Contents

TOPICS

Page No.

List of Figures		(i-vii)
List of Tables		(ix-x)
Prefac	e	(xi-xvii)
Chapt	ter I Introduction and Literature Review	1-40
1.1	Fuel Cell	1
	1.1.1 Activation polarization	2
	1.1.2 Ohmic polarization	3
	1.1.3 Concentration polarization	3
1.2	Why Fuel Cells	4
1.3	Types of Fuel Cells	4
	1.3.1 Polymer electrolyte membrane fuel cells (PEMFC)	5
	1.3.2 Alkaline fuel cells (AFC)	5
	1.3.3 Phosphoric acid fuel cell (PAFC)	5
	1.3.4 Molten carbonate fuel cell (MCFC)	6
	1.3.5 Solid oxide fuel cells (SOFCs)	6
1.4	Solid Oxide Fuel Cell	6
1.5	Working Principle of SOFC	7
1.6	Design of SOFC	9
	1.6.1 Planer SOFC	9
	1.6.2 Tubular SOFC	10
1.7	Components of SOFC	11
	1.7.1 Electrolyte	11
	1.7.2 Anode	11
	1.7.3 Cathode	13
	1.7.4 Interconnect	13
1.0	1.7.5 Sealing	14
1.8	Solid Oxide Electrolytes High Temperature Electrolytes	14
1.9	1.0.1 Ziraanja hagad alaatralutas	15
1 10	Intermediate Temperature Electrolytes	15
1.10	1 10 1 Pi O based electrolytes	15
	1.10.1 $B_{12}O_3$ - based electrolytes	10
	1.10.2 LaGaO3-based electrolytes	10
1 1 1	Enhancement in Grein Dounderies Conductivity of Co	1 / 10
1.11	Doned Ceria	17
1.11	 1.10.2 LaGaO₃-based electrolytes 1.10.3 Doped and co-doped ceria Enhancement in Grain Boundaries Conductivity of Co-Doped Ceria 	16 17 19

1.12	Conduction Mechanism and Temperature Dependence of	21
	of Ionic Conductivity, Activation Energy and Pre-Exponenti	al
	Factor	
1.13	Dual Phase Ceria Based Composites	26
	1.13.1 Ceria-hydrate composites	26
	1.13.2 Ceria-perovskite oxide composites	26
	1.13.3 Ceria-salt based composites	27
1.14.	Nanocomposite Idea	27
1.15	Effect of Carbonate Composition and Concentration	29
1.16	Stability of SOFCs Based on Ceria/Carbonate Composite	33
	1.16.1 Materials thermal and chemical stability	33
	1.16.2 Electrochemical stability	35
1.17	Applications of SOFCs Technology	35
	1.17.1 Stationary power generation	36
	1.17.1 Transportation	36
	1.17.3 In Military sector	38
1.18	Advanced Applications of SOFC Based on Dual Phase	38
	Ceria Based Electrolytes	
	1.18.1 Solid oxide electrolysis cell	38
	1.18.2 Direct carbon fuel cell (DCFC)	38
	1.18.5 Synthesis of ammonia	39
	1.18.6 CO ₂ separation	39
Chapte	r II Objective of the Work	41-45
Chapte	r III Experimental Work	46-62
3.1	Preparation of Materials	47
	3.1.1 Preparation of nitrates	47
	3.1.2 Synthesis of ceria powders by citrate-nitrate gel	47
	auto-combustion method	
	3.1.3 Preparation of nanocomposites	49
3.2	Pellet Formation and Sintering	50
3.3	Characterizations	51
	3.3.1 Thermal analysis	51
	3.3.2 Powder X-ray diffraction	52
	3.3.3 Density and porosity measurements	54
	3.3.4 Field emission scanning electron microscope	55
	equipped with energy dispersive X-ray spectroscopy	
	3.3.5 Coefficient of thermal expansion (CTE) using	57
	dilatometer	
	3.3.6 Complex plane impedance analysis	58

Chapt	rer IV La and Sr Co-Doped Ceria, Ce _{1-x-y} La _x Sr _y O	β _{2-δ} 63-115
	(Fixed Oxygen Vacancies) and its Nanocon	nposites
4.1	La and Sr Co-Doped Ceria, Ce _{1-x-v} La _x Sr _v O _{2-δ}	63
	4.1.1 Introduction	63
	4.1.2 Results and Discussion	64
	(a) Thermal analysis	64
	(b) Crystal structure and phases	65
	(c) Microstructure	69
	(d) Electrical conductivity	72
	4.1.3 Conclusion	90
4.2	Nanocomposites of La and Sr Co-Doped Ceria,	90
	$Ce_{1-x-y}La_xSr_yO_{2-\delta}$	
	4.2.1 Introduction	90
	4.2.2 Results and Discussion	92
	(a) Thermal analysis	92
	(b) Crystal structure and phases	93
	(c) Microstructure	94
	(d) Thermal expansion	96
	(e) Electrical conductivity	97
	4.2.3 Conclusion	114
Chapt	ter V La and Sr Co-Doped Ceria, Ce _{0.85} La _{0.15-x} Sr	² xO _{2-δ} 116-159
	and its Nanocomposites	
5.1	La and Sr Co-Doped Ceria	116
	5.1.1 Introduction	116
	5.1.2 Results and Discussion	117
	(a) Crystal structure and phases	117
	(b) Microstructure	120
	(c) Electrical conductivity	124
	5.1.3 Conclusion	139
5.2	Nanocomposites of La and Sr Co-Doped Ceria	140
	5.2.1 Introduction	140
	5.2.2 Results and Discussion	141
	(a) Thermal analysis	141
	(b) Crystal structure and phases	141
	(c) Thermal expansion	143
	(d) Microstructure	144
	(e) Electrical conductivity	146
	5.2.3 Conclusion	159

Chapte	r VI Sm and Sr Co-Doped Ceria and its Nanocomposite	es 160-205
6.1	Sm and Sr Co-Doped Ceria	160
	6.1.1 Introduction	160
	6.1.2 Results and Discussion	161
	(a) Crystal structure and phases	161
	(b) Microstructure	164
	(c) Electrical conductivity	167
	6.1.3 Conclusion	185
6.2	Nanocomposites of Sm and Sr Co-Doped Ceria	185
	6.2.1 Introduction	185
	6.2.2 Results and Discussion	186
	(a) Thermal analysis	186
	(b) Crystal structure and phases	187
	(c) Microstructure	188
	(d) Thermal expansion	190
	(e) Electrical conductivity	191
	6.2.3 Conclusion	205
Chapte	r VII Ca and Sr co-doped ceria and its nanocomposites	206-248
7.1	Ca and Sr co-doped ceria	206
	7.1.1 Introduction	206
	7.1.2 Results and Discussion	207
	(a) Thermal analysis	207
	(b) Crystal structure and phases	208
	(c) Microstructure	209
	(d) Electrical conductivity	212
	7.1.3 Conclusion	228
7.2	Nanocomposites of Ca and Sr co-doped ceria	229
	7.2.1 Introduction	229
	7.2.2 Results and Discussion	229
	(a) Thermal analysis	229
	(b) Crystal structure and phases	230
	(c) Microstructure	231
	(d) Thermal expansion	233
	(e) Electrical conductivity	234
	7.2.3 Conclusion	248
Chapte	r VIII Mg and Sr co-doped ceria and its nanocomposites	s 249-297
8.1	Mg and Sr co-doped ceria	249
	8.1.1 Introduction	249

	8.1.2	Results and Discussion	251
		(a) Crystal structure and phases	251
		(b) Microstructure	252
		(c) Electrical conductivity	255
	8.1.3	Conclusion	277
8.2	Na	nocomposites of Mg and Sr co-doped ceria	277
	8.2.1	Introduction	277
	8.2.2	Results and Discussion	278
		(a) Thermal analysis	278
		(b) Crystal structure and phases	279
		(c) Thermal expansion	280
		(d) Microstructure	282
		(e) Electrical conductivity	284
	8.2.3	Conclusion	297
Chapter IX		Conclusion and Scope for the Future Work	298-300
9.1		Conclusion	298
9.2		Scope for the future work	300

References

301-322

Outcomes of the thesis

- (a) List of Publications in International Journals
- (b) List of Research Papers in International and National Conferences

LIST of FIGURES

FIGURES

Page No.

Chapter I	Introduction and Literature Review	1-40
Fig. 1.1	Working principle of fuel cell	1
Fig. 1.2	Polarization curve of fuel cell	2
Fig. 1.3	Working principle of SOFC	8
Fig. 1.4	Planer SOFC	9
Fig. 1.5	Tubular SOFC	10
Fig. 1.6	Temperature dependence of electrical conductivity	14
	of oxide ion electrolytes	
Fig. 1.7	Crystal structure of ceria	17
Fig. 1.8	EDXM spectra of a grain and grain boundary in	21
	$CeO_2:6 mol\% Gd_2O_3 sample.$	
Fig. 1.9	Variation of association energy against the dopant concentration for various rare earth cation doped ceria	23
Fig. 1.10	Log σT and Log A vs Ea plot of yttria-doped ceria	24
Fig. 1.11	Log σT and Log A vs Ea plot of gadolinia-doped ceria	25
Fig. 1.12	(a) TEM images and (b) SEM images of ceria/carbonate nanocomposites	28
Fig.1.13	Variation of ionic conductivity of composites electrolyte with carbonate compositions	29
Fig. 1.14	Variation of conductivity with carbonate content at 650 °C	30
Fig. 1.15	Electrical field at the interfaces between two constituent phase particles	32
Fig. 1.16	Conducting highways at the interfaces of two phase particles resulting in interfacial superionic conduction	33
Fig. 1.17	(a) Time dependence of electrical conductivity of GDC/(Li-K) ₂ CO ₃ composite at 600 °C in air under OCV	34
	condition (b) Evaluation of cell performances vs. time for ceria/carbonate composite electrolytes based SOFC at 550 °C	
Fig. 1.18	Basic building block for automobile APUs	36
Fig. 1.19	500 W battery charging system concept	37
Fig. 1.20	Portable SOFC system	37
Fig. 1.21	Multi-ion conduction and advanced applications of ceria/ carbonates nanocomposites	39

Chapter III	Experimental Work	46-62
Fig. 3.1	Flow chart for preparation of nitrates	48
Fig. 3.2	Flow chart for synthesis of ceria powders	49
Fig. 3.3	Flow chart of the preparation of nanocomposites	50
Fig. 3.4	Optimization of load	51
Fig. 3.5	NETZSCH Gerate Bau DTA/TGA	52
Fig. 3.6	Schematic diagram of X-ray diffractometer	54
Fig. 3.7	Working principle of FE-SEM	56
Fig. 3.8	Image of FEI NOVA NANOSEM	57
Fig. 3.9	Image of push rod dilatometer	58
Fig. 3.10	A schematic representation of impedance plot of a	61
	polycrystalline solid electrolyte with an equivalent circuit	
Fig. 3.11	A schematic diagram of sample cell used in impedance	61
	measurements	
Chapter IV	La and Sr Co-Doped Ceria, Ce _{1-x-y} La _x Sr _y O _{2-ð} (Fixed	63-115
	OxygenVacancies) and its Nanocomposites	
Fig. 4.1	DTA/TGA plot of the ash of composition CLO15	65
Fig. 4.2	Powder X-ray diffraction patterns of sintered powders for	66
	various compositions (a) CLO15 (b) CL11S2(c) CL7S4 (d)	
	CL3S6 in the system $Ce_{1-x-y}La_xSr_yO_{2-\{x/2+y\}}$	
Fig. 4.3	Variation of lattice parameter as a function of Sr ²⁺	69
	concentration in the system $Ce_{1-x-y}La_xSr_yO_{2-\{x/2+y\}}$	
Fig. 4.4	SEM micrographs of various compositions (a) CLO15	70
	(b) CL11S2 (c) CL7S4 (d) CL3S6 in the system	
	$Ce_{1-x-y}La_xSr_yO_{2-\{x/2+y\}}$	
Fig. 4.5	EDS spectrum of the composition CLO15 at three different	71
	points	
Fig. 4.6	EDS spectrum of the composition CL7S4 at three different	72
	points	
Fig. 4.7	Complex plane impedance plots of the composition CLO15	74
	at different temperatures	
Fig. 4.8	Complex plane impedance plots of the composition CL11S2	77
	at different temperatures	
Fig. 4.9	Complex plane impedance plots of the composition CL7S4	80
	at different temperatures	
Fig. 4.10	Complex plane impedance plots of the composition CL3S6	83
	at different temperatures	
Fig. 4.11	Brick layer model of polycrystalline material	86

Fig. 4.12	Arrhenius plots of all the compositions for the grain, grain boundaries and total ionic conductivity in the	87
Fig 413	DTA plots of all the CL7S4/I NCO papocomposite powders	92
Fig. 4.13	XRD patterns of all the sintered powders: (a) CL7S4/35	93
8	LNCO (b) CL7S4/30 LNCO (c) CL7S4/20 LNCO and (d) CL7S4	20
Fig. 4.15	SEM micrograph of all the compositions (a) CL7S4: after	95
C	polishing and thermal etching (b) CL7S4/20 LNCO: fractured sample (c) CL7S4/30 LNCO: fractured sample (d)	
	CL7S4/35LNCO: fractured sample	
Fig. 4.16	EDS spectrum of the composition CL7S4/35LNCO at two different points	96
Fig. 4.17	Thermal expansion curves for all the CL7S4/LNCO nanocomposites	97
Fig. 4.18	Complex plane impedance plots of the composition CL7S4/20LNCO at different temperatures	99
Fig. 4.19	Complex plane impedance plots of the composition	102
U	CL7S4/30LNCO at different temperatures	
Fig. 4.20	Complex plane impedance plots of the composition CL7S4/35LNCO at different temperatures	105
Fig. 4.21	Complex plane impedance plots of the composition LNCO at different temperatures	108
Fig. 4.22	Arrhenius plots of total conductivity for all the compositions	111
Fig. 4.23	Archie plot for the composite in the system CL7S4/LNCO	113
Chapter V	La and Sr Co-Doped Ceria, Ce _{0.85} La _{0.15-x} Sr _x O _{2-δ} and its Nanocomposites	116-159
Fig. 5.1	Powder X-ray diffraction patterns of the sintered powders in	118
-	the system $Ce_{0.85}La_{0.15-x}Sr_xO_{\{2-(0.075+x/2)\}}$ for (a) $x = 0.0$, (b) x = 0.025 (c) $x = 0.050$ and (d) $x = 0.075$	
Fig 5.2	x = 0.023, (c) $x = 0.030$ and (d) $x = 0.073$	110
1 lg. <i>J.2</i>	the system Ce _{0.85} La _{0.15-x} Sr _x O _{$2-(0.075+x/2)$}	117
Fig. 5.3	BFTEM images of the compositions (i) CLO15 (ii)	121
	CL125S025 (iii) CL10S5 (iv) CL075S075	
Fig. 5.4	SEM micrographs of different compositions in the system	122
	$Ce_{0.85}La_{0.15-x}Sr_{x}O_{\{2-(0.075+x/2)\}} (a) CL015 (b) CL125S025 (c) CL10S5 and (d) CL075S075$	
Fig. 5.5	EDS spectrum of the composition CL125S025 at three	123
	different points: (a) in the grain (b) at the grain boundary (c) at triple point	

Fig. 5.6	Complex plane impedance plots of the composition	125
Fig. 5.7	Complex plane impedance plots of the composition CL10S5 at different temperatures	129
Fig. 5.8	Complex plane impedance plots of the composition CL075S075 at different temperatures	132
Fig. 5.9	Arrhenius plots for the grain, grain boundaries and total ionic conductivity in the system $Ce_{0.85}La_{0.15-x}Sr_xO_{\{2-(0.075+x/2)\}}$	136
Fig. 5.10	DTA plots of all the composite samples of CL125S025/LNCO	141
Fig. 5.11	Powder XRD patterns of various compositions (a)CL125S025 (b) CL125S025/20LNCO (c) CL125S025/ 30LNCO and (d) CL125S025/35LNCO sintered powders	142
Fig. 5.12	Thermal expansion curves for CL125S025/LNCO composites	143
Fig. 5.13	Scanning electron micrograph of all the fractured samples (a) CL125S025 (b) CL125S025/20LNCO (c) CL125S025/30 LNCO and (d) CL125S025/35 LNCO	144
Fig. 5.14	EDS spectrum of the composition CL125S025/35LNCO at two different points	145
Fig. 5.15	Complex plane impedance plots of CL125S025/20LNCO at different temperatures	147
Fig. 5.16	Complex plane impedance plots of CL125S025/30LNCO at different temperatures	150
Fig. 5.17	Complex plane impedance plots of CL125S025/35LNCO at different temperatures	153
Fig. 5.18	Arrhenius plots of total conductivity for all the compositions	156
Fig. 5.19	Arhie plot of the system CL125S025/LNCO	158
Chapter V	T Sm and Sr Co-Doped Ceria and its Nanocomposites	160-205
Fig. 6.1	Powder XRD patterns of the sintered samples in the system $Ce_{1-x-y}Sm_xSr_yO_{1.90}$ system with (a) SDC (b) 2SrSDC (c) 4SrSDC and (d) 6SrSDC	162
Fig. 6.2	Variation of lattice parameter with Sr content in the system $Ce_{1-x-y}Sm_xSr_yO_{1.90}$	163
Fig. 6.3	SEM micrographs of thermally etched samples (a) SDC (b) 2SrSDC (c) 4SrSDC and (d) 6SrSDC	165
Fig. 6.4	EDS spectrum of the composition SDC at three different points	166
Fig. 6.5	EDS spectrum of the composition 2SrSDC at three different points	166

Fig. 6.6	Complex plane impedance plots of the composition SDC at different temperatures	168
Fig. 6.7	Complex plane impedance plots of the composition 2SrSDC	171
Fig. 6.8	Complex plane impedance plots of the composition 4SrSDC	174
Fig. 6.9	Complex plane impedance plots of the composition 6SrSDC at different temperatures	177
Fig. 6.10	Arrhenius plots for grains, grain boundaries and total conductivity of all the compositions in the system $Ce_{1-x-y}Sm_ySr_yO_{1.90}$	182
Fig. 6.11	Plots of variation of activation energy with dopant concentration for $Ce_{1-x-y}Sm_xSr_yO_{1.90}$ system	184
Fig. 6.12	DTA plots of all the samples in the system SSDC/LNCO	186
Fig. 6.13	Powder X-ray diffraction patterns of various compositions (a) Pure LNCO (b) SSDC (c) SSDC/20 LNCO (d) SSDC/30 LNCO (e) SSDC/35 LNCO	187
Fig. 6.14	Scanning electron micrograph of all the compositions (i) SSDC (ii) SSDC/20 LNCO (iii) SSDC/30 LNCO (iv) SSDC/35 LNCO	189
Fig. 6.15	EDS spectrum of the composition SSDC/35LNCO at two different points	190
Fig. 6.16	Thermal expansion curves for SSDC/LNCO composites	191
Fig. 6.17	Complex plane impedance plots of the composition SSDC/20LNCO at different temperatures	193
Fig. 6.18	Complex plane impedance plots of the composition SSDC/30 LNCO at different temperatures	196
Fig. 6.19	Complex plane impedance plots of the composition SSDC/35 LNCO at different temperatures	199
Fig. 6.20	Arrhenius plots of all the compositions in the system SSDC/LNCO	202
Fig. 6.21	Archie plot for SSDC/LNCO system	204
Chapter V	/II Ca and Sr co-doped ceria and its nanocomposites	206-248
Fig. 7.1	DTA/TGA plots of the as prepared ash of composition CCO5	207
Fig. 7.2	Powder X-ray diffraction patterns of various compositions (a) CCO5 (b) CC5S2 (c) CC5S2 (d) CC5S3 sintered at 1350 °C	208
Fig. 7.3	SEM micrographs of various compositions (a) CCO5 (b) CC5S1 (c) CC5S2 (d) CC5S3 thermally etched at 1250 °C	210
Fig. 7.4	EDS spectrum of the composition CCO5 at three different points	211

Fig. 7.5	EDS spectrum of the composition CC5S2 at three different Points	211
Fig. 7.6	Complex plane impedance plots of the composition CCO5 at different temperatures	213
Fig. 7.7	Complex plane impedance plots of the composition CC5S1 at different temperatures	216
Fig. 7.8	Complex plane impedance plots of the composition CC5S2 at different temperatures	219
Fig. 7.9	Complex plane impedance plots of the composition CC5S3 at different temperatures	222
Fig. 7.10	Arrhenius plots of all the compositions in the system $Ce_{0.95-x}Ca_{0.05}Sr_xO_{1.95-x}$	226
Fig. 7.11	DTA plots of all the samples in the system CC5S2/LNCO	230
Fig. 7.12	Powder X-ray diffraction patterns of various compositions (a) CC5S2 (b) CC5S2 /20 LNCO (c) CC5S2 /30 LNCO and (d) CC5S2 /35LNCO	231
Fig. 7.13	Scanning electron micrograph of all the fractured samples (a) CC5S2 (b) CC5S2 /20 LNCO (c) CC5S2/30 LNCO and (d) CC5S2/35 LNCO	232
Fig. 7.14	EDS spectrum of the composition CC5S2/LNCO at two different points	233
Fig. 7.15	Thermal expansion curves for CC5S2/LNCO composites	234
Fig. 7.16	Complex plane impedance plots of the composition CC5S2/20LNCO at different temperatures	236
Fig. 7.17	Complex plane impedance plots of the composition CC5S2/30LNCO at different temperatures	239
Fig. 7.18	Complex plane impedance plots of the composition CC5S2/35LNCO at different temperatures	242
Fig. 7.19	Arrhenius plots of total conductivity for all the compositions	246
Fig. 7.20	Archie plot for the system CC5S2/LNCO	247
Chapter V	VIII Mg and Sr co-doped ceria and its nanocomposites	249-297
Fig. 8.1	Powder X-ray diffraction patterns of the sintered powders of compositions (a) CMO10 (b) CM8S2 (c) CM6S4 and (d) CM4S6 in the system $Ce_{0.90}Mg_{0.10-x}Sr_xO_{1.90}$	251
Fig. 8.2	SEM micrograph of the fractured samples in the system $Ce_{0.90}Mg_{0.10-x}Sr_xO_{1.90}$ for (a) CMO10 (b) CM8S2 (c) CM6S4 and (d) CM4S6	253

Fig. 8.3	EDX spectrum of the composition CMO10 at two different points: Spectrum 1 (in the grain) Spectrum 2 (at the grain boundary)	254
Fig. 8.4	EDX spectrum of the composition CM6S4 at two different points: (a) in the grain (b) at the grain boundary (c) at triple point	255
Fig. 8.5	Complex plane impedance plots of the composition CMO10 at different temperatures	257
Fig. 8.6	Complex plane impedance plots of the composition CM8S2 at different temperatures	261
Fig. 8.7	Complex plane impedance plots of the composition CM6S4 at different temperatures	265
Fig. 8.8	Complex plane impedance plots of the composition CM4S6 at different temperatures	269
Fig. 8.9	Arrhenius plots of all the compositions in the system $Ce_{0.90}Mg_{0.10}Sr_{x}O_{1.90}$	274
Fig. 8.10	DTA plots of all the composite samples (a) CM6S4/20LNCO (b) CM6S4/30LNCO and (c) CM6S4/35LNCO	279
Fig. 8.11	Powder X-ray diffraction patterns of all the compositions (a) CM6S4 (b) CM6S4/20 LNCO (c) CM6S4/30LNCO and (d) CM6S4/35LNCO	280
Fig. 8.12	Thermal expansion curves for CM6S4/LNCO composites	281
Fig. 8.13	SEM micrograph of all the sintered fractured samples (a)	282
-	CM6S4 (b) CM6S4/20 LNCO (c) CM6S4/30 LNCO and (d) CM6S4/35 LNCO	
Fig. 8.14	EDS spectrum of the composition CM6S4/35LNCO at two different points	283
Fig. 8.15	Complex plane impedance plots of the composition CM6S4/20LNCO at different temperatures	285
Fig. 8.16	Complex plane impedance plots of the composition CM6S4/30LNCO at different temperatures	288
Fig. 8.17	Complex plane impedance plots of the composition CM6S4/35LNCO at different temperatures	291
Fig. 8.18	Arrhenius plots of total conductivity for all the compositions	294
Fig. 8.19	Arhie plot for composites in the system CM6S4/LNCO	296

LIST OF TABLES

TABLE

]	Page No.
Chapter III	Experimental Work	46-62
Table. 3.1	List of chemicals used	46
Table. 3.2	Calcination temperature and time of all the compositions	48
Chapter IV	La and Sr Co-Doped Ceria, Ce _{1-x-y} La _x Sr _y O _{2-δ} (Fixed	63-115
	OxygenVacancies) and its Nanocomposites	
Table. 4.1	Crystallite size (calcined powders), lattice parameter and %	67
	theoretical density (TD) of all the compositions in the syste C_{P} = L a Sr O_{P} =	m
Table 4.2	$Cc_{1-x-y}La_x Si_y O_{2-\delta}$ Total conductivity (at 500 °C and 600 °C) activation energy	7 80
1 4010. 4.2	of grains (F) grainboundaries (F) and total (F)	y 07
	conductivity of various compositions of the system	
	$Ce_{1} \times vLa_{x}Sr_{y}O_{2} (v/2+v)$	
Table, 4.3	Coefficient of thermal expansion of all the composites	97
Table. 4.4	Total conductivity at 500 °C and activation energy for all	114
	the samples	
Chapter V	La and Sr Co-Doped Ceria, Ce _{0.85} La _{0.15-x} Sr _x O _{2-δ} and its	116-159
	Nanocomposites	
Table. 5.1	Crystallite size (calcined powders), lattice parameter	119
	and % theoretical density of compositions of the system	
	$Ce_{0.85}La_{0.15-x}Sr_xO_{\{2-(0.075+x/2)\}}$	
Table. 5.2	Total conductivity (σ_t) at 600 °C, and configurational	138
	entropy (S) of various compositions in the system	
T 11 5 2	$Ce_{0.85}La_{0.15-x}Sr_{x}O_{\{2-(0.075+x/2)\}}$	1 100
Table. 5.3	Activation energy of grains (E _g), grain boundaries (E _{gb}) and $(E_{gb}) = 1$	1 139
	total (E_t) conductivity and blocking factor (α_{gb}) of various	
T-1-1- 5 4	compositions in the system $Ce_{0.85}La_{0.15-x}Sr_xO_{\{2-(0.075+x/2)\}}$	142
1 able. 5.4	composites	143
Table. 5.5	Total conductivity at 500 °C, activation energy and	157
	pre-exponential factor (σ_0) for all the compositions	

Chapter VI Table. 6.1	Sm and Sr Co-Doped Ceria and its Nanocomposites Crystallite size (calcined powders), lattice parameter and % theoretical density of all the compositions in the system Ce _{1 × v} Sm _v Sr _v O _{1 90}	160-205 164
Table. 6.2	Activation energy of grains (E_g), grain boundaries (E_{gb}) and total (E_t) conductivity of all the compositions in the system Ce _{1-x-y} Sm _x Sr _y O _{1.90}	181
Table. 6.3	Grain boundary blocking factor, α_{gb} at 400 °C, configurational entropy (S) and total ionic conductivity (σ_t) at 600 °C of all the compositions in the system Ce _{1-x-y} Sm _x Sr _y O _{1.90}	183
Table. 6.4	Values of CTE for all the composite samples	191
Table. 6.5	Total conductivity at 500 °C, pre-exponential factor (σ_0) and activation energy at temperature >400 °C for all the compositions	203
Chapter VII	Ca and Sr co-doped ceria and its nanocomposites	206-248
Table. 7.1	Crystallite size, lattice parameter and % theoretical	209
	density of compositions in the system Ce _{0.95-x} Ca _{0.05} Sr _x O _{1.95}	-x
Table. 7.2	Activation energy for conductivity of grains (E _g),	227
	grain boundaries (E_{gb}) , total (E_t) and pre-exponential factor	
Table. 7.3	Total conductivity (σ_t) and configurational entropy (S) of all the compositions	227
Table. 7.4	Coefficient of thermal expansion of all the composites	235
Table. 7.5	Total conductivity at 500 °C, activation energy and	246
	pre-exponential factor for all the compositions	
Chanter VIII	Mg and Sr co-doned ceria and its nanocomposites	249-297
Table 8.1	Crystallite size lattice parameter and % theoretical	252
14010.0.1	density of compositions of the system	202
	$Ce_{0.90}Mg_{0.10-x}Sr_{x}O_{1.90}$	
Table, 8.2	Activation energy for conduction of grains, grain	275
	boundaries and total conductivity of various compositions	
	in the system $Ce_{0.90}Mg_{0.10-x}Sr_xO_{1.90}$	
Table. 8.3	Total conductivity at 500 and 700 °C and configurational	276
	entropy of various compositions in the system	
	$Ce_{0.90}Mg_{0.10-x}Sr_xO_{1.90}$	
Table. 8.4	Coefficient of thermal expansion of all the composites	282
Table. 8.5	Total conductivity at 500 °C, activation energy and	295
	pre-exponential factor for all the compositions	