LIST OF FIGURES

Fig. 1.1:	Gyro-amplifier configurations (a) Gyroklystron, (b) Gyro-Twystron, and (c) Gyro-TWT.	4
Fig. 1.2:	Schematic of Gyroklystron amplifier.	5
Fig. 1.3:	Illustration of the fields of a TE_{01} waveguide mode with a superimposed electron beam.	12
Fig. 1.4:	Illustration of phase bunching mechanism (a) circular electron beam with initial arbitrary phasing of electrons in their cyclotron orbits; (b) circular electron beam with phase bunched electrons in their cyclotron orbits.	14
Fig. 1.5:	Schematic of a cylindrical two-cavity gyroklystron amplifier.	18
Fig. 1.6:	Schematic of a coaxial-cavity in gyroklystron amplifier.	19
Fig. 1.7:	Schematic of a clustered-cavity gyroklystron amplifier.	20
Fig. 1.8:	Schematic of a frequency-multiplying gyroklystron amplifier.	21
Fig. 2.1:	Arrangement of the gyrating electrons in Larmor orbit in the Cartesian as well as cylindrical coordinate systems.	41
Fig. 2.2:	Flow chart for time-dependent multimode analysis of gyroklystron.	58
Fig. 2.3:	Coupling coefficient as a function of ratio of beam to waveguide radius (R_b/R_w) for operating TE_{02}^2 mode and possible competing modes.	61
Fig. 2.4:	Start oscillation current for operating second harmonic mode and possible competing modes as a function of DC magnetic field in the input cavity, where the operating point $B_0 = 0.656$ T and $I_b = 20$ A is indicated.	62
Fig. 2.5:	Temporal evolution of RF output power in the different modes in the output cavity of the operating TE_{02}^2 mode (a) for a constant RF input power $P_{in} = 0.75$ kW, (b) for a ramped RF input power.	63

Fig. 2.6:	Temporal evolution of RF power in the input, buncher, and output cavities.	65
Fig. 2.7:	RF output power and efficiency as a function of driver frequency.	65
Fig. 2.8:	RF output power and gain as a function of driver power.	66
Fig. 2.9:	RF output power and efficiency as a function of beam voltage.	67
Fig. 2.10:	RF output power and efficiency as a function of beam current.	67
Fig. 2.11:	RF output power and efficiency as a function of beam pitch factor.	68
Fig. 3.1:	Cross sectional view of the simulation model of the interaction circuit of gyroklystron amplifier.	78
Fig. 3.2:	Application of DC Magnetic field along the interaction structure.	79
Fig. 3.3:	Mesh distribution along the interaction structure.	79
Fig. 3.4:	Implementation of boundary conditions along the interaction structure.	80
Fig. 3.5:	Pattern of RF Electric field inside the gyroklystron input cavity (a) Contour plot, (b) Vector plot, (c) Contour plot at the output port.	81
Fig. 3.6:	Q-factor calculation in the input cavity.	81
Fig. 3.7:	Particle emission model.	83
Fig. 3.8:	(a) Front view of electron beam with 8 beamlets before and after interaction, (b) Zoomed beamlet after interaction.	83
Fig. 3.9:	Trajectory of electron beam from input port to output port during interaction.	83
Fig. 3.10:	Evolution of particles energy along the axes.	84
Fig. 3.11:	Contour plot of the electric field pattern of TE_{02} mode along the axial length of the interaction circuit.	85
Fig. 3.12:	Temporal growth of the EM signal for the desired TE_{02} mode and the other competing modes.	85

Fig. 3.13:	Temporal output power growth in the TE_{02} mode at the output cavity.	86
Fig. 3.14:	RF output power and gain variation with driver power (for 65kV beam voltage, 16.2A beam current and 32.32GHz center frequency).	87
Fig. 3.15:	Variation of RF output power and efficiency with driver frequency.	87
Fig. 3.16:	Variation of RF output power and efficiency with DC magnetic field.	88
Fig. 3.17:	Variation of RF output power and efficiency with beam current.	88
Fig. 4.1:	Coupling coefficient as a function of ratio of beam to waveguide radii (R_b/R_w) for the different modes.	97
Fig. 4.2:	Dependence of voltage depression on beam voltage for different values of beam current.	101
Fig. 4.3:	Voltage depression and limiting current versus the ratio of waveguide to beam radii (R_w/R_b) .	102
Fig. 4.4:	Start oscillation current I_{st} for second harmonic TE_{02} mode and other possible competing modes as a function of DC magnetic field at the output cavity.	103
Fig. 4.5:	Start oscillation current I_{st} as a function of DC magnetic field at the output cavity for different values of beam pitch factor.	104
Fig. 4.6:	Analytical temporal power growth obtained by developed multimode analysis for the operating second harmonic TE_{02} mode along with the possible competing modes (for $B_0 = 2.74$ T and $P_{in} = 1$ W).	106
Fig. 4.7:	Simulated view of the cross-section of the gyroklystron interaction circuit.	107
Fig. 4.8:	Electric field pattern at the input cavity of gyroklystron: (a) Contour plot, (b) Vector plot, and (c) Contour plot at the output port.	109
Fig. 4.9:	<i>Q</i> -factor calculation in the output cavity.	110
Fig. 4.10:	Front view of electron beam with 8 beamlets (a) before interaction, (b) after interaction.	111

Fig. 4.11:	Contour plot of the electric field pattern of TE_{02} mode along the axial length of interaction circuit.	112
Fig. 4.12:	Evolution of the particles energy along the axial length of the interaction circuit.	112
Fig. 4.13:	Frequency spectrum of electric field amplitude to determine the operating frequency of the gyroklystron amplifier.	113
Fig. 4.14:	Temporal growth of the EM signal in the operating $TE_{02}^{(2)}$ mode along with the other competing modes.	113
Fig. 4.15:	PIC simulation plot for the temporal growth of the RF output power in the operating $TE_{02}^{(2)}$ mode.	114
Fig. 4.16:	RF output power and gain variation with input drive power (P_{in}) ($V_b = 40$ kV, $I_b = 1$ A, $\alpha = 1.5$, and $f_{dr} = 140$ GHz).	114
Fig. 4.17:	Analytical and simulated RF output power variation with the driver frequency ($V_b = 40$ kV, $I_b = 1$ A, $\alpha = 1.5$ and $B_0 = 2.74$ T).	115
Fig. 4.18:	RF output power and efficiency variation with DC magnetic field.	116
Fig. 4.19:	RF output power and efficiency variation with the beam voltage $(I_b = 1A, \alpha = 1.5, f_{dr} = 140$ GHz).	117
Fig. 4.20:	RF output power and efficiency variation with the beam current $(V_b = 40 \text{kV}, \alpha = 1.5)$.	117
Fig. 5.1:	Schematic of a two-clustered gyroklystron amplifier.	123
Fig. 5.2:	(a) Field amplitude versus frequency in the input cavity and input cluster, (b) in the output cavity and output cluster of a conventional cavity and clustered cavity gyroklystron amplifier.	131
Fig. 5.3:	RF output power versus frequency in case of conventional cavity [Zasypkin <i>et al.</i> (1996)], and clustered-cavity gyroklystron amplifier (for a 72kV, 14A electron beam and 3.5kW input power).	131
Fig. 5.4:	Variable part of gain $G_{ss}^{(var)}$ versus normalized frequency detuning in the absence of stagger tuning between clusters (variable ξ_1 and ξ_2 indicate the stagger tuning in the input and output clusters respectively).	132
Fig. 5.5:	(a) Schematic of a two-cavity conventional gyroklystron amplifier, (b) Schematic of a two-clustered gyroklystron xiv	133

amplifier.

Fig. 5.6:	Axial field structure of clustered-cavity subunit resonating in the TE_{02} mode.	134
Fig. 5.7:	Contour plot of the electric field pattern of TE_{02} mode along the axial length of interaction circuit.	134
Fig. 5.8:	Temporal growth of RF output power in case of clustered cavity gyroklystron amplifier.	135
Fig. 5.9:	Gain as a function of frequency in case of conventional cavity, and clustered-cavity gyroklystron.	136