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    CHAPTER 2 

 

ANALYSIS OF GYROKLYSTRON AMPLIFIERS 

 

2.1. Introduction 

Gyroklystron amplifiers capabilities to provide high power, high gain and moderate 

bandwidth make it as an attractive high power millimeter wave device [Barker and 

Schamiloglu (2001), Nusinovich (2004)].  Gyroklystrons have proven potential applications 

in numerous upcoming applications, such as, high-resolution radars, linear particle 

accelerators, plasma heating and magnetic resonance imaging, etc. [Chu (2004), Gold and 

Nusinovich (1997)].  Historically, the first gyroklystron operation in the fundamental 

harmonic was tested in Russia in the year 1967 and reported in the literature in the year 

1978 [Andronov et al. (1978)].  The attractive feature of this experiment is its high 

efficiency.  The first experimental operation of a second harmonic gyroklystron amplifier 

was developed by USA in 1977.  A three-cavity X-band gyroklystron amplifier was 

developed generating output pulsed power of 20kW, an efficiency of 8% and corresponding 

gain of 10dB [Jory (1977)].  Afterwards, the research at the Institute of Applied Physics 

(IAP), Russia developed gyroklystron for radar applications in the late 1990s.  In their first 

experiment, they were able to produce an output power of 125kW with 17% efficiency, 

15dB gain and 0.1% bandwidth with 60kV beam voltage and 13.5A beam current using two 

cavities at 35GHz [Antakov et al. (1994)].  Later on, they demonstrated experimentally 

two-cavity gyroklystron with higher beam voltage and beam current to enhance 

gyroklystron output power and efficiency.  In the process of experimental studies of this 

amplifier, pulsed output power of 260kW was achieved with an efficiency of 18%, 
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corresponding gain of 17dB and a bandwidth of amplified frequencies of 0.1% [Zasypkin et 

al. (1996)].  After that, results of an experimental study of a three-cavity Ka-band 

gyroklystron amplifier producing 300kW peak power with 22% efficiency, a saturated gain 

of 22dB and about 0.12% bandwidth has been reported by the IAP [Gachev et al. (2002)]. 

Since that, during 1998-2002, IAP efforts were concentrated on the development and 

testing of a Ka-band second harmonic gyroklystron operating with PMS.  A number of 

analytical research works have been reported in the literature for the design and analysis of 

the fundamental harmonic gyroklystron amplifier. Different approaches have been 

incorporated which led to the considerable physical insight into the principle of operation 

of the gyroklystrons. To demonstrate and investigate the RF beam-wave interaction 

behaviour of the gyroklystron amplifier, the linear and nonlinear analyses are developed. 

There are primarily two approaches used for modeling and analyzing the gyroklystron 

circuit which depends on the axial field profile.  Firstly, non self-consistent approach in 

which a fixed profile function such as sinusoidal function for closed cavities and Gaussian 

function for open cavities is used to describe the RF field in the RF cavities of the 

gyroklystrons, i. e., the effect of the electron beam on the RF profile is neglected [Tran et 

al. (1986), Nusinovich (2004)].  As per the literature, scattering matrix method is an 

efficient technique and is widely used for the modeling and design of the gyroklystron 

amplifier, where the exact, real time cold-field profile is desired inside the cavities. These 

field profiles are computed non self-consistently and can be employed mainly for the 

experimental designing of the device [Calame et al. (1999), Danly et al. (2000), Garven et 

al. (2000)].  In addition, scattering matrix technique is also very much helpful in the 

analysis of the complex cavities (i. e., stepped cavities, irregular radius cavities etc.) 

[Neilson et al. (1989)].  There are several numerical codes, such as CASCADE [Ives et al. 
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(2003)], to compute these field profiles on the basis of scattering matrix method. Secondly, 

self-consistent approach, in which the cavity field profiles do not retain to its cold (electron 

beam absent) values and completely evolve according to the interaction with the electron 

beam.  In this approach, the equations of motion for the electrons are solved simultaneously 

with the help of the field equations [Salop and Caplan (1986), Geng et al. (2004), Luo et al. 

(2005), Wang et al. (2008), Jianhua et al. (2011)].  These gyroklystron models are 

restricted using certain assumptions, i. e., ignoring space charge effects, complete isolation 

between the RF cavities, uniform guiding magnetic field to make the analysis simpler and 

to reduce the computation time.  In most of the literature, the effect of velocity spread is not 

taken into consideration while carrying out the analysis [Tran et al. (1986), Geng et al. 

(2004), Nusinovich (2004), Luo et al. (2005), Wang et al. (2008), Jianhua et al. (2011)] 

whereas included by [Salop and Caplan (1986)], and [Shou-Xi et al. (2012)].  In most of 

the reported work, the time-independent single mode operation is considered in each cavity 

except in [Luo et al. (2005)] in which a semi-multimode approach is used to analyze the 

beam-wave interaction behavior in the operating mode as well as the other modes with the 

same azimuthal index but different radial indices.  But, for the gyroklystron amplifier, 

significant amount of work is not reported in the literature for the time-dependent 

multimode operation of the device which gives the concept of mode competition in more 

real time scenario. Nowadays, time-dependent simulation and analysis of the 

electromagnetic fields is essential for the detailed description of the beam-wave interaction 

mechanism. 

In the development of high power and high efficiency gyroklystron amplifier, mode 

purity is one of the important factor that affect the interaction of input RF signal and 

electron beam.  To achieve higher power at higher frequencies, gyroklystron has to be 
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necessarily operated at the higher order modes, which in turn increase the size of the 

interaction structure and reduces the problem of beam interception and wall heating, which 

mainly occurs due to the miniaturization of interaction structures at these frequencies.  

However, the device operation at higher order modes increases the mode density in the 

cavity which affects the performance of the device, such as, efficiency, and desired 

operating modes.  Additionally, for such higher frequency of operation, larger magnetic 

field is required for the fundamental mode of operation which limits the application of 

gyroklystron amplifier as a millimeter-wave source and makes the system heavy and 

difficult to achieve.  The attractive alternative is to operate the device at a harmonic of the 

operating frequency so that the magnetic field requirement is reduced by the harmonic 

number s.  Such magnetic field can also be easily produced by the permanent magnetic 

systems (PMS).  However, efficiency decreases with the increase in the harmonic number, 

hence; there is a considerable interest in the second harmonic gyroklystron amplifiers. 

Moreover, higher harmonic modes are also difficult to excite because of mode competition 

from the nearby higher harmonic competing modes as well as the fundamental harmonic 

modes [Brand et al. (1992), Liu and Borie (2000)].  Therefore, the study of the multimode 

interaction becomes important for the gyroklystron amplifiers operating at its harmonics. 

Several methods have been introduced to suppress the unwanted modes like loading the 

drift tubes with dielectrics, modifying the output section to reduce the reflections off the 

nonlinear up taper [Latham (1990)] or by employing the coaxial cavities [Tiwari and 

Lawson (2007)] in the gyroklystron. 

In 1986, the time-independent nonlinear analysis of the gyroklystron amplifier was 

reported [Salop and Caplan (1986)] by extending the basic analytical approach followed for 

the gyrotron oscillators [Fliflet et al. (1982)].  In the similar fashion, the time-dependent 
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multimode nonlinear analysis has been developed for the gyroklystron amplifier by 

extending the time-dependent multimode nonlinear formulation as developed for gyrotron 

oscillators by Fliflet et al. (1981).  In addition, field profiles in the cavities have been 

computed self-consistently. The space charge effect and the effect of a velocity spread on 

the beam wave interaction in the cavities are assumed to be small and hence neglected.  The 

present time-dependent multimode analysis is used to predict the output behavior of the 

device in terms of RF output power, efficiency, gain and bandwidth and to observe the 

mode competition inside the cavity.  To validate the developed self-consistent time-

dependent multimode analysis, the design specifications of an experimental three-cavity 

Ka-band second harmonic gyroklystron amplifier has been considered [Antakov et al. 

(2011)].  

This chapter of the thesis is organized as follows.  In Section 2.2, the multimode 

nonlinear analysis including the time-dependent description of the electromagnetic fields 

and the electron motion expressions are described.  The design parameters considered for 

the analysis are discussed in Section 2.3.  Computational results obtained by the present 

time-dependent multimode nonlinear analysis are described in Section 2.4. and validated 

with the earlier reported experimental values [Antakov et al. (2011)].  Further, the 

sensitivity of RF output power, efficiency, and gain to the various device parameters are 

also discussed.  The conclusions are drawn in Section 2.5. 

2.2.  Nonlinear Analysis 

There has been a steady progress of both analytical and experimental work for the 

gyroklystron amplifiers. Theoretical analysis helps the researchers in in-depth 

understanding of the physics behind the operation of the device by taking into consideration 
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practical constraints without fabricating the actual device.  For the analysis of a 

gyroklystron amplifier, both linear and nonlinear analyses (large signal analysis) are used 

and they are supposed to perfectly verify each other in the linear interaction region.  Linear 

analysis is used for the initial study of the device without taken into consideration the real 

time parameters.  The linearization process assumes that there is no interaction between 

orthogonal EM modes in the linear regime.  In other words, the nonlinear sets of 

differential equations are linearized to study the starting conditions of the device.  Hence, 

the linear analysis is used to predict the start oscillation conditions, linear gain, and 

launching loss which can provide guidelines for the design of a stable device.  On the 

other hand, the nonlinear analysis is used to predict output power, efficiency, saturation 

gain, and phenomenon of electron cross-over and de-bunching, hence providing better 

understanding of the saturation mechanism and thereby provide complete analysis of the 

overall structure.  There are two approaches of analyzing the non-linear interaction between 

the gyrating electrons and EM fields. Firstly, the self-consistent approach in which 

modification of an axial structure of the field by the high frequency component of the 

electron current density is taken into consideration [Salop and Caplan (1986), Jianhua et al. 

(2011)].  Secondly, the non self-consistent approach in which an axial field profile is fixed, 

such that the electron beam cannot modify it significantly [Tran et al. (1985)].  The purpose 

of our work is to develop and apply a self-consistent nonlinear multimode formulation, 

which is simultaneously adoptable for efficient numerical simulations and applicable for 

the analytical considerations.  
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2.2.1.  Time-Dependent Multimode Interaction Analysis 

 In carrying out a simple and more generalized self-consistent multimode time 

dependent nonlinear analysis, the following procedures are employed.  The ensemble of 

electrons which includes the sufficient number of electrons is injected into the input cavity 

which provides the longitudinal velocity distribution and for each electron velocity; a 

uniform distribution in gyration phase angle is represented.  The generalized coupled 

nonlinear equations of motion of electrons are typically derived for the calculation of 

momentum and phase of the particles and RF electric field profile wave equation by 

considering the cumulative effect of all possible modes in the cavity.  These equations are 

then solved self-consistently for each cavity by satisfying the appropriate boundary 

conditions for the particle momentum and phases and the field profile.  

 

Figure. 2.1:  Arrangement of the gyrating electrons in Larmor orbit in the Cartesian as well  

as cylindrical coordinate systems. 

Hence, in the present analysis developed for gyroklystrons, the momentum and 

phase are obtained for each cavities of the gyroklystron amplifier such that the particle 

momentum and phases entering the adjacent cavity are considered as those at the exit of the 

first cavity except for the phase change which mainly occurs in the field-free drift tube.  

The basic formulation used in the present analysis follows the derivation of time-dependent 
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nonlinear analysis as described for gyrotron oscillators [Fliflet et al. (1991)] as described 

below: 

I.  Adiabatic equation for electron momentum and phase  

In the analysis, a thin gyrating beam of electrons is considered.  The arrangement of 

gyrating electron beam in a cylindrical cavity with all its coordinates is shown in Fig. 2.1.  

Electrons move on a helical path gyrating about the guiding center radius Rb.  

Lorentz’s force equation governing motion of electrons in the presence of 

perturbing RF fields is given by: 

0 0

1

e e

edp
P B e E P B a

dt m mγ γ

 
′+ × = − + × ≡ 

 
    ,                       (2.1) 

where, B0 is the applied magnetic field ( zBB ˆ
00 = ), p is the momentum of the electron, E 

and B are the RF electric and magnetic fields, and γ is the relativistic mass factor defined as 

2/122 ])(1[ cmp e+=γ .  Electrons’ interaction with the RF fields result in perturbations in 

their momentum and phase, i. e., their momentum and phase deviate from the normal 

values they would have possessed if there were no interaction.  To facilitate tracking of 

changes in the momentum and phase of electrons and with an observation on the most 

suitable co-ordinate system, the cylindrical co-ordinate system in this context is considered. 

Hence, the representing transverse momentum can be written in the form 

( )exp
x y t c

p ip ip i ω τ φ+ = +        ,                                (2.2) 

where, pt  and φ  are the slow time scale magnitude and phase of transverse momentum. 

The term slow time scale indicates those temporal derivatives of the two, momentum and 

phase, are quiet less than operating frequency (ω0) or the reference cyclotron frequency 

(ωc).  Before interaction, equation (2.2) can be written as: 
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0exp[ ( )]
x y t c

p ip i p i ω τ φ+ = +      ,                                     (2.3) 

where, 
0

φ  and pt are the initial gyro-phase of an electron in a beamlet and transverse 

momentum, respectively. 

On simplifying equation (2.1), it can be expressed as,  

( )0yx
x y c y x

dpdp
a ia i p ip

dt dt

γ
ω

γ
′ ′+ = + + −    ,

                             
(2.4) 

and                                    0 ( )
yx

x y c y x

d pd p
a ia i p i p

d t d t

γ
ω

γ
=′ ′− − + +     .

                              
(2.5) 

Differentiating equation (2.1) and taking complex conjugates, it can obtained as, 

exp[ ( )]( ) exp[ ( )] ,
yx t

t c c c

d pd p d pd
i i p i i i i i

dt dt dt dt

φ
ω τ φ ω ω τ φ+ = + + + +        (2.6)

 

and                                              exp[ ( )]x y t ci p p p i ω τ φ− = − +       .                                (2.7)
 

Substituting the above expressions into equations (2.4) and (2.5), it can be written as, 

  

0[ ]exp[ ( )] ( ) t
x y c t c c t

d pd
a ia i p i p

dt dt

γφ
ω τ φ ω ω

γ
′ ′+ − + = − + + +      ,

               

(2.8) 

and                     0[ ]exp[ ( )] ( ) t
x y c t c c t

dpd
a ia i p i p

dt dt

γφ
ω τ φ ω ω

γ
′ ′− + = − + − +    .                (2.9) 

Addition and subtraction of the above equations lead to the following: 

{( ) exp[ ( )] ( ) exp[ ( )]}
2

t
x y c x y c

d p i
a ia i a ia i

d t
ω τ φ ω τ φ′ ′ ′ ′= − + − + − +       ,                 (2.10) 

01 1
{( )exp[ ( )] ( ) exp[ ( )]} (1 )

2
x y c x y c c

t

d
a ia i a ia i

dt p

γφ
ω τ φ ω τ φ ω

γ
′ ′ ′ ′= − − + + + − + × − −  ,

    

(2.11) 

and                                                    z
z

d p
a

dt
′=       .

                                                        
(2.12) 
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It is considered that the electron beam interacts with one or more competing modes closely 

spaced in the cavity.  In terms of cylindrical coordinates, the total transverse electric and 

magnetic field component (in practice, the field amplitude is obtained by evaluating the real 

part) is given by: 

{ } { } 0

1
Re , ,

N

t n n
n

i t
E A z t e r e

ω
θ

=

− 
= ∑ 

 
     ,

                                  

(2.13) 

{ } { } 0

01
Re , ,t n n

N

n

i i t
B A z t b r e

z

ω
θ

ω=

 ∂ −
= −∑ 

∂ 
      ,

                         

(2.14) 

where, ˆ( )n t ne z ψ= × ∇

 

and ( )n t nb ψ= −∇  are the vector functions. ψn is scalar or 

membrane function of n
th

 mode that satisfies the Helmholtz equation.  An {z, t} is the field 

amplitude. N is the number of modes that are assumed to be interacting. The axial 

component can be given by: 

{ } 0

2

01

Re ,
t

n n

N
i

z
n

tik
B A z t e

ω
ψ

ω

−

=

  
=  

  
∑       ,

                               

(2.15) 

where, ψn is the membrane function given by 

{ } { }, exp[ ]n nmm l m lnn n n n
r C J k r i mθψ θ=     , 

and                                      

{ }2 2

1

[ ( )]
n n

nn n n nn

m l

mm l m l

C
x m J xπ

=
′ ′− ×

     .                      
   

(2.16) 

After defining the RF fields, the components xa′ , ya′ , za′  can be determined subsequently. 

As the cylindrical co-ordinate system is intended to use, the two transverse components xa′ , 

and ya′  can be defined in terms of ra′  and aθ′  as: 

cos sinx ra a aθθ θ′ ′ ′= − , and cos siny ra a aθθ θ′ ′ ′= +     .         
  

(2.17)
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To determine the components ra′ , aθ′ , and za′ , the momentum vector P in the equation (2.1) 

defined in cylindrical coordinate system as: 

ˆˆ ˆcos( ) sin( )t t zP p r p p zϕ θ ϕ θ θ= − + − +
 
, where, φ = ωcτ +φ     .         

(2.18) 

Now,   { } 0

01

Re ,
N

i t

t n t n
n

i
B A e

z
z t

ωψ
ω

−

=

∂
= ∇

∂

 
 
 
∑ and

  
{ }

1

ˆRe , o

N
i t

t n t n

n

E A z ez t
ωψ −

=

= × ∇
 
 
 
∑  . (2.19)

 

Since,
1 ˆˆn t nb r

r r

ψ ψ
ψ θ

θ

∂ ∂
= −∇ = − −

∂ ∂
, and 

1 ˆˆˆn t ne z r
r r

ψ ψ
ψ θ

θ

∂ ∂
= × ∇ = − +

∂ ∂
 , therefore,  the 

components of magnetic and electric fields can be obtained as: 

{ } { } 0

01

Re exp[ ( )],
n n nn n n n

N

r n m l m n

n

m l m l

i
B C A k J i m t

z
z t k r θ ω

ω=

∂
′= −

∂

 
 
 
∑     ,            (2.20) 

{ } { } 0

01

1
Re exp[ ( )],

n n n n n

N
n

n

n

m l m m l n

m
B C A J i t

z r
z t k r mθ θ ω

ω=

− ∂
= −

∂

  
 
  
∑  ,           (2.21) 

{ } { }2
0

01

Re exp[ ( )],
n n n n

N

z t n
n

m l n m m l n

i
B C A k J i tz t k r m θ ω

ω=

= −
  
 
  
∑   ,               (2.22) 

{ } { } 0

1

Re exp[ ( )],
n n n n n

N
n

r n

n

m l m m l n

im
E C A J i m t

r
z t k r θ ω

=

= − −
  
 
  
∑     ,             (2.23) 

and             { } { } 0

1

Re exp[ ( )],
n nn nn n

n

N

m ln n m nm lE C k A J i m tm l z t k rθ θ ω
=

′= −
  
 
  
∑    .            (2.24) 

Now, on evaluating,
 

ˆˆ[ sin( ) ] [ cos( ) ]t z z t z z rP B p B p B r p B p Bθϕ θ ϕ θ θ× = − − − − −
 

            ˆ[ cos( ) sin( ) ]
t t r

z p B p Bθϕ θ ϕ θ+ − − −     .                                        (2.25)  

therefore, 
 

( sin( )r r t za e E v v Bθϕ θ′ = − + − −    , 
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( cos( ) )t z ra e E v v Bθ θ ϕ θ′ = − − − +    , 

( cos( ) sin( ) )z t z ra e v B v Bθϕ θ ϕ θ′ = − − − −    , 

cos sinx ra a aθθ θ′ ′ ′= − , and cos siny ra a aθθ θ′ ′ ′= +    .
               

(2.26)
 

Taking simplest expression, za′ , from the above, the following expression can be obtained after 

algebraic simplification as: 

{ } { }1 0
01

Re , [ exp[ ( 1) ]
n

n n n n

n n

N

z t n m n

n

m l m l
m l

C k
a e v A z t J k r i m t i

z
θ ω ϕ

ω
−

=

 ∂
′ = − − − +

∂
∑  

       01( ) exp[ ( 1) ]}
n n n nm m lJ k r i m t iθ ω ϕ++ + − −       .                                      (2.27) 

Taking account the finiteness of the Larmor radius of the beamlet, the RF-electron 

interaction from the co-ordinate system centered at the centre of beamlets considered, rather 

than coordinate system centered along axis of the cavity. This co-ordinate transformation 

can be performed using Graf’s addition theorem [Basu (1996), Winternitz et al. (2001)].  It 

is a special case of a general addition theorem, called Neumann's addition theorem, can be 

expressed in the following form: 

{ } { } { }
[ ]( )( ) lj jl

jl jl l
jl

v

iiv
vC R e C R J r eµ

µ

µ π θ ϑθ ϑ
µη η η

∞

=−∞

− +−
+= ∑   ,

 

j l≠   ,

             

(2.28) 

where, Cν can be represented in any form of the Bessel functions Jν, Iν, Yν, Kν, Hν
(1)

, 

and Hν
(2)

. (rν, θν)  and (rl, θl) are polar coordinates centered at two different positions with 

global coordinates Oj, Ol. (Rjl, jlϑ ) are the polar coordinates of Ol with respect to Oj.  This 

expression is valid only provided that rl < Rjl (although this restriction is unnecessary if C = 

J and ν is an integer).  The right hand side of the equation (2.27) can be written in suitable 

form to apply the Graf’s theorem as: 
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{ } { }00
1 0

01

( 1)
Re , [ exp[ ( 1)( )]

n n n

n n n

N
i

t n n

n

i m it
z m m l

m lC
a e v A z t e e J k r i m

z

θ ϕω
θ θ

ω

−
−

=

− + ∂
′ = − −

∂
∑

 

 { } }01 exp[ ( 1) ]
n nn nm m lJ k r i m t iθ ω ϕ++ + − −      .                                                   (2.29)           

 
After transformation to the new co-ordinate system using a fore-mentioned theorem, the 

following changes occur in the above equation:

 

{ } { } 0
1

( 1)( 2 )

n n n n nm l L

i

m l bmJ J k r ek R µ
µ

µ π ϕ θ

µ

∞

− +

=−∞

− − − +

−∑ ,  

and         exp[ ( )]( ) exp[ ( )] .
yx t

t c c c

d pd p d pd
i i p i i i i i

dt dt dt dt

φ
ω τ φ ω ω τ φ+ = + + + + respectively. 

To obtain the slow-time scale equations, we can neglect all of the harmonics and imposing 

single harmonic interaction condition, i. e., µ  = s, for which sωc ≈ ω where, s is the 

harmonic number and replacing ϕ  by ωcτ +φ  , it can be written as: 

{ } { }
{ }

0

1

1
Re , [( ) ]

L

z b

L

N m ln ns in nz
t n m ln nn

m sn

m l
J k rCd p s

a e v A z t i J k R e
dt z rω

− − Λ

=
−

 ∂∂ 
′= = −∑ 

∂ ∂ 
 

  , (2.30)
 

where,       0 0 00( ) ( )c ns t s m sω ω τ ω φ θΛ = − + − − −    ,    

and                                                        0
/

L t
r u ω=    . 

rL is the Larmor radius. Following similar procedure: 

{ } { } { }
{ }

1
0

01

Re , , ( )
N m l Lm l n ns it n n

z n m l bn n n
L

n
n

s

m s

J k rCd p
e A z t iv A z t i J k R e

dt z r
ω

ω
− − Λ

=
−

  ∂   ∂ 
= − + × −   

∂ ∂   
   

∑  ,

   

 

(2.31) 
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{ } { } { }
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t c

N
n n n n

z n
n

m l m l
C ks ed

i A z t iv A z t A z t
d t p z s

ω
ω ω γ=


Λ ∂

= + −
∂

∑

 

                    { }
{ }

001[( ) ]
s

c

L

Ln n i
bn n n

c

s m l
m s m l

s J k r
i J k R e s

r

ω γ
ω

ω γ
− Λ−

−

∂  
× − + −  

∂  


    .       (2.32) 

Hence, finally the expressions for the momentum and phase of the particles are obtained as 

[Fliflet et al. (1991)], 

 { } [ ] ( )( )0

01

Re
N

n n
s nt L

z n

n
d p p i m sd ht zf J k r h i e
d z p d z

ψ θγ

γ ω
=

   − Λ + + − 
′= − +  

   
∑      ,     (2.33)   
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s nt Lc
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nz t nt L

sJ k rsd s
f

d z p p k r

ω γ
ω

ω γ =

′ Λ
= − − 

  
∑

                        

 

[ ] ( )0

2 2

0
0 0

Re
n t

n n
c

p pd h izh i h e m s
d z s

ω
ψ θ

γ ω ω ω γ

   − × + − Λ + + − 
    

    ,

                     

(2.34) 

and          { } [ ] ( ) 0
0 1

Re
N

itz
s nt L n n

z n

pd p d h
fnJ k r i e m s

d z p d z
ψ θ

ω
−

=

 
′= Λ + + − 

 
∑      .          (2.35) 

where, γ is updated as
 

2 2 1/2[1 ]t zp pγ = + + .  The linearized mode phase parameter can be 

written as: 

{ } { }
0

0 /n n z

t

d
n

dt
z t z v

ψ
ψ ψ= +   . 

Variables with bar represent the normalized quantities and are given 

as RL L wr r= , c wR cω ω= , nt nt wk k R= , R
w

z z= , 0 0Rw cω ω= . 

Since the electromagnetic signal is applied to the operating mode, therefore; for the 

operating mode, the initial mode amplitude at the input cavity is given by [Fliflet et al. 

(1991)]: 
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1

4
0 0

2 !
n n

s
s

n n s m l
s

f F x
s

γ β
−

−
⊥

 
′=   

 
          ,                              (2.36) 

where, Fn is the normalized field amplitude used in the gyroklystron analysis and is 

expressed as [Joye et al. (2004)]: 

{ }
4 1

0 0
1

0 2 s! n

s s

n nt bs m s
E s

F J k R
B c

β − −
⊥

− ±

 
=   

 
  .                                     (2.37) 

Here, Rb is the beam radius, the electric field amplitude E0 for a cylindrical cavity can be 

calculated in terms of RF input power Pin and quality factor Q as [Tran et al. (1986)]: 

{ }0
0 0

2

| |
n n n

in

w m m l

Q P
E

L R J xω ε π
=

′
   .                                       (2.38) 

The competing modes behave as noise for the gyroklystron amplifier, therefore; the initial 

mode amplitude for the competing modes at the input cavity can be calculated as [Fliflet et 

al. (1991)]: 

{ }2 nn n n n nt b

e

n m sm l lm
e

f x C J k R
m c

−′=   .                                   (2.39) 

a) Axial field profile function { }h z : 

 There are two principle approaches for analyzing the gyroklystron circuit which 

mainly depend upon the RF axial field profile { }h z .  In the first approach, the cold-cavity 

RF electric field profile { }h z  in each cavity can be evaluated using the scattering matrix 

formulation.  The formulation follows the assumption that cavity field profile remains 

unaltered in the presence of the electron beam, i. e., retains its cold-cavity profile 

throughout the analysis.  This approach is not fully self-consistent [Calame et al. (1999), 

Danly et al. (2000)].  Secondly, the self-consistent approach in which the cavity field 

profiles does not retain to its cold (electron beam absent) values and completely evolve 
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according to the interaction with the electron beam.  In this approach, the axial field profile 

is obtained by solving the Vlasov-like expression.  This profile is known as self-consistent 

field profile [Calame et al. (1999), Danly et al. (2000)].  The present analysis utilizes the 

second approach to compute the field axial profile in the cavity. 

In the input cavity, the interaction between the RF wave and beam particles is small enough 

and the particles (electrons) are uniformly distributed.  Hence, simple sinusoidal profile 

function is used to solve the momentum and phase equations and is given as [Geng et al. 

(2006)]:  

                  { } sin{ }zh z k z=  ,   where,   /zk Lπ=  .     For Input/Driver cavity (closed cavity). 

However, as the beam particles travel from input to the buncher cavity and then reach up to 

the output cavity, the beam-wave interaction becomes stronger and modifies the axial mode 

profile.  Thus in the succeeding cavities, the field profile is determined self-consistently 

using the modified Vlasov equation [Salop and Caplan (1986)]: 

{ }
2

2
0 02

21
nn nnt ntb bnt m sm l

d i
k h i I k C J k R

Qd z
ω µω −

  
+ − − = −  

  
   

                                             ( ) ( )
2

0

0

1

1
/ exp

2

t
t

z

nt cs

v
d J k p is

v

π

ω
π −× Λ Λ∫     ,                      (2.40) 

where, Rb is the beam radius, , Ib is the DC beam current.  The expression is used for all the 

intermediate cavities, however ohmic dissipation can be neglected (Q→∞) for the output 

cavity.  The equations (2.33) - (2.35) and (2.40) are solved simultaneously with the entry 

and exit boundary conditions depending on the type of the cavities, i. e., different for closed 

cavity (intermediate cavities) and for open-ended, waveguide cavity (output cavity) as 

explained in following subsection.  Some others assumptions are adopted to reduce the 

complexity of the analysis such as: (i) Space-charge effect is neglected in each of the 
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cavities; (ii) the velocity spread is assumed to be negligible; (iii) cavities are well isolated 

from each other. 

b) Boundary conditions: 

 If the drift tubes are well below cutoff (as for the case considered in the present 

work), the boundary conditions for the fields in the driver or buncher cavities are equivalent 

to those for the closed cavity and are given by [Salop and Caplan (1986)]: 

{ } { } 0in outh z h z= =   ,                  (2.41) 

where, inz  and outz  are the z-coordinates at the entrance and exit planes, respectively.  The 

desired solution for the particular cavity is obtained by applying the above boundary 

condition at the entrance of the cavity and then finding the appropriate values for the real 

and imaginary parts of the input field profile derivative /d h d z  which leads to the solution 

satisfying the boundary condition at the exit of the cavity. 

For the output cavity of the device, the entrance boundary condition is the same as for the 

buncher cavity. However, the exit boundary condition corresponds to the outgoing 

travelling waves and is given by:
 

{ }
out

out outz
z z

d h
ik h z

d z =

= − ,  where,   ( )
1/2

2 2
0 01 /

out ntzk kβ ω= −� .    (2.42) 

The boundary conditions on the electron beam at the entrance to the input cavity are 

described as follows [Salop and Caplan (1986)]: 

1)    All the ensemble electrons have the same total energy or equivalently the same 0γ .  

2) For each specific velocity in the distribution, there are M representative ensemble 

electrons with a uniform distribution of initial phases given by: 

0 2 /j j MπΛ = ,            1, 2,......j M=    . 
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For each of the cavities following the input cavity, the entrance boundary conditions on the 

beam correspond to the various components of the beam particle momentum and phases 

which had evolved for each particle up to that point in the structure.  The drift tube section 

is designed in such a way that no RF field is excited; therefore nf = 0.  Hence, for the drift 

tube section, the equations (2.33) and (2.35) reduce to: 

0td p

d z
= ,   and     0zd p

d z
=       .                                    (2.43) 

Thus, the individual particle momentum, pt and pz remain constant in the drift tube section. 

However, each electron continues to gyrate around the static magnetic field lines, resulting 

in the phase change and experiences the orbital bunching while passing through the drift 

tube.  Hence, in the drift tube section, equation (2.34) reduces to: 

0

0
0

1 csd

d z

γω
ω

ω γ

 Λ
= − 

 
          ,                                             (2.44) 

where, the electron relativistic mass factors signify the associated energies, so the ratio of 

the initial to final electron relativistic mass factor (γ0 /γ ) describes the physics of the 

electrons’ orbital bunching and is critical for the operation of gyroklystron amplifiers. 

II. Expressions for the mode amplitude and phase 

 After getting the equations for the movement of electrons in the interaction structure 

using Lorentz force equation, now the equations for the RF field growth are derived by 

using the above derived equations to construct the source term in the governing wave 

equation.  For a TE mode, the total transverse electric field is expressed in complex form 

as: 

{ } { } 0

1

,,
N

i t
t n n

n

E A e r ez t
ωθ −

=

= ∑    .                                (2.45) 
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The transverse electric field satisfying the wave equation as: 

2
2

02 2

1 t t
t

E J
E

tc t
µ

∂ ∂
∇ − =

∂∂
   ,

                                          
(2.46) 

where, Jt  is the transverse AC current density expressed as 

0i t
tJ J e

ω
ω

−
=    ,

 

where, 0
2

0
0

( )t

i t
J J e d t

π

ω
ω

ω∫=  and dS is infinitesimal area element of waveguide's cross 

section perpendicular to its axis. 

On substituting equation (2.45) into equation (2.46), noting that temporal amplitude 

variation (envelope’s) of the sinusoidal RF field is slow when compared to its frequency of 

oscillation ω0, i. e.,
 

0 .n
n

A
A

t
ω

∂
<<

∂  
and integrating over the resonator cross section, we get 

the following for n
th

 mode. 

{ }
0

2 22
0 0 *

0 02 2 2
2 , .

nc
n ni A z t i dSe J

tz c c
ω

ω ω ω
µ ω

 −∂ ∂
 + + = −

∂∂  
∫∫    .                  (2.47)

                       

The intermediate steps being: 

22 2 2
2 2 2

2 2 2 2
( ) ( ) ( )nc

t t t nc t t tE E k E E E
z z c z

ω∂ ∂ ∂
∇ = ∇ + = − + = − +

∂ ∂ ∂
   , 

and                     { } { }0 0

2 2
2

0 02 2
[ , ] 2 ,

i t i t
n nA z t e i A z t e

tt t

ω ωω ω− − ∂ ∂ ∂
= − − 

∂∂ ∂  
      .

                
   .

 
 

Orthnormality property of the vector functions, expressed below, is also used.  

*
,.

n n n n n n n nm l p q m l p qe e dS δ=∫∫ ,
 

, 1,
n n n nm l p qδ =

   nn pm =  and 
nn ql =  

, 0,
n n n nm l p qδ =    otherwise. 
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To obtain slow-time-scale equations, multiply equation (2.47) by *

n
A

 
and multiply the 

complex conjugate of equation (2.47) by An.  Then, the resulting two equations are added 

and subtracted, and integrate the sum or difference over the axial extent of the cavity.  The 

difference leads to:  

0 0

* * *
2 2

* * * *0
0 02 2 2

0

[[ 2 [ ]] ]n n n n
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∂ ∂ ∂ ∂
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0 0
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2 2 2 0 0[ 2 [ ]
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(2.48)

 

Similarly, the summation leads to 

2 22 2
0* * * * *
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0 0

* * *
0 0 [ ]n n n nA e J A e J dSdzi ω ωµ ω= −− ∫∫∫    .                  (2.49) 

Integrating  
2 2
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    (2.50)                                   

Similarly, integrating
2 2
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By choosing only an outgoing wave at z = L, i. e.,  

{ } { } { }[ ]
,

tnz n
n nL

i k z
A z L t a t e

ψ−= =  , it can be obtained as { }* * 2

0
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ω 
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  .

                                              

(2.51) 
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The below steps are followed to arrive at the above relation. An{z, t} inside the cavity is 

approximated by the separable form, 

{ } { } { } { }, exp .[ ]n n n nA z t a t i t h zψ= −   ,

 
0

energy

out

Q U
P

ω
=  ,

                                                       

(2.52) 

where, 
2
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0

1
{ , }

2
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energy nU A z t dzε= ∫ , therefore; 
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(2.53) 
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W a t W a t
Q
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ω ε ω µ ε

µ ε
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(2.54)

 

Hence, substituting equation (2.51) into equation (2.50), it can be obtained as:  

2
* * 2 20

2
0

( ) 2 { } 2 { }

L

n n n n nz nL nz n
nz n

W
A A A A i k a t i k a t

z z k Q c

ω∂ ∂
− = =

∂ ∂
   .                 (2.55) 

Then, the difference equation (2.48) can be derived as: 

22 2
2* * 2 20 0 0

2 2 2 2 2
0

[ 2 ] 2 { } 2 { }
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n n n n n n z n n
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W d
A A A A i A dz ik a t iW a t
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ω ω ω∂ ∂ ∂
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∫

                                            
00

* *
0 0

*[ ]n n n ni A e J A e J dS dzωωµ ω= − +∫ ∫∫  ,
         

(2.56)

  

{ } { } { } { } { } { }
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2
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0 02 2

1
4 . .Im[ [ exp [ ]]n n n n n n n

n

d i
a t a t a t a t h z e J i t dSdz

Q dt Wc c
ω

ω ω
µ ω ψ+ = − ∫∫∫ .(2.57)

 Thus, we arrive at differential equation governing mode amplitude: 

{ } { } { } { }
0

*0

0

1
.Im[ [ exp [ ]]

2 2
n n

n

n n n

d i
a t a t h z e J i t dS dz

dt Q W
ω

ω
ψ

ε
+ = − ∫ ∫∫    .

        

(2.58) 

Substituting the below expressions in the summation equation (2.49), 
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{ } { } { }* * 2 2[ ] 2 .n n n n n n n
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(2.59)
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(2.60)

 if hn is assumed symmetrical, as is the case now 0)(
0

2
=

∂

∂
L

nA
z

, since An→0  at the input 

of cavity and | An | = constant at the output of cavity, hence one can get the expression:  
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 Approximating 2 2
0 ncω ω−  as ( )0 02 ncω ω ω− , we get 
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    . (2.63)

 The differential equation governing phase of the mode can be written as: 

{ }
{ }

{ } { }
0

0

*
0

1
Re [ exp [ ]]

2
n n n n

n

t nc
d i

h z e J i t dS dz
d t a t W

ωψ ω ω ψ
ε

 
  

+ = − ∫ ∫∫    (2.64)  

Therefore, the normalized RF field amplitude and phase can be obtained from equations 

(2.65) and (2.66) as [Fliflet et al. (1991)]:
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d p
I h z dz J k r m s

d p
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ψ θ

τ ω
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−
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In is the normalization current given by: 

  

{ }

( ) { }

2
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2 2 '2 2 '2
0 1

n s

n n n n n

m nt b
n b

e n m l m m l

J k Re Z
I I

m c m x J x Wω π

−=
−

  .             (2.67) 

Hence, the mechanism of beam-wave interaction in the gyroklystron amplifier is analyzed 

by solving the coupled nonlinear differential equations describing the electron momentum 

and phase equations (2.33) - (2.35) and the coupled time-dependent equations describing the 

mode amplitude and phase equations (2.65) - (2.66).  These equations are then solved self-

consistently for each cavity by satisfying the appropriate boundary conditions for the 

particle momentum and phases and the field profile.  Hence, in the present developed 

analysis for the gyroklystrons, the momentum and phase are obtained for each cavities of 

the gyroklystron amplifier such that the particle momentum and phases entering the 

adjacent cavity are considered as those at the exit of the first cavity except for the phase 

change which mainly occurs in the field-free drift tube.   

III. Time-dependent RF output power and electronic efficiency 

 The mode amplitude fn at each time step is calculated using equation (2.65).  The 

power transfer from the electrons to the n
th 

mode in the cavity at each time step is given by 

[Fliflet et al. (1991)]: 

2 2 22 4
2

022
0

(1 / ) { }
{ } { }
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n n n n n

n

n m l m m le
n n

n m s nt b

m x J xm c
P W f

Q J k RZ e

π
τ ω τ

−

′ ′−
=      .           (2.68) 
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Figure. 2.2:  Flow chart for time-dependent multimode analysis of gyroklystron. 

 

Define input parameters: Beam voltage, operating frequency, beam current, DC 
magnetic field, pitch factor, operating mode, harmonic number, and input power. 

Input the list of interacting modes which are decided by the criteria of start oscillation 
current and coupling coefficient. 

Start 

Make a beam-wave interaction calculation by a time-step. 

Solve the coupled electron trajectory equations (2.33)-(2.35) using Runge-Kutta 4
th
 order 

method. 

Examine whether the particles have crossed the cavity i.e. solve the coupled equations 
for all the z-steps. 

Equations are then solved self-consistently for each cavity by satisfying the appropriate 
boundary conditions for the particle momentum and phases and the field profile. 

Solve the coupled mode-amplitude and phase equations (2.65)-(2.66) using Runge-Kutta 
4

th
 order method. Repeat the process for all other modes i.e. calculate amplitudes and 

phases of all modes participated in the interaction at the current time step. 

 

Is the amplitude and phases of all the modes are determined for each cavity? 

End of time-steps? 

yes 

yes 

No 

Initialize the mode amplitudes for the operating mode and all the competing modes.  

Calculate the time-dependent RF output power in each mode using equation (2.68). 

The temporal evolution of RF output power in all the modes is plotted to investigate the 
multimode behavior of the device. 

Stop 

No 
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The electronic efficiency ( elη ) can be determined as the difference between the initial 

energy and the final energy of electrons, which can be expressed in terms of the relativistic 

mass factor as: 
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− =
= =
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2.3.   Numerical Benchmarking 

 Based on the analytical method described above, a time-dependent, multimode 

nonlinear analysis for a gyroklystron amplifier is performed to examine the RF behavior of 

the overmoded cavity in the gyroklystron amplifier.  A computer friendly numerical code is 

written to analyze the beam-wave interaction mechanism in the gyroklystron amplifier.  In 

the present analysis, the coupled differential equations solving electron momentum and 

phase and the time-dependent coupled differential equations solving mode amplitude and 

phase are solved using fourth order Runge-Kutta method.  This code provides the 

comprehensive picture of the multimode effect on the performance of the device.  The flow 

chart showing the step-by step procedure of the multimode analysis carried out for 

performance evaluation is shown in Fig. 2.2. 

2.3.1. Three-Cavity, Second Harmonic Gyroklystron Amplifier  

 Moreover, the developed multimode analysis as described above has been validated 

with the recently reported experimental results of a 32.3GHz three-cavity, second harmonic 

gyroklystron amplifier operating in the TE02 mode [Antakov et al. (2011)].  In order to 

reduce the magnetic field requirement, the higher harmonic amplifier is considered.  But 

the efficiency decreases with the harmonic number, hence the presented study is limited to 

second harmonic gyroklystron amplifiers.  Table 2.1 shows the design specifications 

considered for the multimode analysis of the device.  
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Table. 2.1: Design parameters for 32.3GHz, second harmonic, three-cavity 

gyroklystron amplifier [Antakov et al. (2011)]. 

Parameters Specifications 

Operating Mode TE02 

Beam Voltage (Vb) 70kV 

Beam Current (Ib) 20A 

Velocity Pitch Factor (α) 1.1 

Beam radius (Rb) 0.43Rw 

DC Magnetic Field (B0) 0.656T 

Input Cavity Length 16mm 

Buncher Cavity Length 15mm 

Output Cavity Length 22.3mm 

Quality factor of input cavity (Q1) 600 

Quality factor of buncher cavity (Q2) 450 

Quality factor of output cavity (Q3) 1050 

 

2.4. Results and Discussion 

2.4.1. Mode Selection and Stability Analysis 

 The mode selection and stability analysis has been done as an initial study which 

signifies the selection of competing modes that affect the operating mode and device 

performance.  It includes the calculation of the two important parameters coupling 

coefficient and the start oscillation current.  

2.4.1a Coupling coefficient 

 The coupling coefficient is a measure of the coupling of the electron beam to the RF 

mode in the cylindrical cavities and is given by the expression: 

{ }

{ }
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By choosing the optimum ratio of electron beam to cavity radius, the coupling coefficient is 

maximum for the selected mode so that the desired mode is excited and other competing 

modes are suppressed.  

  

Figure. 2.3: Coupling coefficient as a function of ratio of beam to waveguide radius 

(Rb/Rw) for operating 2

02
TE  mode and possible competing modes.  

Figure 2.3 shows the plot of the coupling coefficient for various modes as a function of the 

normalized beam radius.  The first radial maximum of the 2

02TE  mode which is equal to the 

normalized beam radius of 0.43 is the normalized beam position for the maximum 2

02TE  

interaction (the superscripts in the nomenclature of modes refer to the s
th

 harmonic 

interaction number).  The value of Rb / Rw=0.43 reduces the interaction strength of possible 

competing modes and hence is used to limit the parasitic modes oscillation. 

2.4.1b  Start oscillation current 

 One of the important characteristic for the effective operation of a gyroklystron 

amplifier is the start oscillation current criteria study which signifies that the operating 

current should be less than the start oscillation current.  It is also important to estimate the 

start oscillation current of various possible competing modes.  
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Figure. 2.4: Start oscillation current for operating second harmonic mode and possible  

competing modes as a function of DC magnetic field in the input cavity, 

where the operating point B0 = 0.656T and Ib = 20A is indicated. 

By calculating and comparing the start oscillation current of desired and competing modes, 

it is ensured that the desired mode is excited with maximum efficiency at the desired power 

level, thus suppressing the unwanted modes.  The normalized start oscillation current in 

terms of normalized interaction length (µ) and detuning (∆) is given by: 
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    .       (2.72) 

The start oscillation current in Fig. 2.4 is calculated for the operating 2

02TE  mode and the 

nearby competing modes for a 32.3GHz gyroklystron amplifier as a function of DC 

magnetic field (B0) in the input cavity.  By considering the experimental value of the DC 

magnetic field of 0.656T, the start oscillation current (Ist) for the desired 2

02TE  mode in the 

input cavity is obtained as around 100A which is much larger than the operating current 

20A, thus ensuring the stable operation of the gyroklystron as an amplifier.  Further, it has 

been observed from Fig. 2.4 that the possible competing modes 2

22TE , 2

01TE  and 1

01TE  are 

suppressed as the device operating current is much lower than the start oscillation current 
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over the entire possible range of DC magnetic field B0. 

2.4.2. Time-Dependent Multimode Analysis  

 
(a) 

              
           (b) 

Figure. 2.5:  Temporal evolution of RF output power in the different modes in the output   

cavity of the operating 2

02
TE  mode (a) for a constant RF input power Pin 

=0.75kW, (b) for a ramped RF input power.   

For the design parameters shown in Table 2.1, the time-dependent self-consistent 

multimode analysis as explained in subsection 2.2.1 is carried out.  
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To obtain the analytical results equivalent to the real-time simulation model, the 

ramped RF input in the operating 2

02TE  mode is considered as shown in Fig. 2.5(b).  It is 

worth mentioning that in the case of simulation as well as for the experimental analysis, the 

RF input power is coupled to the RF input cavity of the device through an appropriately 

designed coupler where more than 95% of the power is transmitted in the operating 2

02TE  

mode.  But in the case of analysis, the RF input power is directly coupled in the main mode 

whereas competing modes are assumed to be noise.  The amplitude of RF input power (Pin) 

is increased eventually from 0.5W to 750W in the period 0 < τ <15 ns.  When τ > 15ns, the 

constant amplitude of 750W RF input power is considered.  In the beginning, the RF output 

power in the operating 2

02TE  mode begins to grow slowly and after 15ns, the beam interacts 

with the saturated RF input power.  The interaction reaches the steady state at around 

100ns.  The RF output power corresponding to the 
2
02TE

 mode eventually dominates all 

competing modes, and the mode competition is observed mainly due to the fundamental 

harmonic 1

01TE mode.  The saturated RF output power is obtained as ~ 319kW in the 

operating 2
02TE mode and ~10W in the 1

01TE
 mode.  The gain (in dB) of the device is given 

by the ratio of the saturated RF output power (~319kW) to the saturated RF input power 

(0.75kW) and is obtained as ~26.3dB.  The saturated RF output power corresponding to 

other competing 2

01TE  and 2

22TE  modes is around 0.01W and 0.001W, respectively.  
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Figure. 2.6:  Temporal evolution of RF power in the input, buncher and output cavities. 

 

Figure. 2.7:  RF output power and efficiency as a function of driver frequency.  

Figure 2.6 shows the evolution of RF power in all the cavities with time.  It is quite evident 

from Fig. 2.6 that the RF power growth is small in the input cavity since the energy 

exchange between the RF field and the electron beam is much smaller in the cavity. 

However, in the buncher and the output cavity, the electron beam continues to be velocity 

modulated for the bunching process and RF field amplification occurs.  The strong beam-

wave interaction is observed in the output cavity, producing saturated output power 

~319kW in the desired 2

02TE  mode at around 100ns. 
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Figure. 2.8:  RF output power and gain as a function of driver power. 

 The bandwidth and gain of the device are computed by plotting the variation of RF 

output power with frequency and RF driver power.  Figure 2.7 shows the variation of RF 

output power and efficiency with frequency.  It is evident from the figure that the RF output 

power ~319kW is obtained at the center frequency of 32.3GHz.  The 3dB bandwidth 

obtained through the present analysis is ~0.027% (8MHz).  Figure 2.8 shows the 

comparison of the reported experimental results [Antakov et al. (2011)] with the 

analytically obtained results for the dependence of RF output power and gain on RF input 

driver power.  The saturated RF output power is obtained as ~227kW corresponding to 

~19.54dB gain.  The analysis was carried out for a beam voltage of 65kV, beam current 

16.2A and center frequency of 32.32GHz.  The computed results obtained are in agreement 

(within 10%) with the reported experimental results. 

2.4.3.  Sensitivity Analysis 

  The effect of various parameters such as beam voltage, beam current and beam 

pitch factor have been studied to investigate the sensitivity of device performance to these 

parameters.  
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Figure. 2.9:  RF output power and efficiency as a function of beam voltage. 

       

Figure. 2.10:  RF output power and efficiency as a function of beam current. 

Figure 2.9 shows the variation of RF output power and efficiency with beam voltage for a 

20A electron beam with α = 1.1.  It is observed that the maximum RF output power 

~319kW and efficiency ~ 23% are obtained at the beam voltage of 70kV.  Figure 2.10 

shows the dependence of RF output power and efficiency on beam current for a 70kV 

electron beam with α=1.1.  It can be seen that the RF output power and efficiency increase 

with the increase in the beam current which is mainly due to the enhancement in the beam 

energy for beam-wave interaction.  As seen from the Fig. 2.10, the RF output power 
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~319kW and efficiency ~23% are obtained at a beam current of 20A.  Then, the RF output 

power decreases for higher values of beam current due to the operation of the device near 

the start oscillation current.   

       

Figure. 2.11:  RF output power and efficiency as a function of beam pitch factor.  

In Fig. 2.11, the dependence of the RF output power on the electron beam pitch factor is 

shown for a 70kV, 20A electron beam.  The maximum output power is achieved at a pitch 

factor ~1.1.  The decrease in both RF output power and efficiency has been observed for 

higher and lower values of the electron-beam pitch factor. 

2.5.  Conclusion 

 Review of the generalized linear and nonlinear analysis of the gyroklystron has been 

presented.  In the present chapter, a self-consistent, time-dependent, multimode nonlinear 

analysis has been developed to investigate the beam-wave interaction behavior in an 

overmoded cavity operation of the gyroklystron amplifier.  The developed analysis 

incorporates the effect of all nearby competing modes on the device performance, hence 

provides a realistic scenario to determine the accurate output power and efficiency in each 

mode.  The generalized coupled nonlinear equations of motion of electrons are used for the 
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calculation of momentum and phase of the particles by considering the cumulative effect of 

all possible modes.  The field-profile in each of the cavities is calculated self-consistently 

using the modified Vlasov equation.  Coupled time-dependent equations are solved to 

calculate the mode amplitude and phase in each cavity at each time step.  A flowchart 

explaining the step-by-step procedure for the multimode analysis is also shown.  A 

numerical code has been written based on the developed analysis and further benchmarked 

for the performance evaluation of the reported experimental three-cavity Ka-band second 

harmonic gyroklystron amplifier.  The linear analysis has been used for calculating the 

initial device design parameters, like coupling coefficient, start oscillation condition which 

provides the device design in terms of the beam radius, beam current and magnetic field 

corresponding to the operating mode along with the other possible competing modes.  It is 

assumed that all electrons have the same transverse velocity so that effects due to spreads in 

the spatial and velocity distribution are neglected.  For simplification, space-charge effect is 

also neglected.  From the developed analysis, the temporal evolution of the RF output 

power in all the modes is plotted and observed saturated RF output power of 319kW in the 

operating TE02 mode.  The mode competition is mainly due to fundamental harmonic TE01 

mode.  The analytical results obtained are then benchmarked with the reported 

experimental values and found to be in close agreement.  The parametric effects have been 

presented to show the device sensitivity in terms of output power with the beam parameters 

which further helpful in optimizing the design parameters.  The effect of frequency and 

gain variation on the RF output power has been studied to estimate the bandwidth and gain 

of the device.  The gain and bandwidth of the device has been obtained as ~26.3dB and 

8MHz, respectively.  The analysis developed here will be further used in the subsequent 

chapters for the design and performance improvement studies of the gyroklystron amplifier. 


