CONTENTS

Descript	ion	Page No.
Certificate		i
Declaratio	n by the Candidate	ii
Copyright	Transfer Certificate	iii
Acknowle	dgement	iv
CONTEN	TS	v
LIST OF 7	ΓABLE	ix
LIST OF I	FIGURE	X
LIST OF S	SYMBOLS AND ABBREVIATIONS	XV
ABSTRA	СТ	xvii
CHAPTEI	R 1	1
INTRODU	JCTION	1
1.1 C	General	1
1.2 S	tatement of Problem	2
1.3 C	Organization of Thesis	3
CHAPTEI	R 2	5
OBJECTI	VE	5
2.1. 0	General	5
2.2. K	Xey Objectives	5
CHAPTEI	R 3	6
LITERAT	URE SURVEY	6
3.1 C	General	6
3.2 E	Bord & Pillar Mining	6
3.2.1	Conventional method	7
3.2.2	Mass production technology using continuous miner	8
3.3 N	Aechanized Depillaring in Indian Coal Mines	9
3.4 N	Aanner of Pillar Extraction	10
3.5 F	factors affecting the integrity of mine structures	11
3.5.1	General	11
3.5.2	Strength of Rock	12
3.5.3	Excavation Geometry	13

3.5.	4 Forces applied to the coal mine roof	16
3.6	Roof Bolt application	19
3.6.	1 General	19
3.6.	2 Type of Bolt	20
3.7	Guidelines for the selection of the rock bolt system	21
3.7.	1 Analytical Approach	22
3.7.	2 Empirical Approach	23
3.8	Numerical Modelling Approach	27
3.8.	1 Boundary element models	27
3.8.	2 Finite Element Model	28
3.8.	3 Finite difference method (FDM)	28
3.8.	4 Selection of suitable Numerical Modelling Method	29
CHAPT	ER 4	
METHC	DOLOGY	
4.1	Background	31
4.2	Different steps of study	33
CHAPT	ER 5	
FIELD S	STUDIES	
5.1	Background	35
5.2	Details of the field studies	35
5.2.	1 Case I: Pinoura Mines, SECL	35
5.2.	2 Case II: GDK – 5A, SCCL	42
5.2.	3 Summary	45
CHAPT	ER 6	
SIMULA	ATION OF CASE STUDY AND ITS VALIDATION	46
6.1	General	46
6.2	Numerical Modelling	46
6.3	Mohr Columb Failure Criteria	47
6.4	Calibration of Strain softening model	49
6.5	Simulation of CASE 1 and CASE II	51
6.5.	1 Model preparation	51
6.5.	2 Material Properties	53
6.5.	3 In-situ stresses	54

6.5	.4 Boundary Condition	55
6.5	.5 Input data for the rock bolt model	55
6.5	Results of CASE I:	56
6.5	Results of CASE II:	59
6.6	Summary	61
CHAPT	ГЕ R 7	62
PARAN	METRIC STUDY	62
7.1	General	62
7.2	Depth of coal seam	62
7.3	RMR of roof	64
7.4	Gallery width	64
7.5	Different combination of bolt pattern/bolt density (m ² /bolt)	65
7.6	Model Preparation for parametric study	66
7.6.1	Model Geometry	66
7.6.2	Selection of appropriate material behaviour model	68
7.6.3	Material property	68
7.6.4	In-situ stress and boundary condition	68
7.6.5	Installation of rock bolt	69
7.6.6	Simulation of model	69
7.6.7	Model simulated in in - situ condition	69
7.6.8	Simulation of model during development	70
7.6.9	Simulation of model at different stages of depillaring operation	70
7.7	Summary	72
CHAPT	TER 8	73
RESUL	T & ANALYSIS	73
8.1	General	73
8.2	Simulation Results of Parametric study	73
8.3	Results of RLH and Axial Load Stage wise	75
8.3	1.1 Case $ABCX_1$	75
8.3	2.2 Case ABCX ₂	77
8.3	Case $ABCX_3$	80
8.3	A Case ABCX ₄	82
8.3	.5 Comparison of RLH for different cases	84

8.3.	6 Comparison of axial load for different cases	86
8.3.	7 Optimum support Design for selected Case	87
8.4	Effect of depth of cover of coal seam on axial load & RLH	90
8.5	Effect of RMR on axial load & RLH	92
8.6	Effect of Gallery size on axial load & RLH	94
8.7	Pick up Vs. length Roof yield	96
8.8	Axial load Vs. Influence zone with variable depth of working	97
8.9	Mathematical expression derived by using Statistical analysis	99
8.10	Summary	100
CHAPT	ER 9	102
CONCL	USIONS AND RECOMMENDATION FOR FUTURE WORK	102
LIST OI	F PUBLICATION BASED ON THESIS	107
REFER	ENCES	108
APPEN	DIX	117

Table No.	Title	Page No.
Table 3.1 Different mechaniz	zed depillaring faces using CM in India	10
Table 3.2 CMR-ISM RMR r	oof classification	25
Table 5.1 Description of case	e	35
Table 5.2 Brief information	of mines (Pinoura, SECL)	36
Table 5.3 Brief information	of Mine GDK-5A, SCCL	43
Table 6.1 Name of mine with	h geo-mining and geo-technical parameters	50
Table 6.2 Physico-Mechanic	al properties of the rock strata (Pinoura Min	ne, SECL)53
Table 6.3 Geo-technical pr	operties for the numerical model (Pinour	ra Mine, SECL)
		53
Table 6.4 Physico-Mechani	cal properties of the rock strata (GDK 5A	A Incline, SCCL
mine)		54
Table 6.5 Geo-technical pro	operties for the numerical model (GDK-5A	A Incline, SCCL
mine)		54
Table 6.6 Input data for rock	bolt element used for numerical model	56
Table 7.1 Different mechaniz	zed depillaring faces using CM in India	63
Table 7.2 Nomenclature of d	lifferent cases used in parametric study	63
Table 7.3 Rock mass propert	ies used in parametric study	68
Table 8.1 Cases for detail dis	scussion with variable bolt density	75
Table 8.2 Input and Output	at parameters considered for optimum de	esign of support
system		88

LIST OF TABLE

LIST OF FIGURES

Figure No. Title	Page No.
Figure 3.1 Typical Layout Development Panel of Continuous miner wor	king 8
Figure 3.2 Typical Layout of Depillaring Panel of Continuous miner wor	rking 9
Figure 3.3 Manner of pillar extraction in MD operation in India	11
Figure 3.4 Range of compressive strength for U.S. coal measure rocks	12
Figure 3.5 Three types of laboratory strength tests. uniaxial compressi	ve strength test,
triaxial compressive strength test, bedding plane shear test	12
Figure 3.6 Relationship between CMRR, depth of cover, and the stabi	lity of extended
cuts	15
Figure 3.7 Entry widths and CMRR in U.S. longwall mines	15
Figure 3.8 Relationship between CMRR, intersection span, and roof fall	l rate at six U.S.
mines (Mark et al. 1994)	16
Figure 3.9 Stress on a typical element of mine roof	16
Figure 3.10 Vertical loads in underground coal mines	17
Figure 3.11 Fully grouted resin rebar installed in roof	21
Figure 3.12 Support pattern installed in gallery and junction	26
Figure 5.1 Borehole data of Pinoura Mine, SECL	37
Figure 5.2 Underground working plan of Pinoura Mine, SECL	38
Figure 5.3 Mechanized bord and Pillar panel layout showing location	of instrumented
rock Bolt.	39
Figure 5.4 Manner of pillar extraction adopted in mechanized depi	llaring panel at
Pinoura mine, SECL	39
Figure 5.5 Existing support patterns in Gallery and Junction at Pinoura M	Aine 40

Figure 5.6 Existing support patterns near goaf edge of Pinoura Mine, SECL.	40
Figure 5.7 Instrumented Rock Bolt used in Pinoura Mine, SECL	41
Figure 5.8 Recorded data of Instrumented rock at Pinoura Mine, SECL	42
Figure 5.9 Plan of Panel no. 31, GDK – 5A Incline, SCCL	44
Figure 5.10 Existing support patterns near goaf edge at GDK-5A Incline, SCCI	_44
Figure 5.11 Recorded data of Instrumented rock at GDK-5A, SCCL	45
Figure 6.1 Best fit curve to deduce peak value of strength in MCSS	49
Figure 6.2 Rate of reduction of residual strain for different values of RMR	50
Figure 6.3 Three dimensional view of bord and pillar panel	51
Figure 6.4 Plan view of bord and pillar panel of Pinoura mine showing inst	rumented
rock bolt location	52
Figure 6.5 Plan view of bord and pillar panel of GDK 5A Incline, SCCL mine	52
Figure 6.6 Maximum value of axial load on bolt and roof yield at Pinoura Mine	e at IRB1
	57
Figure 6.7 Axial bolt profile along its length observed from field and model	result at
(IRB ₁), Pinoura Mine	57
Figure 6.8 Maximum value of axial load on bolt and roof yield at Pinoura Mine	e at IRB2
	58
Figure 6.9 Axial bolt profile along its length observed from field and model	result at
(IRB ₂), Pinoura Mine	58
Figure 6.10 Bord and Pillar no. 31 at GDK – 5A, Incline, SCCL with instrume	nted rock
bolt location GSG1	60
Figure 6.11 Maximum value of axial load on bolt and roof yield at instrume	nted rock
bolt location GSG1 for GDK – 5A, Incline, SCCL	60

Figure 6.12 Axial bolt profile along its length observed from field and model	result at
(GSG1), GDK-A, Incline, SCCL	61
Figure 7.1 Different bolt pattern considered in parametric study	65
Figure 7.2 Discretised view of model	66
Figure 7.3 Three-Dimensional view of model	67
Figure 7.4 Flow chart of model adopted for simulation study	67
Figure 7.5 Plan view of developed panel with installed rock bolt	69
Figure 7.6 Various depillaring stages (Stage 1 to 11) of model considered for pa	arametric
studies	72
Figure 8.1 Typical example of final depillaring stage representing focused	location
	74
Figure 8.2 Yield profile of coal pillar at final stage of depillaring	76
Figure 8.3 Yield profile of immediate roof at along section C-C' & D-D' at Fin	nal Stage
	76
Figure 8.4 RLH at Location 1 & 2 for different stages of operation	77
Figure 8.5 Yield profile of immediate roof at along section C-C' & D-D' at Fin	nal Stage
(Case - ABCX ₂)	78
Figure 8.6 RLH at Location 1 & 2 for different stages of operation (Case -	ABCX ₂)
	78
Figure 8.7 Axial loads on bolt at Location 1 & 2 for different stages of operation	n (Case -
ABCX ₂)	79
Figure 8.8 Yield profile of immediate roof at along section C-C' & D-D' at Fin	nal Stage
(Case – ABCX ₃)	80
Figure 8.9 RLH at Location 1 & 2 for different stages of operation (Case -	ABCX ₃)
	81

Figure 8.10 Axial loads on bolt at Location 1 & 2 for different stages of operation	n (Case
ABCX ₃) 8	2
Figure 8.11 RLH at Location 1 & 2 for different stages of operation (Case A	BCX ₄)
8	3
Figure 8.12 RLH at Location 1 & 2 for different stages of operation (Case A	BCX ₄)
8	3
Figure 8.13 Axial loads on bolt at Location 1 & 2 for different stages of oper	ration -
Case ABCX ₄ 8	4
Figure 8.14 RLH for different support pattern at numerous stages of opera	tion at
Location 1 8	5
Figure 8.15 RLH for different support pattern at numerous stages of opera	tion at
Location 2 8	5
Figure 8.16 Axial Load for different support pattern at numerous stages of opera	ation at
Location 1 8	4
Figure 8.17 Axial Load for different support pattern at numerous stages of opera	ation at
Location 1 8	6
Figure 8.18 Schematic diagram of support pattern showing in plan and sectio	on view
8	7
Figure 8.19 Effect of depth on RLH and axial load using 3 bolts in a row at loc	ation 1
9	0
Figure 8.20 Effect of depth on RLH and axial load using 4 bolts in a row at loc	ation 1
9	1
Figure 8.21 Effect of depth on RLH and axial load using 5 bolts in a row at loc	cation 1
9	1

Figure 8.22 Effect of RMR on RLH and axial load using 3 bolts in a row at lo	ocation 1
	92
Figure 8.23 Effect of RMR on RLH and axial load using 4 bolts in a row at lo	ocation 1
	93
Figure 8.24 Effect of RMR on RLH and axial load using 5 bolts in a row at lo	ocation 1
	93
Figure 8.25 Effect of Gallery size on RLH and axial load using 3 bolts in a	a row at
location 1	94
Figure 8.26 Effect of Gallery size on RLH and axial load using 4 bolts in a	a row at
location 1	95
Figure 8.27 Effect of Gallery size on RLH and axial load using 5 bolts in a	a row at
location 1	95
Figure 8.28 Graph showing pick up length	96
Figure 8.29 Graph between axial load bolt distances from goaf edge up to 200	m depth
	97
Figure 8.30 Graph between axial load bolt distances from goaf edge up to 300	m depth
	98
Figure 8.31 Graph between axial load bolt distances from goaf edge up to 400	m depth
	98

LIST OF SYMBOLS AND ABBREVIATIONS

MD	Mechanised Depillaring
СМ	Continuous Miner
CIL	Coal India Limited
CSIR	Council of Scientific and Industrial Research
CIMFR	Central Institute of Mining and Fuel Research
СМР	Continuous Miner Panel
SECL	South Eastern Coalfields Limited
ECL	Eastern Coalfields Limited
SCCL	Singareni Collieries Company Limited
GDK 5A	Godavari Khani Incline Mine no. 5A
VK 7	Vakilpalli Incline Mine no. 7
CMR	Coal Mines Regulation
DGMS	Directorate General of Mines Safety
FOS	Factor of Safety
RLH	Rock Load Height
BD	Bolt Density
FLAC 3D	Fast Lagrangian Analysis of Continua three Dimentional
FISH	Programming language embedded within FLAC3D
MC	Mohr-Coulomb
MCSS	Mohr-Coulomb Strain-Hardening/Softening
MPa	Mega pascal
GPa	Giga pascal

Kg	Kilogram
m ³	cubic meter
m^2	Square meter
ECL	Eastern Coalfields Limited
FOS	Factor of Safety
Sp	Strength of pillar
$\sigma_{\rm v}$	Vertical stress
σ_p	Stress on pillar
γ	Unit weight of overlaying rock
D	Depth of working
В	Gallery width
Н	Working depth
W	Width of pillar
h	Height of pillar
σ _c	UCS of pillar
W	Width of pillar corner to corner
S_1	Strength of in situ cubical coal pillar
$\sigma_{\rm h}$	Horizontal stress
К	Bulk modulus
G	Shear modulus
Е	Young's modulus
V	Poisson's ratio
IKB	Instrumented rock bolt
G	grout shear modulus
t	annulus thickness

D	diameter of roof bolt
c	cohesion
Φ	friction angle
τ_{peak}	shear strength of rock/grout interface
Ι	Moment of Inertia of rock bolt bar
Cs _{nstiff}	Stiffness of the normal coupling spring
Cs _{ncoh}	Cohesive strength of the normal coupling spring
Csnfric	Friction strength of the normal coupling spring
σ_1	triaxial strength of rock mass
σ ₃	confining stress
σ_{cm}	uniaxial compressive strength rock mass
σ_t	tensile strength of intact rock
σ_{tm}	tensile strength of rock mass
RMR	Rock Mass Rating
b	exponent in failure criterion for intact rock
b _m	exponent in failure criterion for rock mass
RBBLS	roof bolt based breaker line support
LHD	Load Haul Dumper
SDL	Side Discharge Loader