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APPENDIX 1 

UPPER BOUND ANALYSIS OF DIE POWER 

  

In continuous extrusion process considerable friction exists between the feedstock 

and the bore of the abutment chamber. The deformation of feedstock in abutment 

chamber in continuous extrusion is similar to container in conventional extrusion process. 

In conventional extrusion this frictional force, which opposes the motion of the ram, is a 

maximum at the start of the process when the feedstock is at its maximum length and 

reduce as the feedstock is extruded the die. The magnitude of this force is such as to limit 

the initial length/diameter ratio of the feedstock to about 5:1.  

The unlubricated flat die produces an intensely deforming shear surface, which 

separates the deforming zone from the dead metal zone. The shear surface itself acts as a 

shaped die, but it has very high friction. So, the flat die requires a higher extrusion power. 

Also the extrusion speed is limited due to hot shortness. Shaped extrusion dies can 

overcome these difficulties. But they are difficult to design and manufacture. However, 

with the advent of computers in design and manufacture, these difficulties have been 

diminished.  

Based on the kinematically admissible velocity field, an upper bound solution 

obtained by [Gunasekera and Hoshino, (1982)], [Gunasekera and Hoshino, (1985)] for 

the regular polygonal sections is modified here to suit the kinematic velocity field 

requirements for general shapes. [Kumar et al., (1999)], [Kumar et al., (2002)] used a 

fourth order polynomial to obtain the kinematically admissible velocity field in terms of 

stream function for generalized shapes.  

 CONSTITUTIVE EQUATIONS  

The system of equations describing the behavior of solid various types of 

response is referred to as the constitutive equations. In steady-state forming processes 

such as extrusion, drawing, rolling, etc. the measure of deformation is the strain rate 

tensor ij , which is expressed as  
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 Where vi and vj represent the velocity components along xi and xj direction 

respectively. In order to express the constitutive equation in a convenient the stress tensor 

σij is decomposed as  
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 Where p is the hydrostatic part, ij is Kronecker’s delta and 
'

ij is the deviatoric 

part of the total stress ij  

In bulk metal forming processes such as extrusion, drawing, rolling, etc. the total 

strains are large as compared to the elastic strains. Therefore elastic deformation can be 

considered as negligible compared to plastic/viscoplastic deformation. The constitutive 

law for rigid plastic/viscoplastic material relating the deviatoric stress tensor 
'

ij  and the 

strain rate tensor ij& is expressed as  

 ijij  & 2'
        (1.2) 

 For a material yielding according to Von-Mises criterion, the Levy-Mises 

coefficient µ is given by 
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Where the generalized yield stress  and the generalized strain rate  are defined as  
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The generalized strain is therefore, defined as  
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Where the integration is to be carried along the particle path.  

In general   depends on  &, and temperature T.  
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 ),,( TF  &        (1.7)  

In case of cold extrusion the effect of temperature can be neglected on generalized stress 

  . The specific functional form of F for the material under consideration is 

mentioned at respective places. The above equations are used in the proposed upper 

bound solution.  

UPPER BOUND FORMULATION  

 General Methodology   

An upper bound solution is required to satisfy only the kinematic conditions in 

terms of strain increments, strain rate and velocities in a plastically deforming medium 

and does not necessarily satisfy the stress equilibrium equations. An important concept 

involved is that of a kinematically admissible velocity field. Velocity fields that satisfy 

the constraint of volume constancy and the velocity boundary conditions are called 

kinematically admissible velocity fields. A kinematically admissible velocity field may 

have discontinuities in the tangential component along certain surfaces, but the normal 

component must be the same on both sides of such surfaces in order to satisfy the 

constraint of incompressibility. The unknown parameters in kinematically admissible 

velocity field are determined using the upper bound solution.  

The upper bound theorem [Prager and Hodge, 1951] states that among all possible 

kinematically admissible velocity fields, the one that minimizes the total power T is the 

actual velocity field.  
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In the above equation Ω is the plastic deformation zone,  is the shear stress on 

velocity discontinuity surfaces Si (Figure 1.1)                               

 

 

 

 

 

   

 

 Figure 1.1: Deformation zone and typical stream surfaces in extrusion 
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S1  Entry  

Surface S2  Exit Surface S3  Feedstock Interface 

The first term expresses the internal power of deformation over the volume of the 

deformation zone, while the second term represents the power dissipated in shearing the 

material over the velocity discontinuity surfaces and at the tool-work interface (i.e. 

frictional power), Here asterisk (*) indicates that the values of stress, strain rate and 

velocity discontinuity are obtained from an assumed kinematically admissible velocity 

field.  

 Deformation Zone and Velocity Boundary Conditions  

In most of the earlier works on upper bound method, a lot of emphasis was given 

to the determination of complex shapes of plastic boundaries S1 and S2 shown in Figure 

3.1. The predictions of these boundaries are never accurate since the upper bound 

analysis does not satisfy stress equilibrium. The upper bound solution obtained by earlier 

researchers  using straight and arbitrarily shaped plastic boundaries indicate that there is 

little effect of the shapes of surfaces S1 and S2 on the overall solution. Hence, in the 

present work, the deformation zone Ω is assumed to be bounded by straight plastic 

boundaries at the end sections of the die. This assumption simplifies the mathematical 

treatment of the problem significantly without compromising much on accuracy and 

provides greater flexibility in the optimization of the die profile S3. Material is assumed 

to be rigid outside the entry and exit sections of the die. Therefore, the axial velocity at 

the entry and exit sections of the die should be uniform. These conditions are given by:  

 vz= vo  on S1 

 vz= vo   on S2

   

   (1.9)  

 

 

 

 

 

 

Figure 1.2: Geometry of die and stream lines in an extrusion die 
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At cross-section S2 different points have different velocities. A point at the centre 

has maximum velocity and a point on the periphery has minimum velocity.  

Corresponding to N different points, the common velocity of extrudate pv is defined as   
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 There should not be any metal flow across boundary S3 and the axis of symmetry. 

This condition on these boundaries can be expressed as  

 vn = 0                     (1.11)  

on die surface S3 and the axis of symmetry.  

Estimation of Extrusion Power and Average Ram Pressure 

The total power consumed inside the die is the sum of total power 

consumed within different power elements. One such element shown in Fig. 3.2 

is OEGG’O’E’EO. Total power consumed within the element is the sum of power 

losses due to plastic deformation (i), the velocity discontinuities at entry (e) 

and outlet (0) of the die, and the friction power loss along the interface between 

the material and the die (f). The predicted total power obtained through the 

present velocity field would be higher (if no other redundant power losses are 

present) than the power actually consumed. Each power in the power element is 

computed numerically using velocity, strain rate components, the generalized 

yield stress of the material and the given friction condition. The volume and 

surface integration (eqns. 1.23, 1.31, 1.33 and 1.34) are carried out numerically 

using ten point Gauss Quadrature rule [William, et al. 1996] after extracting the 

necessary data from the geometry of die profile and the cross-section of the given 

component to be extruded. 

Let and   be generalized yield strain and generalized yield stress for the 

given strain hardening material without consideration of the redundant work 

factor, and let 0 be the yield stress of the given material without considering 

strain hardening effects. Then, various powers required for the calculation of 

total power (T) are calculated as shown below. 

(a) Internal Power of Deformation 
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By considering an element of volume dv in the deformation zone subjected 

to a stress system ij which causes strain rates , the incremental power of 

deformation (di) can be expressed as  

dvd ijiji

.

                                     (1.21) 

The total power of deformation can be obtained by integrating dI over 

the entire volume of the deformation zone. Thus, 
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The above equation in expanded form can be written as 
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(b) Frictional Power 

If the frictional resistance of the material along the total-work interface is  

and the slip velocity (or the tangential velocity discontinuity) along the interface 

is Vt, then the incremental frictional power at the interface can be expressed as 

stf dVd ||        (1.24) 

where ds is an elemental surface area. The total frictional power can be obtained 

by integrating the above equation along the total interface length. Thus, 

st

s

f dV ||         (1.25) 

Here  s is the area of the die-work piece interface. 

 In the present work, the frictional resistance on the interface is assumed to 

be a constant times the yield shear stress of the material ),3/( i.e. ,
3

m
where 

m is friction factor whose value is chosen on the basis of die-work piece interface 

and the lubrication conditions. The friction factor which varies from zero for 

frictionless condition to unity for sticking friction condition. In the present 

analysis friction factor is assumed to be independent of slip. 
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Figure 1.3 shows the relationship between the die surface and the 

projected surface for frictional power calculations. A small unit square element s1 

on the die surface is selected. Let  be the maximum angle of inclination of the 

element (s1) of the die surface with respect to the projected surface on the x-z 

plane. This angle () is obtained from the geometry of the die by knowing angle 

 produced by the direction of a streamline (say EE) and angle  created by the 

position of this streamline. From eqn. (1.16), at the die surface, 
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Figure 1.3: Die surface and projected surface for frictional power calculations. 

 tan;coscos
0

1

0 









dz

dy
f

R

a
R

dz

dy
    (1.26) 



293 

 

fRR
d

dy



sinsin 00         (1.27) 

f
R

a
CRR

d

dx








 


coscos

0

1

00      (1.28) 

Therefore, 





tan;
)/(

)/(


dx

dy

ddx

ddy

dx

dy
     (1.29) 

The length of diagonal (ll) of the small unit square element on the die surface is 

found as .)(cos)(cos 22  ll Angles  and  can be found from eqns. (1.26) 

and (1.29). Therefore, angle , which is subtended by ll with the x-y plane is 

found as 

2
cos

ll
  

On the basis of eqn. (1.25), frictional power for the considered element is 

obtained from the above as 
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(c) Shear Power 

In case the die profile has non-zero slope at the entry and exit sections, there will 

be shear losses due to velocity discontinuity. These planes of discontinuity can be 

called as the planes of sudden shear. The power dissipated along these surfaces 

can be calculated by employing the yield shear stress as the material resistance. 

Thus, the shear power can be expressed as 

dsVt

s

s ||
3

 


       (1.32) 

Where Vt is the tangential velocity discontinuity along the ds and s is the area 

over which integration has to be carried out. Using eqn. (1.32) the shear power at 

entry (e) and exit (0) side are obtained as: 
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(d) Total Power and Average Extrusion Pressure 

The total power (T) is the sum of its constituents including the redundant 

powers. Therefore, the total power (T) is given as 

feiT   0       (1.35) 

Once the total power (T) consumed during extrusion is obtained, the upper limit 

to the average pressure (Pave) for extrusion is found as 
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The average pressure (Pave) can be converted to relative forming stress (RS) as 

0
ave

s

P
R         (1.37) 

where 0 is the effective stress at zero hardening condition. 
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Analysis for Die Arrangement  

Two die arrangements, square and streamlined are shown in Figure 1.4 

and Figure 1.5. In the square die arrangement, the feedstock is first reduced in 

the chamber and in the die with round or conical corners. This includes the 

formation of dead metal zone and, therefore, its effect on total power 

consumption cannot be neglected. In streamline arrangement, there is no 

reduction in the abutment chamber and total reduction takes place in the die 

which has a pre-defined profile. Since 3rd order die profile consumes minimum 

power, a streamlined die profile is chosen. These two arrangements are taken to 

select a better option for die arrangement that consumes minimum power. 

Square Die Arrangement (Figure 1.4) 

For this arrangement, the dead metal zone boundary is modelled as a 

third order profile under sticking friction conditions (Fig. 1.4). Zone I in the 

abutment chamber corresponds to dead metal and zone II corresponds to the die. 

Since in the dead metal zone, material shears along a definite profile, sticking 

friction (m = 1) occurs along the dead metal zone interface. 
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Total Power Losses in Die 

This include the internal deformation power, the frictional power on die-

workpiece interface and the discontinuity power. The total power is obtained 

through summation of individual powers at optimal die length (Lopt) . The total 

power in the die at optimal conditions can therefore, be evaluated as 

Pdie = (Pdiefri + Pdiedefo + Pdiedisc) 

This power is calculated as 

Plandfri = 3

111 10)3/( 
end2VPLm  (Watts)    (1.38) 

where Vend2 is the average velocity of the extrudate in die land region,  is the 

flow stress of material after strain hardening at the end of die exit, P1 is the 

perimeter of extruded product and L1 is taken as the one seventh of length Lopt. 

Total power (Psq) in a square die arrangement can therefore be evaluated as 

 Psq = Pdead + Pdie + Pcontfri + Plandfri   (1.39) 

 

 Streamlined Die Arrangement (Figure 1.5) 

For this arrangement (Fig. 1.5), there is no reduction in the abutment 

chamber. Zone I in the abutment chamber corresponds to power loss due to 

friction only. Zone II corresponds to the die, where all reduction takes place 

through a pre-defined die profile (streamlined). Since there is no dead metal zone 

in streamlined dies, total power can be evaluated as 

Pst = Pdie + Pabutmentfri + Plandfri     (1.40) 

where powers Pdie and Pabutmentfri are found in the same way as in eqns (1.38) 

and (1.39). The power, Plandfri is found as 

Pabutmentfri = 3

000 10)3/()2( VRLm tc   (Watts)   (1.41) 

with Lt = L0 – V0 t ; tpass = 0.8 (L0/V0) and t = 0.5 tpass, where Lt is the length of 

feedstock in the abutment chamber for average time t, and tpass is the time taken 

by 80% of the feedstock to pass through the abutment chamber during 

deformation with velocity V0. 

Total powers obtained from eqns. (5.5) and (5.6) are applicable to non-re-

entry component shapes. For re-entry components, the total power is found by 
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adding the individual powers of the proposed non re-entry shapes to the re-entry 

component. For re-entry component shapes also the streamlined die arrangement 

is found to be a better arrangement. 

Die Profiles 

The shape of each profile is chosen to satisfy the reduction requirements 

with the die length (L) as the only variable to be optimized. In certain cases, it is 

restricted by constraints of slope or curvature at a particular cross-section. In the 

present work, the following six die shapes have been considered. The die shape 

function f(x) for these dies are given below. 
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APPENDIX 2 

RESPONSE SURFACE METHODOLOGY, ARTIFICIAL NEURAL 

NETWORK & GENETIC ALGORITHM 

 

Response Surface Methodology (RSM) 

Response surface methodology (RSM) is a collection of mathematical and statistical 

techniques for empirical model building. By careful design of experiments, the objective 

is to optimize a response (output variable) which is influenced by several independent 

variables (input variables). An experiment is a series of tests, called runs, in which 

changes are made in the input variables in order to identify the reasons for changes in the 

output response. Originally, RSM was developed to model experimental responses (Box 

and Draper, 1987), and then migrated into the modelling of numerical experiments. The 

difference is in the type of error generated by the response. In physical experiments, 

inaccuracy can be due, for example, to measurement errors while, in computer 

experiments, numerical noise is a result of incomplete convergence of iterative processes, 

round-off errors or the discrete representation of continuous physical phenomena (Giunta 

et al., 1996; van Campen et al., 1990, Toropov et al., 1996). In RSM, the errors are 

assumed to be random. 

Plackette-Burman Design (PBD) 

Plackett-Burman experimental design is used to identify the most important factors early 

in the experimentation phase when complete knowledge about the system is usually 

unavailable. Developed in 1946 by statisticians Robin L. Plackett and J.P. Burman, it is 

an efficient screening method to identify the active factors using as few experimental 

runs as possible. 

In Plackett-Burman designs, main effects have a complicated confounding relationship 

with two-factor interactions. Therefore, these designs should be used to study main 

effects when it can be assumed that two-way interactions are negligible. 



299 
 

In practical use, two-level full or fractional factorial designs, and Plackett-Burman 

designs are often used to screen for the important factors that influence process output 

measures or product quality. These designs are useful for fitting first-order models 

(which detect linear effects) and can provide information on the existence of second-

order effects (curvature) when the design includes center points. 

 

Neural Networks 

 Neural network are motivated by the functioning of brain, which consists of a number of 

neurons. The network in the brain is called biological neural network, whereas we build 

artificial neural networks for solving physical problems. The artificial neural network 

(ANN) may be very different from a biological neural network. Neural networks are 

systems which can acquire, store and utilize knowledge gained from experience. Neural 

network techniques have been found capable of learning from a dataset to describe the 

non-linear and interaction effects with great success [Holland et al., (1975)] 

As a very simple example of how a neural network can be used, consider dependent 

variable z related to independent variables x and y in the following manner: 

z = x2 + y2     (2.1) 

If just provided a few datasets in the form of triplet (x, y, z), the neural network must be 

able to understand that the function is of the form given in Equation (2.1). The important 

point is that too many exemplars should not be required. The data by which the neural 

network understand the relation between the variables called training data. After the 

network has been trained based on the training data it has to be tested with a few data 

called testing data.  

 Biological Neural Networks 

The brain consists of a densely interconnected set of nerve cells, or information 

processing units, called neurons. The human brain incorporates near about 1110 neurons 

and 1014 connections through synapses between them. Although neurons has a very 

simple structure, a combination of such elements constitute tremendous processing 

power. As shown in Figure 2.1, a neuron consists of a c   body, soma, a number of fibers 
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called dendrites, and a single long fiber called axon. Dendrites form a very fine bush of 

thin fibers around the neuron’s. Dendrites receive information from neurons through 

axons (long fibers) that seen  as transmission lines. An axon is a long cylindrical 

connection that carries impulses from the neuron. At the end part of an axon, various 

branches terminates the surface of other neurons or on the dendrites. The axon-dendrite 

contact organ called a synapse, through which the neuron introduces its signal to the 

neighbor neuron. Signals are propagated from one neuron to another by component 

electrochemical reactions. Signals travel in the axon in the form of electrical impulses. 

Synapses convert the electrical single into chemical ones. Chemical substances released 

from the synapses cause a change in the electrical potential the cell body. When the 

potential of the cell body reaches its threshold, electrical pulse, action potential, is 

generated. This pulse is transmitted through axon to reach the other synapses, causing 

them to increase or decrease the potential of cell bodies. Usually, each neuron has one 

axon to transmit the signal thousands of synapses to receive the single from the other 

neurons. Generation electrical impulse by the cell body is called firing of the neuron. If 

the income impulses help in firing of a neuron, they are called excitatory impulses. If t 

hinder the process of firing, they are called inhibitory. 

In response to the stimulation pattern, neurons demonstrate long-term chain in the 

strength of their connections. Neurons can also form new connections other neurons. 

Even entire collections of neurons may sometimes migrate from place to another. These 

mechanisms form the basis for learning in the brain. T phenomenon is called plasticity. 

The plasticity diminishes with age. It has been found that a typical human brain loses 

about 2-5% of its total neurons by the time it reaches 50 years of age. 

A human brain can be considered as a highly complex, non-linear and parallel 

information-processing system. Information is stored and processed in a neural network 

simultaneously throughout the whole network, rather than at specific locations. In other 

words, in neural networks, both data and its processing are global rather than local. 

Owing to the plasticity of the network, connections between neurons leading to the ‘right 

judgment’ are strengthened while those leading to the ‘wrong judgment’ become weak. 

As a result, neural networks have the ability to learn through the experience. Learning is 

a fundamental and essential characteristic of biological neural networks. The ease and 
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naturalness with which they can learn motivated us to emulate a biological neural 

network in a computer. However, the types of artificial neural network, which are 

described in this chapter, are highly simplified versions of actual biological network 

[Jang et al., (2002)]. 

 

 

 

 

 

 

Perceptron: The Learning Machine 

In the previous subsection, a model of a single neuron has been presented. The neuron 

can behave in a particular way depending on its weights and bias. However, it must have 

the ability to learn through exemplar in order to emulate the behavior of a biological 

system. In 1958, Rosenblatt introduced the first learning machine, discrete (binary) 

perceptron. The perceptron will be as shown in Figure 2.2 with the ability to adjust its 

weights and bias with supplied training data. The learning method in which the data in 

the form of input and output is supplied and the network is trained to minimize the error 

is reduced by making small adjustments in the weights to reduce the difference between 

the predicted and the desired output of the perceptron. The initial weights are randomly 

assigned and then updated to obtain the output consistent with the training examples. For 

a perceptron, the process of weight updating is simple. If at iteration p, the predicted 

output is o (p) and the desired output (target) is d (p), then the error is given by 

  e (p) = d(p)  o(p) where p = 1, 2, 3………   (2.2) 

At each iteration a fresh training data is presented to the perceptron. If the error e (p), is 

positive, we need to increase the perceptron’s output o (p), but if it is negative, we need 

to decrease o (p). Taking into account that each perceptron input contributes xi (p) wi (p) 

to the total input X (p), we find that if input value xi (p) is positive, an increase in its 

Synapse

Axon

Soma

Dendrites

Synapse

neuronother

ofDendrites

Figure 2.1: A typical biological neuron 
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weight wi(p) tends to increase perceptron output o(p). On the other hand, if xi (p) is 

negative, an increase in wi(p) tends to decrease o(p). Thus, the following perceptron 

learning rule can be established: 

  (p)e(p)αx(p)w1)(pw iii  ,   (2.3) 

Where  is the learning rate. 

Multi-Layer Perceptron Neural Networks 

A multi-layer perceptron (MLP) is a feedforward neural network with one or more 

hidden layers. A feedforward network has a sequence of layers consisting of a number of 

neurons in each layer. The output of neurons of one layer becomes input to neurons in the 

succeeding layer. The output of neurons of one layer becomes input to neurons in the 

succeeding layer. Typically a network consists of an input layer consisting of neurons 

corresponding to input variables, at least one middle or hidden layer of computational 

neurons, and an output layer of computational neurons. The input signals are propagated 

in a forward direction on a layer-by layer basis. A multi-layer perceptron with one hidden 

layer is shown is Figure 2.2. The first layer, called an input layer, receives data from the 

outside world. The last layer is the output layer, which sends information out to users. 

Layers that lie between the input and output layers are called hidden layers and have no 

direct contact with the environment. Their presence is needed in order to provide 

complexity to network architecture for modeling non-linear functional relationship. After 

choosing the network architecture, the network is trained by providing data in the form of 

several input-output pairs. During the training process, the network adjusts its weights to 

minimize the error between the predicted and desired outputs. 

The most common algorithm the error between the predicted and desired outputs. 

Algorithm. Here, the training process involves two passes. In the forward pass, the input 

signals propagate from the network input to output. In the reverse pass, the calculated 

error signals propagate backwards through the network where they are used to adjust the 

weights. The error signal is the mean squared error given by 

 ,)od(
2

1
E

K

1k

2

kk


       (2.4) 
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Where dk is the desired k-th output and ok is the predicted k-th output of the network. K is 

the number of neurons in the output layer. 

Any efficient optimization method can be used for minimizing the error through weight 

adjustment. The calculation of the output is carried out layer by target value of each 

output neuron is available to guide the adjustment of the associated weights. Next, the 

weights of the middle layers are adjusted. Since the middle layers have no target values; 

errors of the succeeding layers. After proper transformations, are propagated back 

through the network, layer after proper transformations, are propagated back through the 

network, layer by layer. Hence, this algorithm is termed as back propagation algorithm. 

The trained neural network has to be tested by supplying testing data. If the testing error 

is much more compared to the training error, the network is said to over-fit the data. A 

properly fitted network will give nearly equal training and testing error. 

 

 

 

 

 

 

 

 

 

 

Radial Basis Function Neural Network 

The supervised training of the neural network can be viewed as a curve fitting process. 

The network is presented with training pairs, each consisting of a vector from an input 

space and a vector from the output space. Through a defined learning algorithm, the 

network perform the adjustments of its weights so that the error between the actual and 

Figure 2.2:  A multi-layer perceptron with one hidden layer 
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desired outputs is minimized relative to some optimization criterion. The trained network 

performs the interpolation in the output vector space, which is referred to as the 

generalization property. In this subsection, we describe a radial basis function neural 

network as an alternative to multi-layer perceptron neural network to carry out this task. 

The radial basis function (RBF) network consists of three layers: an input layer, a single 

layer of non-linear processing neurons, and an output layer. Figure 8.6 shows a typical 

network. For a network having K neurons in the output layers and J neurons in the hidden 

layer, the output of RBF is calculated according to 

 



J

1j
2

c

jjijii )xx(w)x(f  wherei = 1, 2……K,     (2.5) 

where x is the input vector, j (.) is function from set of all positive real number to set of 

real numbers, 
2

. denotes the Euclidean norm, wij are the weights in the output layer, and 

c

jx  are the RBF centers in the input vector space. For brevity, we will use . to mean 

Euclidean norm, omitting subscript 2. For each neuron in the hidden layer, Euclidean 

distances between its associated center and the input to the network are computed. The 

output of the neuron in a hidden layer is a non-linear function of the distance. The most 

common function is Gaussian function given by 

 ,
2

xx
exp)x(

2

j

2
c

j

j











 



      (2.6) 

where 2

j is called the variance, which controls the spread of the distribution about the 

center.  

Unsupervised Learning 

The neural network discussed in the previous sections used supervised learning 

algorithms, which are based on error corrections rules. In these algorithms, an error value 

is generated from the actual response of the network and the desired response. After that, 

the weights are modified such that the error is gradually reduced. In unsupervised 

learning, there is no feedback from the environment for assessing the correctness of the 
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mapping. In other words, there is no “teacher”. Instead the network must be able to 

discover by itself any categories, patterns, or features possibly present in the data. 

Network that are able to infer pattern relationship without being supervised are also 

called self-organizing. 

There are many unsupervised learning rules. One rule was proposed by Hebb in his 

seminal work, “The organization of Behavior”. This is called the Hebbian learning rule. It 

makes the weight strength proportional to the product of the firing rates of the two 

interconnected neurons. That is, when two connected neurons fire at the same time and 

repeatedly, the synapse’s strength is increased. 

Competitive learning is an unsupervised learning procedure in which the neurons of a 

network learn to recognize clusters of similar input vectors. The network detects 

regularities and corrections among the input vectors and adapts the future response of the 

units to similar inputs. In competitive networks, output units compete among themselves 

for activation. The simplest competitive learning network consists of a single layer of 

output neurons to which all inputs are connected. All the units are presented with given 

input vectors but only one output neuron is activated at any given time: the so-called 

winner neuron. 
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Genetic Algorithms 

There are a number of evolutionary algorithms, which mimic natural evolutionary 

principles for optimizing. Among them, genetic algorithms are very powerful 

evolutionary optimization techniques, which do not required the derivatives of the 

objective and constraint functions. These are so named because they follow the principles 

of natural genetics. Professor John Holland of the University of Michigan, Ann Arbor, 

first envisaged the concept of these algorithms. Now, there are many variants of these 

algorithms. We will briefly describe two of them i.e., binary-coded and real-coded 

genetic algorithms. There are a number of advantages of using genetic algorithms (GAs) 

[Goldberg et al., (1989)]: 

 GAs are parallel-search procedures that can be implemented on parallel-

processing machines for very fast computations. 

 GAs are applicable to both continuous and discrete design variable optimization 

problems. 

 They are suitable for combinatorial optimization problems, where the solution 

space contains finite set of points. 

 GAs are stochastic and are less likely to get trapped in local minima, which 

inevitably are present in most of the practical applications. 

 GAs are very suitable for solving multi-objective problems. 

 

Binary Coded Genetic Algorithms 

 These are the original genetic algorithms. In this book, we will refer a binary coded 

genetic algorithm as BGA and a real coded genetic algorithm as RGA. The term GA will 

be used as a general term to mean both types of genetic algorithms. In BGA, the design 

variables of the optimization problem are coded in binary form. Thus, instead of 

operating on real values of design variables, we operate on the binary values. Thus, a 

solution point is represented by a string (chromosome) consisting of ‘0’s and ‘1’s. Each 

‘0’ and ‘1’ value is called a bit and is analogous to a gene. The mapping between the 
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binary and real form can be easily established. Suppose the i-th variable is represented by 

a sub-string Si, then its real value is given by 

 
12

xx
xx

il

L

i

U

iL

ii 


 (Decoded (decimal) value of Si),    (2.2.1) 

 where
L

ix  and 
U

ix  are the lower and upper bounds of the variable and li is the length of the 

string. The higher is the length of the string, the higher is the precision.  

 Reproduction 

 This is the first operator applied on a population. In reproduction, good strings in a 

population are assigned a large number of copies. The reproduction can be carried out in 

a number of ways. In the tournament selection, tournaments are played between two 

solutions and the winning solution is taken. By tournament playing we mean that two 

solutions are compared and the solutions are compared and the solution having the better 

fitness is chosen. Each solution participates in exactly two tournaments in a random 

manner. Thus, the best solution gets two copies in the population and the worst having 

lost both the tournaments gets eliminated. Other solution may get zero, one or two copies 

in the population. Figure 2.3 illustrates the procedure pictorially. The population consists 

of four members. It is assumed that the fitness value of each member is proportional to 

his height. Four tournaments are played and the taller member wins. In this way, we get 

two copies each of the tallest and second tallest. Note that other possibilities also exist 

depending on how the teams are formed. Thus, probability plays a role here. 

 In proportionate selection, copies proportional to fitness values are taken. Supposing the 

fitness values is 125. Dividing the fitness values by this number, we get the probabilities 

of survival of different members. In this case, the probabilities are 0.2, 0.4, 0.08 and 0.32. 

Expected number of copies are found by multiplying these probabilities with the size of 

the population, in this case 4. Thus, the members are expected to have 0.8, 1.6, 0.32 and 

1.28 copies. This means that if the reproduction operator is carried out a large of times, 

on an average these will be the number of copies. However, in any single operation a 

particular member may get 0, 1, 2, 3 or 4 copies. For achieving this operation in a 

computer, the following procedure may be adopted [Deb et al., (2003)]: 
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Figure 2.3: Reproduction using tournament selection 

 We make ranges proportional to the probabilities between 0 and 1. In our case, the 

ranges are 0  0.2, 0.2  0.6, 0.6  0.68 and 0.68  1.0. 

 Generate random numbers equal to the number of members in the population. In 

whatever range a particular number falls, the corresponding chromosome is 

selected. 

This method of selection is called roulette wheel selection (RWS), because the 

same operation can be achieved mechanically by spinning a wheel a number of 

times. The wheel (shown in Figure 2.4) is divided into divisions equal to 
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population size, where the size of each division is proportional to the fitness of the 

corresponding member. The wheel is spun and is allowed to stop. Then the 

member whose division stops before a fixed pointer is selected. 

 

Figure 2.4: A Roulette Wheel 

The proportionate selection operator has scaling problem. If the fitness value of 

one member is more, the member gets selected quite often. Similarly, if the fitness 

values of all members are more or less the same, all members have equal 

probability of getting selected. The tournament selection does not have this 

ranking problem. The scaling difficulty can be eliminated by using a ranking 

selection operator. In this method, solutions are sorted according to their fitness 

values and the ranks are assigned, the worst member getting the rank 1. The 

proportionate selection is then applied based on these ranks. 

Crossover 

In crossover operation, new chromosomes are created by exchanging the 

information between two chromosomes. To accomplish this, the following 

procedure is adopted. If the population size is N, N/2 pairs are formed at random. 

Two chromosomes (strings) in each pair are called parents. Taking each pair at a 

time, a random crossover site is selected. Then, two off string (children) are 

produced by exchanging all the bits on the right side of the cross-over site. More 

Crossover operation is carried out with some probability. This is because, some 

good strings have to be preserved. If a crossover probability of pc is chosen, then 

100 pc % of the strings are used for cross-over and the remaining strings are 
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copied as they are to the next population. A common practice is to choose about 

¾-th string for the crossover. 

 Mutation 

Mutation changes the bits of the chromosomes with some low probability 

(typically 0.01) of mutation. It is needed to provide some diversity in the 

population. It serves the crucial role of preventing the system from getting stuck 

to the local optimum. Only reproduction and mutation operations do not guarantee 

true optimum points. Mutation can randomly create a very good chromosome. It 

may also create a very bad chromosomes, but it will hopefully not get transferred 

in the next generation.  
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APPENDIX 3 

Finite Element Formulation (Updated Langrangian) 

 

Let dui, dij and ijd be the components of the incremental displacement vector, the incremental 

linear strain tensor and the incremental Cauchy stress tensor respectively. As before, we assume 

that the process is isothermal. For an isothermal process, the increment iji d,du  and ijd are 

governed by the following equations. For the sake of completeness, these equations have been 

reproduced below. 

Governing Equations:- 

(i)  Incremental strain – displacement relations (Equation 3.1), six scalar equations: 

).dudu(
2

1
d i,jj,iij  (3.1) 

(ii) Incremental elastic-plastic stress-strain relations six scalar equations: 

After Yielding: 

 ,dCd kl

EP

ijklij

0         (3.2) 

Where 

 ,
)3H(2

9

v21

v
2C

eq
2

klij

jlikklij

EP

ijkl 














   (3.3) 

 ,)(K np

eqYeq        (3.4) 

 ;
)(2

v



        (3.5) 

Before yielding and after unloading; 

 ,dCd kl

E

ijklij

0        (3.6) 

Where 

 .2C jlikijkl

E

ijkl       (3.7) 
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Here, the superscript 0 on the stress increment in Equations 3.2, e means it is the product of the 

Jaumann stress rate and the time increment . The Jaumann stress rate is related to the Cauchy 

stress rate through spin tensor. As the product of spin tensor and the time increment is equal to 

the incremental infinitesimal rotation tensor which is given by Equation (3.8). Thus, we have 

 ,dtd ij

0

ij

0       (3.8) 

Where 

 
),dd(d)dtdt(dtdt T

ljilijilij

T

ljilijilij

.

ij

0




  (3.9) 

 ).du,du(
2

1
d i,jjiij         (3.10) 

(iii) Incremental equations of motion, three equations: 

 j,ijii ddbda  .      (3.11) 

As decided earlier, we treat  as a constant. Therefore, we do not need the equation of 

conservation of mass. Thus, we have 15 scalar equations for 15 unknowns: (i) 3 incremental 

displacement components dui, (ii) 6 incremental linear strain components ijd and (iii) 6 

incremental Cauchy stress components .d ij  To solve these equations for the given material, the 

material properties have to be supplied: (i) density, (ii) elastic properties  and  and (iii) the 

yield stress Y and the hardening parameters K and n. Further, the incremental body force dbi (per 

unit mass) also has to be specified). 

Boundary Conditions 

Typical boundary conditions are as follows. As before, we denote the boundary of the domain by 

S. 

(i) On a part of the boundary (Su), an incremental displacement vector du is specified. Thus, 

*

ii dudu  on Su,     (3.12) 

where
*

idu represents the specified value. This is called the kinematic or displacement boundary 

condition. 
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(ii) On the remaining part of the boundary (St), an incremental stress vector n̂ddt n  is 

specified, thus, 

i

*

njijin )dt(nd)dt(  On St,    (3.13) 

Where
*

in )dt(  represents the specified value. This is called the stress or traction boundary 

condition. 
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APPENDIX 4 
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