Table of Contents

Title	Page No.
Certificate	ii-iv
Acknowledgement	V
Table of Contents	vi- x
List of Figures	xi-xiii
List of Tables	xiv
List of Abbreviation and Symbols	xv- xvi
Abstract	xvii-xxiii
1. Introduction	1-17
1.1 An overview of the global water scenario	1
1.2 Groundwater scenario of India	3
1.3 Status of groundwater and surface water quality in Singrauli coalfield	6
1.4 Overview of the impacts of coal mining activities on environment and	8
human health	
1.4.1 Impact on topography & drainage	9
1.4.2 Impact on groundwater quality and quantity	9
1.4.3 Impact on aquifer system	10
1.4.4 Impact on surface water quality	10
1.4.5 Impact on air quality	11
1.4.6 Impact on soil properties	12
1.4.7 Impact on land use /land cover (LULC)	12
1.4.8 Impact of coal mining on human health	13
1.5 Application of remote sensing and GIS in water resources	14
1.6 Statement of the Problems	15
1.7 Organization of Thesis	16
1.8 Objective of the Study	17
2. Literature Review	18-47
2.1 Studies on assessment of groundwater level	18
2.2 Studies on delineation of groundwater potential zone	24
2.3 Studies on water quality assessment	30

2.4 Studies on land use / land cover changes	42
3. Study Area	48-63
3.1 Description of the study area	48
3.2 Topography of the study area	50
3.3 Geomorphology of the study area	51
3.4 Geology of the study area	52
3.4.1 Precambrian Basement	54
3.4.2 Talchir Formation	54
3.4.3 Barakar Formation	55
3.4.3.1 Kota Seam	55
3.4.3.2 Turra Seam	56
3.4.3.3 Purewa Seam	56
3.4.3.4 Khadia Seam	56
3.4.3.5 Pani Pahari Seam	56
3.4.4 Barren Measures	57
3.4.5 Raniganj Formation	57
3.5.6 Panchet Formation	57
3.4.7 Mahadeva Formation	58
3.5 Hydrogeology	58
3.6 Slope of the study area	59
3.7 Soil characteristics of the study area	60
3.8 Drainage pattern of the study area	61
3.9 Lineament feature of the study area	62
3.10 Flora and Fauna	63
4. Materials and Methods	64-81
4.1 Secondary data collection	64
4.2 Instrument and software used	64
4.3 Methodology adopted for assessment of groundwater level fluctuation	65
4.3.1 Preparation of various thematic maps	66
4.3.2 Groundwater level monitoring	66
4.4 Methods for computing groundwater potential zone	
4.5 Sample collection, Preservation and Analysis	
4.5.1 Groundwater sampling techniques	69

4.5.2 Preservation of groundwater samples	73
4.5.3 Labelling of groundwater samples	73
4.5.4 Separation of suspended sediments	74
4.5.5 Methods of analysis	74
4.6 GIS analysis for various water quality parameters	76
4.7 Calculation of CCME Water Quality Index	77
4.8 Statistical analysis	79
4.9 Methods adopted for analysis of land use/land cover changes	79
4.9.1 Data Source	79
4.9.2 Mapping	80
4.9.3 Change Analysis	80
4.9.3.1 Percent change estimation	81
4.9.3.2 Rate of LULC change	81
5. Results and Discussion	82-159
5.1 Meteorological parameters of the study area	82
5.1.1 Climate	82
5.1.2 Annual rainfall patterns	82
5.1.3 Relative humidity	
5.2 Assessment of groundwater level fluctuation of the study area	84
5.2.1 Groundwater level monitoring stations	84
5.2.2 Comparative analysis of WLF with various hydrogeological	85
parameters using GIS 5.2.2.1 GIS analysis of WLF under different slope classes	86
5.2.2.2 GIS analysis of WLF under different elevation classes	80 87
5.2.2.3 GIS analysis of WLF under different geological formation	88
5.2.2.4 GIS analysis of WLF under drainage pattern	90
5.2.2.5 GIS analysis of WLF under different soil classes	91
5.2.3 Depth to groundwater level of pre-monsoon	93
5.2.4 Depth to groundwater level of post-monsoon	94
5.2.5 Water level fluctuation (WLF) of the study area	95
5.3 Delineation of groundwater potential zones using remote sensing,))
GIS and MIF techniques	99
5.3.1 Multi influencing factors (MIF) of groundwater potential zones	99

5.3.2 Assigning of weights	100
5.3.3 Weighted Overlay Method	103
5.3.4 Hydrologic Thematic Layers	104
5.3.4.1 Land use /land cover (LULC)	104
5.3.4.2 Lineament density	105
5.3.4.3 Drainage density	106
5.3.4.4 Slope	107
5.3.4.5 Geology	108
5.3.4.6 Soil	109
5.3.5 Ground water potential zone map of the study area	109
5.4 Qualitative Assessment of Groundwater	111
5.4.1 Characteristics of physicochemical parameters and heavy metals	113
along with spatial distribution maps	115
5.4.1.1 pH and Electrical Conductivity (EC)	114
5.4.1.2 Total Dissolved Solids (TDS)	114
5.4.1.3 Bicarbonate (HCO ₃ ⁻)	114
5.4.1.4 Chloride (Cl ⁻)	115
5.4.1.5 Sulphate (SO ₄ ²⁻)	116
5.4.1.6 Nitrate (NO ₃ ⁻)	117
5.4.1.7 Fluoride (F)	118
5.4.1.8 Calcium (Ca ²⁺)	119
5.4.1.9 Magnesium (Mg ²⁺)	120
5.4.1.10 Sodium (Na ⁺)	121
5.4.1.11 Potassium (K ⁺)	122
5.4.1.12 Total Hardness (TH)	123
5.4.1.13 Iron (Fe)	124
5.4.1.14 Copper (Cu)	125
5.4.1.15 Lead (Pb)	126
5.4.1.16 Cadmium (Cd)	127
5.4.1.17 Chromium (Cr)	128
5.4.1.18 Nickel (Ni)	129
5.4.1.19 Zinc (Zn)	130
5.4.2 Major Ions Chemistry	131

5.4.2.1 Anion Chemistry	131
5.4.2.2 Cation Chemistry	132
5.4.3 Correlation Analysis	133
5.4.4 CCME Water Quality Index of Groundwater	135
5.4.5 Hierarchical Cluster Analysis (HCA)	139
5.4.6 Geochemical classification and hydrogeochemical facies of	1.4.1
the groundwater	141
5.4.6.1 Piper Trilinear Diagram	141
5.4.6.2 Gibb's Diagram	144
5.4.7 Suitability of groundwater for irrigational purposes	146
5.4.7.1 Sodium Absorption Ratio (SAR)	146
5.4.7.2 Sodium Percentage (%Na)	148
5.4.7.3 Kelly Ratio (KR)	150
5.4.7.4 Magnesium Hazard (MH)	151
5.5 Analysis of land use / land cover (LULC) changes from 1990 to 2019	153
5.5.1 Areal statistics of LULC	153
5.5.2 Percent change analysis of LULC	156
5.5.3 Rate of LULC changes	157
6. Effective Management of Groundwater	160-170
6.1 Augmentation of Groundwater Recharge Potential	160
6.1.1 Afforestation and Plantations	160
6.1.2 Rainwater Harvesting and Artificial Recharge	160
6.2 Water treatment Technology	169
6.3 Other Strategy	170
7. Conclusions and Future Suggestions	171-177
7.1 Conclusions	171
7.2 Suggestions for future work	177
8. References	178-201
Appendices	202-205
Appendix A.1	202
Appendix A.2	204
List of Publications and Papers Presented in Conferences	206

Líst	of	Fígures
------	----	---------

Figure No.	Caption	Page No.
1.1	Distribution of the Earth's water	2
1.2	Geographical distribution of various categories of assessment	5
	units	
1.3	Impacts of coal mining on the environment and human health	8
3.1	False Colour Composite (FCC) of study area	49
3.2	Contour line map of the study area	51
3.3	Geomorphological map of the study area	52
3.4	Geological map of the study area	53
3.5	Slope map of the study area	59
3.6	Soil map of the study area	60
3.7	Drainage map of the study area	61
3.8	Lineament map of the study area	62
4.1	Methodology adopted for carrying out the objective	65
4.2	Sensor-based water level indicator	66
4.3	Photograph showing monitoring of groundwater level	67
4.4	Flowchart for delineating the groundwater potential zone	68
4.5	Flow chart of analytical methods	70
4.6 (a) & (b)	Field photograph showing sampling of groundwater	71-72
4.7	Photograph showing collected groundwater samples	73
4.8	Photograph showing analysis of water samples using Multi-	75
	parameter kit	
4.9	Photograph showing analysis of water samples using Ion	76
	Chromatography	
4.10	Photograph showing analysis of water samples using ICP-MS	76
5.1	Graph representing annual average rainfall	82
5.2	Location map of the monitoring dug-wells of the study area	85
5.3	Slope map of the study area	86
5.4	Elevation map of the study area	88
5.5	Geological map of the study area	89
5.6	Drainage map of the study area	91

5.7	Soil map of the study area	92
5.8	Groundwater level map during the pre-monsoon season	93
5.9	Groundwater level map during the post-monsoon season	94
5.10	Groundwater level fluctuation map of the study area	95
5.11	Graph showing WLF v/s Percentage of dug wells of the study	96
	area	
5.12	Bar graph showing WLF of dug-wells in the study region	97
5.13	Interrelationship between the multi-influencing factors	100
	concerning the groundwater potential zone	
5.14	GIS techniques used for groundwater potential zone	103
5.15	Land use/land cover (LULC) map of the study area	104
5.16	Lineament density map of the study area	106
5.17	Drainage density map of the study area	107
5.18	Groundwater potential zone map of the study area	110
5.19	Location map of groundwater sampling stations	111
5.20	Spatial distribution of Chloride in the study area	115
5.21	Spatial distribution of Sulphate in the study area	117
5.22	Spatial distribution of Nitrate in the study area	118
5.23	Spatial distribution of Fluoride in the study area	119
5.24	Spatial distribution of Calcium in the study area	120
5.25	Spatial distribution of Magnesium in the study area	121
5.26	Spatial distribution of Sodium in the study area	122
5.27	Spatial distribution of Potassium in the study area	123
5.28	Spatial distribution of Iron in the study area	124
5.29	Spatial distribution of Copper in the study area	125
5.30	Spatial distribution of Lead in the study area	126
5.31	Spatial distribution of Cadmium in the study area	127
5.32	Spatial distribution of Chromium in the study area	128
5.33	Spatial distribution of Nickel in the study area	129
5.34	Spatial distribution of Zinc in the study area	130
5.35	Percentage contributions of major anions	131
5.36	Box-whisker plot of major anions	131
5.37	Percentage contributions of major cations	132

5.38	Box-whisker plot of major cations	132
5.39	Graphical representation of water quality index	136
5.40	Spatial distribution of CCME WQI in the study area	137
5.41	Pie chart representing CCME WQI categories	137
5.42	Dendrogram of the HCA based on WQI of the sampling	140
	stations	
5.43	Piper diagram for describing the hydro-geo-chemical facies	142
	variations	
5.44	Modified Piper plot of the classification scheme for hydro-	143
	geo-chemical facies variations	
5.45	Gibbs diagrams for groundwater samples	145
5.46	US Salinity diagram for the classification of irrigation water	147
5.47	Classification of irrigation water based on the Wilcox plot	149
5.48	Classify land use / land cover (LULC) maps of the study area	154
5.49	Bar showing LULC area distribution of the study area (1990–	155
	2019)	
5.50	Bar showing change in LULC classes of the study area from	157
	1990 to 2019	
6.1	Diagram showing cross-section of the Storage tank	163
6.2	Components of rainwater harvesting and artificial recharge	164-167
	structure	
6.3	Map shows the suggested locations of the rainwater	168
	harvesting structure	
6.4	Flow chart of water quality management in coal mine	169

List of Tables

Table No.	Caption	Page No.
3.1	General stratigraphic succession of the Singrauli Coalfield	54
4.1	Analytical methods used for water quality analysis	74
4.2	Remote sensing data and their source used for the study	80
5.1	Annual rainfall data of the study area during 2009-2018	83
	period	
5.2	Effect of influencing factor, relative rates and score for each	101
	potential factor.	
5.3	Weightage assigned to each factor based on their effect on the	102
	GWPZ	
5.4	Details of sampling stations of the groundwater samples	112
5.5	Statistical summary of physicochemical parameters and	113
	heavy metals and its comparison with WHO (2011)	
	Standards	
5.6	Correlation coefficient matrix of water quality parameters	134
5.7	Classification of CCME WQI range and category of water	135
5.8	CCME Water Quality Index for groundwater of study region	138
5.9	Classification of water suitability for irrigation based on SAR	148
5.10	Classification of water suitability for irrigation based on Na%.	150
5.11	Classification of irrigation water based on Kelly's ratio	151
5.12	Computed values of SAR, Na%, KI and MH in the study area	152
5.13	Areal classification of LULC classes in the study area	155
5.14	Net change in areal extent of LULC classes	156
5.15	Rate of change in LULC classes of the study area	158

List of Abbreviations/Symbols

AMD	Acid Mine Drainage
APHA	American Public Health Association
ASTER	Advanced Spaceborne Thermal Emission and Reflection Radiometer
BCM	Billion cubic meter
BIS	Bureau of Indian Standards
CCME	Canadian Council of Ministers of the Environment
CGWB	Central Ground Water Board
CMPDI	Central Mine Planning and Design Institute
CPCB	Central Pollution Control Board
D_d	Drainage density
DEM	Digital Elevation Model
DW	Dug-Well
EC	Electrical Conductivity
EDTA	Ethylene Diamine Tetra Acetic Acid
FCC	False Colour Composite
GEC	Groundwater Estimation Committee
GIS	Geographic Information System
GPS	Global Positioning System
GSI	Geological Survey of India
GW	Groundwater
GWPZ	Groundwater Potential Zone
HCA	Hierarchical Cluster Analysis
IC	Ion Chromatography
ICP	Inductively Couple Plasma
IDW	Inverse Distance Weighting
IMD	India Meteorological Department
IS	Indian Standards
KR	Kelly's Ratio
Ld	Lineament density
LISS	Linear Imaging Self Scanner sensor
LULC	Land Use/ Land Cover

Meter below ground level
Milligram per litre
Magnesium Hazard
Multi-Influencing Factor Technique.
Mean Sea Level
Northern Coalfield Limited
National Power Thermal Corporation
Operational Land Imager
Particulate Matter
Rainwater Harvesting Structure
Sodium Adsorption Ratio
Total Dissolved Solids
Total Hardness
Thematic Mapper
United States Geological Survey
World Health Organisation
Water Level Fluctuation
Water Quality Index

Abstract

Water is essential for the survival of all forms of life and the livelihood of the human population. Water trapped in ice caps, glaciers and lakes providing fresh water for life on earth. Among them, groundwater preserved as freshwater is the source of supply for almost all places. Groundwater has steadily emerged as the backbone of India's agriculture and drinking water security. Groundwater has made significant contributions to the growth of India's Economy. Increasing population, growing urbanization and rapid industrialization combined with the need for raising agricultural production generate competing water demands. Both quality and quantity of groundwater are at risk due to rapid industrialization and urbanization.

Opencast coal mining activities have caused major environmental impacts throughout the world in the last few decades. The mining activities may cause changes in aquifer potential, change in topography and land disturbance. Impacts of open cast coal mining on groundwater generally comprise two phenomena occurring simultaneously viz., water contamination and declination in the groundwater level.

The present research work has been carried out in the Singrauli coalfields situated in central India under Northern Coalfields Ltd, (NCL). The Singrauli coalfield has been divided into ten active mining blocks viz. Kakri, Bina, Krishnashila, Khadia, Dudhichua, Jayant, Nigahi, Amlohri, Block-B and Jhingurdah. These mines were contributed 101.50 MT in 2018-19, approx. 14% of the total coal production through large scale mechanized opencast mining. Several pollutions producing industries such as Singrauli super thermal power plant, Vindhyachal super thermal power plant, Northern coal limited, Sasan coal of Reliance, Kanoria chemicals and many others are regularly increasing the amount of pollution via disposing of different nature of the material in the nearby environment, which affects groundwater resources of the area.