Figure 3.55: Effect of feedstock temperature on Torque for 9.5 mm Aluminum feedstock	78

Figure 3.56: Effect of feedstock temperature on Effective stresses for 9.5 mm Aluminum feedstock 78

Figure 3.57: Effect of feedstock temperature on effective strains for 9.5 mm Aluminum	79
Figure 3.58: Effect of feedstock temperature on Damage value for 9.5 mm Aluminum	79
Figure 3.59: Effect of feedstock temperature on Product temperature for 9.5mm Aluminum	80
Figure 3.60: Effect of feedstock temperature on strain rate for 9.5 mm Aluminum feedstock	80
Figure 3.61: Effect of extrusion ratio on total Load for 9.5 mm Aluminum feedstock	83
Figure 3.62: Effect of extrusion ratio on Torque required for 9.5 mm Aluminum feedstock	83
Figure 3.63: Effect of extrusion ratio on Effective stresses for 9.5 mm Aluminum feedstock	84
Figure 3.64: Effect of extrusion ratio on effective strains for 9.5 mm Aluminum feedstock	84
Figure 3.65: Effect of extrusion ratio on Damage value for 9.5 mm Aluminum feedstock	85
Figure 3.66: Effect of extrusion ratio on Product temperature for 9.5 mm Aluminum feedstock	: 85
Figure 3.67: Effect of extrusion ratio on strain rate for 9.5 mm Aluminum feedstock	86
Figure 3.68: Effect of extrusion wheel velocity on total Load required for 9.5 mm Alumi feedstock	num 86
Figure 3.69: Effect of extrusion wheel velocity on Torque Load required for 9.5 mm Alumi feedstock	num 87
Figure 3.70: Effect of extrusion wheel velocity on Effective stresses for 9.5 mm Alumi feedstock	num 87
Figure 3.71: Effect of extrusion wheel velocity on effective strains for 9.5 mm Alumi feedstock	num 88
Figure 3.72: Effect of extrusion wheel velocity on Damage value for 9.5 mm Alumi Feedstock	num 88
Figure 3.73: Effect of extrusion wheel velocity on Product temperature for 9.5 mm Alumi	num

feedstock

89

xi

Figure 3.74: Effect of extrusion wheel velocity on strain rate for 9.5 mm Aluminum feedstock 89 Figure 3.75: Effect of wheel groove friction on total Load required for 9.5 mm Aluminum Feedstock 91

Figure 3.76: Effect of wheel groove friction on Torque required for 9.5 mm Aluminum Feedstock 91

Figure 3.77: Effect of wheel groove friction on effective stress for 9.5 mm Aluminum Feedstock 92

Figure 3.78: Effect of wheel groove friction on effective strains for 9.5 mm Aluminum Feedstock 92

Figure 3.79: Effect of wheel groove friction on Damage value for 9.5 mm Aluminum feedstock93

Figure 3.80: Effect of wheel groove friction on effective stress for 9.5 mm Aluminum feedstock93

Figure 3.81: Effect of wheel groove friction on strain rate for 9.5 mm Aluminum feedstock 95

Figure 3.82: Contact area and grip length in continuous extrusion process 97

Figure 3.83: Detail showing grip lengths

Figure 3.84: Extrusion grip length showing contact pressure 99

Figure 3.85: Graphical comparison of Analytical and Simulation power for Aluminum feedstock 113

Figure 4.1 : Virtual designed developed and fabricated Continuous Extrusion machine setup 116

Figure 4.2 : CAE model of Continuous Extrusion machine setup designed developed and

Fabricated

Figure 4.3: Continuous Extrusion machine setup for 8 mm Aluminum feedstock material 117

Figure 4.4: Modified Continuous Extrusion machine setup for 8 mm Aluminum feedstock material after several stages of modification 117

Figure 4.5: Designed Developed and Fabricated Continuous Extrusion machine setup for 9.5 mm Aluminum feedstock material.

98

116

Figure 4.6 : Extrusion Wheel with circular groove for 8 mm feedstock material	119
Figure 4.7 : Coining Wheel for 8 mm feedstock material	120
Figure 4.8: Grooved Extrusion shoe for 8 mm feedstock material	120
Figure 4.9: Extrusion die block for 8 mm feedstock Continuous Extrusion machine setup	121
Figure 4.10: Abutment before modification for 8 mm feedstock Continuous Extrusion m setup	achine 121
Figure 4.11: Additional gearbox incorporated for modification of 8 mm feedstock Cont Extrusion machine setup	inuous 123
Figure 4.12: A pair of spur gear for modification of 8mm feedstock Continuous Ex machine setup	trusion 123
Figure 4.13: Modified abutment for 8 mm feedstock Continuous Extrusion machine setup	124
Figure 4.14: Modified for 8 mm feedstock Continuous Extrusion machine setup	124
Figure 4.15: Modified Continuous Extrusion machine setup for 8 mm feedstock material	125
Figure 4.16: Material coming out of the abutment hole	125
Figure 4.17: Extrusion Wheel for 9.5 mm feedstock Continuous Extrusion machine setup	131
Figure 4.18: Coining Wheel for 9.5 mm feedstock Continuous Extrusion machine setup	131
Figure 4.19: Extrusion Shoe for 9.5 mm feedstock Continuous Extrusion machine setup	132
Figure 4.20: Abutment Die Chamber for 9.5 mm feedstock Continuous Extrusion setup	132
Figure 4.21: Extrusion Die for 9.5 mm feedstock Continuous Extrusion machine setup	133
Figure 4.22: Scraper for 9.5 mm feedstock Continuous Extrusion machine setup	133
Figure 4.23: Variable Frequency Drive for 9.5 mm feedstock Continuous Extrusion setup	134
Figure 4.24: Die Chamber heating arrangement device for 9.5 mm feedstock Cont	inuous
Extrusion setup	134

Figure 4.25: Design Developed and Fabricated Continuous Extrusion machine setup for 9.5	mm
feedstock material	135
Figure 4.26: Close view of Design Developed and Fabricated Continuous Extrusion mac setup for 9.5 mm feedstock material	chine 135
Figure 4.27: View of Gearbox coupled with Continuous Extrusion machine setup for 9.5 feedstock material	mm 136
Figure 4.28: Close view of Extrusion Wheel, Coining Wheel and Scraper of Contin Extrusion machine setup for 9.5 mm feedstock material	uous 136
Figure 4.29: View of Extruded material from Design Developed and Fabricated Contin Extrusion machine setup for 9.5 mm feedstock material	uous 137
Figure 4.30: Schematic Diagram of Design Developed and Fabricated Continuous Extrusion Setup for 9.5 mm Aluminum feedstock material	139
Figure 4.31 Sectional View of design developed and fabricated setup for 9.5 mm Aluminum feedstock	140
Figure 4.32: Table of parts of 2D model (schematic) of Continuous Extrusion setup Figure 4.33: All View of design developed and fabricated setup for 9.5 mm Aluminum	141
Feedstock	142
Figure 5.1: Commercial Continuous Extrusion machine setup 1 Figure 5.2: Fabricated Continuous Extrusion machine setup for 9.5 mm feedstock material	145 145
Figure 5.3: Extruded product of Copper alloy	146
Figure 5.4: Extruded product of Aluminum alloy	146
Figure 5.5: Extruded product of Aluminum alloy 6mm diameter at 6 rpm, extrusion ratio 2.5	147
Figure 5.6: Extruded product of Aluminum alloy of 6mm diameter at 6 rpm, extrusion ratio 148	1.84
Figure 5.7: Extruded product of 8mm diameter at 6 rpm, extrusion ratio 1.41	148
Figure 5.8: Pure Copper rod feedstock before extrusion of 12.5 mm diameter	150

xiv

Figure 5.9: Extruded Copper product of 6mm diameter at 6rpm, extrusion ratio 4.34	150
Figure 5.10: Extruded Copper rod of 7mm diameter at 6 rpm, extrusion ratio 3.18	150
Figure 5.11: Graphical comparison of experimental and simulation results for effect speed on total power required for Aluminum alloy	of wheel 152
Figure 5.12: Graphical comparison of experimental and simulation results for effect speed on total power required for Aluminum alloy	of wheel 152
Figure 5.13: Graphical comparison of experimental and simulation results for effect speed on total power required for Aluminum alloy	of wheel 153
Figure 5.14: Graphical comparison of experimental and simulation results for effect of ratio on total power required	extrusion 153
Figure 5.15: Graphical comparison of experimental and simulation results for effect speed on total power required for Copper alloy	of wheel 154
Figure 5.16: Microstructure samples of Aluminum rod before and after extrusion	155
Figure 5.17: Microstructure samples of Copper rod before and after extrusion	155
Figure 5.18: (a), (b), (c) Microstructures of Aluminum samples of 6mm size at 6 rpm 100x and 200x respectively	n at 50x, 158
Figure 5.19 : (a) and (b) Microstructures of Aluminum samples of 7mm size at 6rpr 100x and 200x respectively	n at 50x, 158
Figure 5.20 :(a), (b), (c) shows the microstructures of Aluminum samples of 8mm size at 50x, 100x and 200x respectively	e at 6rpm 159
Figure 5.21:(a), (b), (c) shows the microstructures of Aluminum samples of 6mm size a 50x, 100x and 200x respectively	t 8rpm at 159
Figure 5.22:(a),(b), (c) shows the microstructures of Aluminum samples of 7 mm size at 50x, 100x and 200x respectively	8 rpm at 159

Figure 5.23: (a), (b), (c) shows the microstructures of Aluminum samples of 8 mm size at 8 rpmat 50x, 100x and 200x respectively160
Figure 5.24: (a), (b), (c) shows the microstructures of Aluminum samples of 8 mm size at 10 rpm at 50x, 100x and 200x respectively 160
Figure 5.25: (a) and (b) shows the microstructures of Aluminum samples of raw feedstock of 9.5mm size at 6rpm at 50x and 100x respectively160
Figure 5.26: (a), (b), (c) shows the microstructures of Copper samples of 6mm size at 4rpm at 50x, 100x and 200x respectively 162
Figure 5.27: (a), (b), (c) shows the microstructures of Copper samples of 6mm size at 6 rpm at 50x, 100x and 200x respectively 162
Figure 5.28 : (a), (b), (c) shows the microstructures of Copper samples of 6 mm size at 8 rpm at 50x, 100x and 200x respectively 162
Figure 5.29: (a), (b), (c) shows the microstructures of Copper samples of 6 mm size at 10 rpm at 50x, 100x and 200x respectively 163
Figure 5.30: (a), (b), (c) shows the microstructures of Copper samples of 7 mm size at 4 rpm at 50x, 100x and 200x respectively 163
Figure 5.31: (a), (b), (c) shows the microstructures of Copper samples of 7mm size at 6 rpm at 50x, 100x and 200x respectively 163
Figure 5.32: (a), (b), (c) shows the microstructures of Copper samples of 7 mm size at 8 rpm at 50x, 100x and 200x respectively 164
Figure 5.33: (a),(b), (c) shows the microstructures of Copper samples of 7mm size at 10rpm at 50x, 100x and 200x respectively 164
Figure 5.34: (a),(b), (c) shows the microstructures of Copper samples of raw feedstock of 12.5 mm size at 50x, 100x and 200x respectively 164
Figure 5.35: Tensile sample Gauge Length = 15.6 mm, Gauge diameter =4.5 mm 165

xvi

Figure 5.36: Tensile sample for 7mm and 8mm extruded Aluminum rod Gauge length=15.6 mm,		
Gauge diamet	ter=4.5 mm	165
Figure 5.37: F	Fractured tensile test sample of extruded Aluminum alloy	166
Figure 5.38: 7	Tensile sample of extruded Copper rod (Gauge Length=15.6 mm, Gauge dian	neter
=4.5 mm)		169
Figure 5.39: F	Fractured tensile sample of extruded Copper rod	169
Figure 5.40: H	Hardness test sample of Aluminum alloy before and after extrusion	170
Figure 5.41:	Hardness test samples of Copper rod before and after extrusion	170
Figure 5.42:	Variation of Hardness with wheel velocity for Aluminum alloy	173
Figure 5.43:	Variation of Hardness with extrusion ratio for Aluminum alloy	173
Figure 5.44:	Variation of energy break with extrusion wheel velocity for Aluminum alloy	174
Figure 5.45:	Variation of Maximum strength with extrusion wheel velocity for Aluminum A	Alloy 174
Figure 5.46:	Variation of breaking Load with extrusion wheel velocity for Aluminum alloy	175
Figure 5.47:	Variation of % elongation with extrusion wheel velocity for Aluminum alloy	175
Figure 5.48:	Variation of% elongation with extrusion ratio for Aluminum alloy	176
Figure 5.49:	Variation of energy break with extrusion ratio for Aluminum alloy	177
Figure 5.50:	Variation of 0.2% Yield strength with extrusion ratio for Aluminum alloy	177
Figure 5.51:	Variation of energy break with extrusion ratio for Aluminum alloy	178
Figure 5.52:	Variation of maximum strength with extrusion ratio for Aluminum alloy	178
Figure 5.53:	Variation of 0.2% Yield strength with extrusion wheel velocity for Aluminum A	Alloy 179

Figure 5.54: Variation of Hardness with extrusion wheel velocity for Copper alloy 180

xvii

Figure 5.55:	Variation of maximum strength with extrusion wheel velocity for Copper alloy	180
Figure 5.56:	Variation of % elongation with extrusion wheel velocity for Copper alloy	181
Figure 5.57:	Variation of 0.2% yield strength with extrusion wheel velocity for Copper alloy	[,] 182
Figure 5.58:	Variation of breaking Load with extrusion wheel velocity for Copper alloy	182
Figure 5.59:	Variation of energy break with extrusion wheel velocity for Copper alloy	183
Figure 6.1: R	esidual plots for UTS	193
Figure 6.2: C	ontour plot of UTS with variation of wheel velocity and product diameter	194
Figure 6.3: S	urface plot of UTS with variation of wheel velocity and product diameter	194
Figure 6.4: O	ptimization plot for UTS with respect to wheel velocity and product diameter	195
Figure 6.5: R	esidual plots for Hardness	199
Figure 6.6: C	ontour plot of Hardness with variation of wheel velocity and product diameter	199
Figure 6.7: S	Surface plot of Hardness with variation in wheel velocity and product diameter	200
Figure 6.8: 0 200	Optimization plot for Hardness with respect to wheel velocity and product diar	neter
Figure 6.9: R	esidual plots for YIELD STRENGTH	204
Figure 6.10:	Contour plot of YS with variation in wheel velocity and product diameter	204
Figure 6.11:	Surface plot of YS with variation in wheel velocity and product diameter	205
Figure 6.12: diameter	Optimization plot for Yield strength with respect to wheel velocity and pro-	oduct 205
Figure 6.13:	Residual plots for % ELONGATION	210
Figure 6.14: 210	Contour plot of % Elongation with variation in wheel velocity and product diar	neter
Figure 6.15:	Surface plot of % Elongation with variation in wheel velocity and product diame	ter

Figure 6.16: Optimization plot for % Elongation with respect to wheel velocity and product diameter 211 217 Figure 6.17: Residual plots for UTS Figure 6.18: Contour plot for UTS 217 Figure 6.19: Contour plot for UTS 218 Figure 6.20: Optimization plot for UTS 218 Figure 6.21: Residual plots for Hardness 223 Figure 6.22: Contour plot for Hardness 223 Figure 6.23: Surface plot for Hardness 224 Figure 6.24: Optimization plot for Hardness 224 Figure 6.25: Residual plots for Yield Strength 227 Figure 6.26: Contour plot for Yield Strength 228 Figure 6.27: Surface plot for YS 228 Figure 6.28: Optimization plot for Yield Strength 229 Figure 6.29: Residual plots for % Elongation 232 Figure 6.30: Contour plot for % Elongation 232 Figure 6.31: Surface plot for % Elongation 233 Figure 6.32: Optimization plot for % Elongation 233 Figure 6.33: Residual plots for Load required 242 Figure 6.34: Surface plots for Load required 242 Figure 6.35: Contour plots for Load required 243 Figure 6.36: Optimization plot for Load required 243 Figure 6.37: Residual plots for Torque required 247 Figure 6.38: Surface plots for Torque required 247

Figure 6.39: Contour plots for Torque required	248
Figure 6.40: Optimization plot for Torque required	248
Figure 6.41: Residual plots for Effective stress	252
Figure 6.42: Surface plots for Effective stresses	252
Figure 6.43: Contour plots for Effective stresses	253
Figure 6.44: Optimization plot for Effective stresses	253
Figure 6.45: Residual plots for Damage value	257
Figure 6.46: Surface plots for Damage value	257
Figure 6.47: Contour plots for Damage value	258
Figure 6.48: Optimization plot for Damage value	258
Figure 6.49: Residual plots for Product temperature	262
Figure 6.50: Surface plots for Product temperature	262
Figure 6.51: Contour plots for Product temperature	263
Figure 6.52: Optimization plot for Product temperature	263
Figure 6.53: Training enoch evelos vs. calculated mean square error of the supervised tre	ining for

Figure 6.53: Training epoch cycles vs. calculated mean square error of the supervised training for the designed ANN 266

Figure 6.54: Correlation chart for experimental and predicted Load required for Continuous Extrusion 267

Figure 6.55: Best fitness plot showing the progressive performance (for Load required) of GA over generations till the achievement of optimum solution (upper plot).Variables (in lower plot) showing the level of wheel velocity, product diameter, friction condition, feedstock temperature and die temperature.