CONTENTS

Topic	Page No.
Chapter 1	
Introduction	
1.1 Introduction	1
1.2 Principle of Continuous Extrusion process	2
1.3 Important Metallurgical Considerations in Continuous Operation	3
1.4 Main Elements of the Continuous Extrusion Setup	4
1.5.1 Continuous Extrusion Press	5
1.5.2 The Extrusion Wheel	5
1.5.3 The Extrusion Shoe	5
1.5.4 Hydraulic Intensifiers	5
1.5.5 The Feed	6
1.5 Types of Continuous Extrusion Processes6	
1.5.1 Radial extrusion	6
1.6 Deformation of metal during the process of extrusion	8
1.7 Types of defects occurring during extrusion	9
(i) Internal Cracking:	9
(ii) Pipe	10
(iii) Surface Cracking	10
1.8 Analysis of the extrusion process	11
1.8.1 Slab method:	12
1.8.2 Uniform – deformation energy method	12
1.8.3 Slip line field theory	12
1.8.4 Upper and lower bound solutions	13
1.8.5 Finite element method	14
1.8.6 Physical modeling technique (PMT)	15

1.9 Role of computer simulation in analyzing extrusion process	16
1.10 Motivation behind the study	17
1.11 Objectives of this Study	17
1.12 Organization of the research work	17
Chapter 2	
Literature survey	
2.1 Introduction	22
2.2 Investigation made in the optimal design for conform process.	22
2.3 Investigation made in flash formation analysis	23
2.4 Investigation made in modeling and analysis of the process	23
2.5 Investigation made in wheel tool gap sensing	24
2.6 Investigation made in surface defect and curling phenomenon	25
2.7 Miscellaneous	26
2.8 Simulation and Modeling in metal forming	28
Chapter 3	
Analysis, Modeling and Simulation of Continuous Extrusion proc	ess
3.1 Introduction	31
3.2 FEM Procedure	32
3.3 Finite element formulation	33
3.4 CAE simulation procedure	34
3.5 Simulation procedure	37
3.6 Simulation of Continuous Extrusion process	38

3.7 Simulation of 8 mm Aluminum feedstock	41
3.8 Simulation results for 8 mm Aluminum feedstock	41
3.9 Results and discussions for simulation of 8 mm diameter Aluminum alloy feedstock 4	l 7
3.10 Simulation of 9.5 mm diameter Aluminum rod	50
3.11 Simulation of 12.5 mm diameter feedstock for Copper rod	66
3.12 Parametric study of Continuous Extrusion process simulation for Aluminum	alloy73
3.13 Upper bound analysis of Continuous Extrusion process	95
3.14 Introduction to gripping zone and contact pressure in Continuous Extrusion	96
3.15 Analysis of the Continuous Extrusion process	100
3.16 CaseStudies	103
3.17 Numerical examples for pure Copper feedstock	108
Chapter 4	
Design Development and Fabrication of Continuous Extrusion ma	achine
	acminc
setup	
4.1 Introduction	115
4.2 Details of the previous Continuous Extrusion setup	119
4.3 Redesign development and fabrication of the Continuous Extrusion machine s	etup for
9.5mm feedstock material	126
4.3.1 Design and functionality of each part of the Continuous Extrusion r	
setup.	126
4.4 Development and Fabrication of Continuous Extrusion machine setup for	9.5 mm
feedstock material	129

Chapter 5

Experimental study, Validation and Characterization

5.1 Introduction	143
5.2 Experimental Tests	143
Experimental plans	146
Initial Experiments	146
Experiments: (Aluminum alloy Al 1100) on setup 2 Experiments: (Pure Copper Feedstock) and validation on setup 1	147 149
5.3 Parametric study of Continuous Extrusion process (comparison between e	xperimenta
and simulation results for Aluminum alloy	152
5.4 Parametric study of Continuous Extrusion process (comparison between e	xperimenta
and simulation results for Copper alloy	154
5.5 Characterization	154
Microstructure analysis of the raw material and extruded product	154
Metallography (Sample Preparation) of Samples	155
Microstructure analysis of samples	156
5.6 Microstructure analysis of Copper samples	161
5.7 Material properties of Aluminum (Grade 1100)	163
5.8 Hardness test for Aluminum Samples	170
5.9 Graphical study of material properties of feedstock before and after ex Aluminum and Copper alloy	xtrusion for 172
Chapter 6	
Optimization of CE process parameters	
6.1 Introduction	186
6.2 Optimization of Extrusion process by Response Surface Methodology (Aluminum
	187

Appendices	286
References	278
Conclusions and Scope for future work	273
Chapter 7	
6.7 Comparison of RSM and ANN	270
6.6 Genetic Algorithm based Optimization using ANN model	267
process 6.5 Modeling of numerical data using Artificial Neural Network model	259 264
Modeling and Optimization of Product temperature in Continuous Extrusi	on
Modeling and Optimization of damage value in Continuous Extrusion pro-	cess 254
Modeling and Optimization of Effective stress in Continuous Extrusion pr	cocess 249
Modeling and Optimization of Torque required for Continuous extrusion of feedstock	f 244
Modeling and Optimization of Load required for Continuous Extrusion	239
6.4 Numerical modeling and Optimization of CE process parameters	234
Modeling and Optimization of % Elongation	229
Modeling and Optimization of Yield Strength	225
Modeling and Optimization of Hardness	220
Modeling and Optimization of Ultimate Tensile Strength (UTS)	214
6.3 Optimization of extrusion process by Response Surface Methodology feedstock material)	212
Modeling and Optimization for % Elongation	207
Modeling and Optimization for Yield Strength	201
Modeling and Optimization for Hardness	196
Modeling and Optimization for Ultimate Tensile Strength (UTS)	190