CERTIFICATE

It is certified that the work contained in the thesis titled "Numerical Simulation of Support Design Using Rock Bolt in Bord and Pillar Method" by RIZWAN HASIM has been carried out under our supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph.D. Degree.

Supervisor

Prof. B. K. Shrivastva Department of Mining Engineering IIT (BHU) Varanasi – 221005 Co-Supervisor Dr. Ashok Jaiswal Department of Mining Engineering IIT (BHU) Varanasi - 221005

DECLARATION BY THE CANDIDATE

I, *RIZWAN HASIM*, certify that the work embodied in this thesis is my own bona fide work and carried out by me under the supervision of *Prof. B.K. Shrivastva* and *Dr. Ashok Jaiswal* from July – 2014 to December – 2020, at the *Department of Mining Engineering*, Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc. or available at websites and have not including them in this thesis and have not cited as my own work.

Date:

Place: Varanasi

(Rizwan Hasim)

CERTIFICATE BY THE SUPERVISOR(S)

It is certified that the above statement made by the student is correct to the best of our knowledge.

Supervisor	Co-Supervisor
Prof. B. K. Shrivastva	Dr. Ashok Jaiswal
Department of Mining Engineering	Department of Mining Engineering
IIT (BHU)	IIT (BHU)
Varanasi – 221005	Varanasi - 221005

Signature of Head of the Department

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Numerical Simulation of Support Design Using Rock Bolt in Bord and Pillar Method

Name of Student: RIZWAN HASIM

Copyright Transfer

The undersigned hereby assigns to the Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the Doctor of Philosophy.

Date:

Place: Varanasi

(Rizwan Hasim)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

Dedicated to my mother

I grateful acknowledge the support and guidance of my thesis supervisor **Prof. B.K** Shrivastva & Dr. Ashok Jaiswal, Department of Mining Engineering, IIT (BHU). Without his thoughtful encouragement and careful supervision, this thesis would never have taken shape. I am blessed to spent time in their tutelage.

I am also highly obliged to **Prof. Piyush Rai**, Head, Department of Mining Engineering, Indian Institute of Technology (BHU) for the encouragement and motivation extended to me.

I also extend sincere thanks to RPEC members of my committee, **Dr. G.S.P Singh** and **Dr. B. Ramadu** for his valuable suggestions and feedback on my research, and encouragement at various stages of the research work.

I would like to give a special thanks to Ashwani Sonkar, Asit Shukla, Shah Fateh Azam, Shailendra Chawla, Dr. Hira Lal Sir and Mr. S. Jena Sahab for being wonderful friends for their help and support given to me during completion of this research work.

I would like to express my deep sense of gratitude to my parents, family members and relatives for their unwavering support and encouragement.

At last, but not least, thanks be to God for my life through all tests in the past years. You have made my life more bountiful.

CONTENTS

Descript	ion	Page No.
Certificate		i
Declaratio	n by the Candidate	ii
Copyright	Transfer Certificate	iii
Acknowle	dgement	iv
CONTEN	TS	v
LIST OF 7	ΓABLE	ix
LIST OF I	FIGURE	X
LIST OF S	SYMBOLS AND ABBREVIATIONS	XV
ABSTRA	СТ	xvii
CHAPTEI	R 1	1
INTRODU	JCTION	1
1.1 C	General	1
1.2 S	tatement of Problem	2
1.3 C	Organization of Thesis	3
CHAPTEI	R 2	5
OBJECTI	VE	5
2.1.	General	5
2.2. K	Xey Objectives	5
CHAPTEI	R 3	6
LITERAT	URE SURVEY	6
3.1 C	General	6
3.2 E	Bord & Pillar Mining	6
3.2.1	Conventional method	7
3.2.2	Mass production technology using continuous miner	8
3.3 N	Aechanized Depillaring in Indian Coal Mines	9
3.4 N	Aanner of Pillar Extraction	10
3.5 F	factors affecting the integrity of mine structures	11
3.5.1	General	11
3.5.2	Strength of Rock	12
3.5.3	Excavation Geometry	13

3.5.	4 Forces applied to the coal mine roof	16
3.6	Roof Bolt application	19
3.6.	1 General	19
3.6.	2 Type of Bolt	20
3.7	Guidelines for the selection of the rock bolt system	21
3.7.	1 Analytical Approach	22
3.7.	2 Empirical Approach	23
3.8	Numerical Modelling Approach	27
3.8.	1 Boundary element models	27
3.8.	2 Finite Element Model	28
3.8.	3 Finite difference method (FDM)	28
3.8.	4 Selection of suitable Numerical Modelling Method	29
CHAPT	ER 4	
METHC	DOLOGY	
4.1	Background	31
4.2	Different steps of study	33
CHAPT	ER 5	35
FIELD S	STUDIES	
5.1	Background	35
5.2	Details of the field studies	35
5.2.	1 Case I: Pinoura Mines, SECL	35
5.2.	2 Case II: GDK – 5A, SCCL	42
5.2.	3 Summary	45
CHAPT	ER 6	
SIMULA	ATION OF CASE STUDY AND ITS VALIDATION	46
6.1	General	46
6.2	Numerical Modelling	46
6.3	Mohr Columb Failure Criteria	47
6.4	Calibration of Strain softening model	49
6.5	Simulation of CASE 1 and CASE II	51
6.5.	1 Model preparation	51
6.5.	2 Material Properties	53
6.5.	3 In-situ stresses	54

6.5	5.4 Boundary Condition	55
6.5	5.5 Input data for the rock bolt model	55
6.5	5.6 Results of CASE I:	56
6.5	5.7 Results of CASE II:	59
6.6	Summary	61
CHAP	TER 7	62
PARA	METRIC STUDY	62
7.1	General	62
7.2	Depth of coal seam	62
7.3	RMR of roof	64
7.4	Gallery width	64
7.5	Different combination of bolt pattern/bolt density (m ² /bolt)	65
7.6	Model Preparation for parametric study	66
7.6.1	Model Geometry	66
7.6.2	Selection of appropriate material behaviour model	68
7.6.3	Material property	68
7.6.4	In-situ stress and boundary condition	68
7.6.5	Installation of rock bolt	69
7.6.6	5 Simulation of model	69
7.6.7	Model simulated in in - situ condition	69
7.6.8	Simulation of model during development	70
7.6.9	Simulation of model at different stages of depillaring operatio	n 70
7.7	Summary	72
CHAP	TER 8	73
RESUI	LT & ANALYSIS	73
8.1	General	73
8.2	Simulation Results of Parametric study	73
8.3	Results of RLH and Axial Load Stage wise	75
8.3	3.1 Case ABCX ₁	75
8.3	3.2 Case ABCX ₂	77
8.3	3.3 Case ABCX ₃	80
8.3	3.4 Case ABCX ₄	82
8.3	3.5 Comparison of RLH for different cases	84

8.3.	.6 Comparison of axial load for different cases	86
8.3.	.7 Optimum support Design for selected Case	87
8.4	Effect of depth of cover of coal seam on axial load & RLH	90
8.5	Effect of RMR on axial load & RLH	92
8.6	Effect of Gallery size on axial load & RLH	94
8.7	Pick up Vs. length Roof yield	96
8.8	Axial load Vs. Influence zone with variable depth of working	97
8.9	Mathematical expression derived by using Statistical analysis	99
8.10	Summary	100
CHAPT	'ER 9	102
CONCL	LUSIONS AND RECOMMENDATION FOR FUTURE WORK	102
LIST O	F PUBLICATION BASED ON THESIS	107
REFER	ENCES	108
APPEN	DIX	117

Table No.	Title	Page No.
Table 3.1 Different mecha	anized depillaring faces using CM in India	10
Table 3.2 CMR-ISM RMI	R roof classification	25
Table 5.1 Description of c	case	35
Table 5.2 Brief information	on of mines (Pinoura, SECL)	36
Table 5.3 Brief information	on of Mine GDK-5A, SCCL	43
Table 6.1 Name of mine v	with geo-mining and geo-technical parameters	50
Table 6.2 Physico-Mechan	nical properties of the rock strata (Pinoura Mir	ne, SECL)53
Table 6.3 Geo-technical	properties for the numerical model (Pinous	ra Mine, SECL)
		53
Table 6.4 Physico-Mecha	anical properties of the rock strata (GDK 5A	A Incline, SCCL
mine)		54
Table 6.5 Geo-technical	properties for the numerical model (GDK-54	A Incline, SCCL
mine)		54
Table 6.6 Input data for ro	ock bolt element used for numerical model	56
Table 7.1 Different mecha	anized depillaring faces using CM in India	63
Table 7.2 Nomenclature of	of different cases used in parametric study	63
Table 7.3 Rock mass prop	perties used in parametric study	68
Table 8.1 Cases for detail	discussion with variable bolt density	75
Table 8.2 Input and Ou	tput parameters considered for optimum de	esign of support
system		88

LIST OF TABLE

LIST OF FIGURES

Figure No. Title	Page No.
Figure 3.1 Typical Layout Development Panel of Continuous miner wor	king 8
Figure 3.2 Typical Layout of Depillaring Panel of Continuous miner wo	rking 9
Figure 3.3 Manner of pillar extraction in MD operation in India	11
Figure 3.4 Range of compressive strength for U.S. coal measure rocks	12
Figure 3.5 Three types of laboratory strength tests. uniaxial compressi	ve strength test,
triaxial compressive strength test, bedding plane shear test	12
Figure 3.6 Relationship between CMRR, depth of cover, and the stabi	lity of extended
cuts	15
Figure 3.7 Entry widths and CMRR in U.S. longwall mines	15
Figure 3.8 Relationship between CMRR, intersection span, and roof fall	l rate at six U.S.
mines (Mark et al. 1994)	16
Figure 3.9 Stress on a typical element of mine roof	16
Figure 3.10 Vertical loads in underground coal mines	17
Figure 3.11 Fully grouted resin rebar installed in roof	21
Figure 3.12 Support pattern installed in gallery and junction	26
Figure 5.1 Borehole data of Pinoura Mine, SECL	37
Figure 5.2 Underground working plan of Pinoura Mine, SECL	38
Figure 5.3 Mechanized bord and Pillar panel layout showing location	of instrumented
rock Bolt.	39
Figure 5.4 Manner of pillar extraction adopted in mechanized depi	llaring panel at
Pinoura mine, SECL	39
Figure 5.5 Existing support patterns in Gallery and Junction at Pinoura M	Mine 40

Figure 5.6 Existing support patterns near goaf edge of Pinoura Mine, SECL.	40
Figure 5.7 Instrumented Rock Bolt used in Pinoura Mine, SECL	41
Figure 5.8 Recorded data of Instrumented rock at Pinoura Mine, SECL	42
Figure 5.9 Plan of Panel no. 31, GDK – 5A Incline, SCCL	44
Figure 5.10 Existing support patterns near goaf edge at GDK-5A Incline, SCCI	_44
Figure 5.11 Recorded data of Instrumented rock at GDK-5A, SCCL	45
Figure 6.1 Best fit curve to deduce peak value of strength in MCSS	49
Figure 6.2 Rate of reduction of residual strain for different values of RMR	50
Figure 6.3 Three dimensional view of bord and pillar panel	51
Figure 6.4 Plan view of bord and pillar panel of Pinoura mine showing inst	rumented
rock bolt location	52
Figure 6.5 Plan view of bord and pillar panel of GDK 5A Incline, SCCL mine	52
Figure 6.6 Maximum value of axial load on bolt and roof yield at Pinoura Min	e at IRB1
	57
Figure 6.7 Axial bolt profile along its length observed from field and model	result at
(IRB ₁), Pinoura Mine	57
Figure 6.8 Maximum value of axial load on bolt and roof yield at Pinoura Min	e at IRB2
	58
Figure 6.9 Axial bolt profile along its length observed from field and model	result at
(IRB ₂), Pinoura Mine	58
Figure 6.10 Bord and Pillar no. 31 at GDK – 5A, Incline, SCCL with instrume	nted rock
bolt location GSG1	60
Figure 6.11 Maximum value of axial load on bolt and roof yield at instrume	nted rock
bolt location GSG1 for GDK – 5A, Incline, SCCL	60

Figure 6.12 Axial bolt profile along its length observed from field and model	l result at
(GSG1), GDK-A, Incline, SCCL	61
Figure 7.1 Different bolt pattern considered in parametric study	65
Figure 7.2 Discretised view of model	66
Figure 7.3 Three-Dimensional view of model	67
Figure 7.4 Flow chart of model adopted for simulation study	67
Figure 7.5 Plan view of developed panel with installed rock bolt	69
Figure 7.6 Various depillaring stages (Stage 1 to 11) of model considered for p	arametric
studies	72
Figure 8.1 Typical example of final depillaring stage representing focused	l location
	74
Figure 8.2 Yield profile of coal pillar at final stage of depillaring	76
Figure 8.3 Yield profile of immediate roof at along section C-C' & D-D' at Fi	inal Stage
	76
Figure 8.4 RLH at Location 1 & 2 for different stages of operation	77
Figure 8.5 Yield profile of immediate roof at along section C-C' & D-D' at Fi	inal Stage
(Case - ABCX ₂)	78
Figure 8.6 RLH at Location 1 & 2 for different stages of operation (Case -	ABCX ₂)
	78
Figure 8.7 Axial loads on bolt at Location 1 & 2 for different stages of operation	on (Case -
ABCX ₂)	79
Figure 8.8 Yield profile of immediate roof at along section C-C' & D-D' at Fi	inal Stage
(Case – ABCX ₃)	80
Figure 8.9 RLH at Location 1 & 2 for different stages of operation (Case -	ABCX ₃)
	81

Figure 8.10 Axial loads on bolt at Location 1 & 2 for different stages of operation	(Case
ABCX ₃) 82	2
Figure 8.11 RLH at Location 1 & 2 for different stages of operation (Case AF	BCX ₄)
83	3
Figure 8.12 RLH at Location 1 & 2 for different stages of operation (Case AF	BCX4)
83	3
Figure 8.13 Axial loads on bolt at Location 1 & 2 for different stages of operation	ation -
Case ABCX ₄ 84	1
Figure 8.14 RLH for different support pattern at numerous stages of operation	ion at
Location 1 85	5
Figure 8.15 RLH for different support pattern at numerous stages of operation	ion at
Location 2 85	5
Figure 8.16 Axial Load for different support pattern at numerous stages of operat	tion at
Location 1 84	1
Figure 8.17 Axial Load for different support pattern at numerous stages of operat	tion at
Location 1 86	5
Figure 8.18 Schematic diagram of support pattern showing in plan and section	n view
87	7
Figure 8.19 Effect of depth on RLH and axial load using 3 bolts in a row at loca	ation 1
90)
Figure 8.20 Effect of depth on RLH and axial load using 4 bolts in a row at loca	ation 1
91	l
Figure 8.21 Effect of depth on RLH and axial load using 5 bolts in a row at loca	ation 1
91	l

Figure 8.22 Effect of RMR on RLH and axial load using 3 bolts in a row at lo	ocation 1
	92
Figure 8.23 Effect of RMR on RLH and axial load using 4 bolts in a row at lo	ocation 1
	93
Figure 8.24 Effect of RMR on RLH and axial load using 5 bolts in a row at lo	ocation 1
	93
Figure 8.25 Effect of Gallery size on RLH and axial load using 3 bolts in a	a row at
location 1	94
Figure 8.26 Effect of Gallery size on RLH and axial load using 4 bolts in a	a row at
location 1	95
Figure 8.27 Effect of Gallery size on RLH and axial load using 5 bolts in a	a row at
location 1	95
Figure 8.28 Graph showing pick up length	96
Figure 8.29 Graph between axial load bolt distances from goaf edge up to 200	m depth
	97
Figure 8.30 Graph between axial load bolt distances from goaf edge up to 300	m depth
	98
Figure 8.31 Graph between axial load bolt distances from goaf edge up to 400	m depth
	98

LIST OF SYMBOLS AND ABBREVIATIONS

MD	Mechanised Depillaring
СМ	Continuous Miner
CIL	Coal India Limited
CSIR	Council of Scientific and Industrial Research
CIMFR	Central Institute of Mining and Fuel Research
СМР	Continuous Miner Panel
SECL	South Eastern Coalfields Limited
ECL	Eastern Coalfields Limited
SCCL	Singareni Collieries Company Limited
GDK 5A	Godavari Khani Incline Mine no. 5A
VK 7	Vakilpalli Incline Mine no. 7
CMR	Coal Mines Regulation
DGMS	Directorate General of Mines Safety
FOS	Factor of Safety
RLH	Rock Load Height
BD	Bolt Density
FLAC 3D	Fast Lagrangian Analysis of Continua three Dimentional
FISH	Programming language embedded within FLAC3D
MC	Mohr-Coulomb
MCSS	Mohr-Coulomb Strain-Hardening/Softening
MPa	Mega pascal
GPa	Giga pascal

Kg	Kilogram
m ³	cubic meter
m ²	Square meter
ECL	Eastern Coalfields Limited
FOS	Factor of Safety
S _p	Strength of pillar
σ_{v}	Vertical stress
σ_p	Stress on pillar
γ	Unit weight of overlaying rock
D	Depth of working
В	Gallery width
Н	Working depth
W	Width of pillar
h	Height of pillar
σ _c	UCS of pillar
W	Width of pillar corner to corner
S_1	Strength of in situ cubical coal pillar
$\sigma_{\rm h}$	Horizontal stress
K	Bulk modulus
G	Shear modulus
Е	Young's modulus
ν	Poisson's ratio
IRB	Instrumented rock bolt
G	grout shear modulus
t	annulus thickness

D	diameter of roof bolt
с	cohesion
Φ	friction angle
$ au_{peak}$	shear strength of rock/grout interface
Ι	Moment of Inertia of rock bolt bar
Cs _{nstiff}	Stiffness of the normal coupling spring
Csncoh	Cohesive strength of the normal coupling spring
Cs _{nfric}	Friction strength of the normal coupling spring
σ_1	triaxial strength of rock mass
σ3	confining stress
σ_{cm}	uniaxial compressive strength rock mass
σ _t	tensile strength of intact rock
σ _{tm}	tensile strength of rock mass
RMR	Rock Mass Rating
b	exponent in failure criterion for intact rock
b _m	exponent in failure criterion for rock mass
RBBLS	roof bolt based breaker line support
LHD	Load Haul Dumper
SDL	Side Discharge Loader

ABSTRACT

The trend of Indian underground coal mine is going into mechanisation by adopting continuous miner technology in Bord and Pillar working. The machine has operated in wider gallery size up to 6.6 m for the smooth maneuvering of the machine and fast retreating during the depillaring stage. The conventional method of mining using Load Haul Dumper (LHD)/ Side Discharge Loader (SDL) machine requires gallery size up to 4.8 m. One of the roof support design is established on empirical expression based on geo-mechanical classification of the roof. Various researchers proposed the geo-mechanical classification of roof (Terzagi, 1946, Bieiawski, 1989, 1976 and Barton et al., 1974). CMRI-ISM RMR (Venkatesvarlu et al., 1989) proposed the geo-mechanical classification of roof statistical analysis for various underground coal mines in India. The applicability of any empirical approach is limited within the range of the dataset. At that time, the maximum width of gallery 4.8 m was taken into consideration for computed the empirical relationship. Therefore, an extensive exercise is required for designing the support system in the greater width of the gallery. Numerical simulation is one of the appropriate tools for designing roof support.

Rock bolting is more economical than other support systems used in an underground mine, and also its installation is easy compared with others. It saves material and manpower consumption to improve the productivity of the mine. It also reduces the hindrance in the gallery, particularly in continuous miner (CM) operation. Many researchers have been done in support design in the form of mathematical, empirical and numerical approaches. The three-dimensional numerical simulation gives a reasonable understanding to analyse the complex roof strata and bolt interaction. The numerical model indicates that the roof bolts can significantly affect the vertical stress

Abstract

distribution in the bolted area. So, the development of the three-dimensional roof bolt model can substantially benefit the studies on bolt-grout-rock interaction (Cheng, J et al., 2014). Roof support design in mechanised depillaring panels is a challenge due to the faster extraction rate, complex mining structure, and dynamic loading of the overlying strata.

Kushwaha et al., 2010 have conducted an extensive study through numerical simulation in conventional depillaring operations. In this design methodology, a generalized empirical equation has been developed using numerical simulation technique to estimating the required support load density at different places of the face based on geotechnical parameters of the mine and physico-mechanical properties of the immediate roof rocks during mechanised coal pillar mining. The equation depends on various parameters such as RMR, depth, gallery width and stress ratio. The elastic model has been used to estimate the rock load height using a numerical simulation approach. The minimum and maximum principal stress σ_{1i} , σ_{3i} around an excavation are computed, the rock load height can be estimated by safety factor at different points and drawing its contour. In this method, the factor of safety is taken as ≤ 1.5 .

The design of support requirements and roof behaviour is dependent on number of parameters. It has been observed that depth, RMR, gallery size and bolt density are the most prominent factor in the stability of the roof based on the literature survey.

The interaction of rock-bolt-grout with the advancement of the goaf line is understood using three-dimensional modelling. The response in terms of axial load exerted on the bolt has been investigated. Roof behaviour has also been analysed at each stage of operation. The study critically investigates roof behaviour at various stages of depillaring operation in Bord and pillar panel.

xix

Abstract

Critical parameters have been chosen for the assessment of the roof behaviour under varying roof bolt density (bolt pattern) and geo-mining conditions. The methodology has been developed to formulate the simulation scheme for analyzing the stability of the roof under varying geo-mining parameters. The steps involved to achieve the objective of the thesis are preparation of three-dimensional model of bord and pillar panel, calibration of material properties used in the model, validation of the model for two different case studies of mechanised underground coal mining using continuous miner and semi-mechanised SDL/LHD and study of the impact of various parameters. A focused study area is being chosen near the goaf where maximum induced stress is observed. Simulation of the model has been carried out to analyse rock load height during different stages of depillaring operation. Axial load developed on the bolt has also been observed for different bolt patterns. Influences of various geo-mining parameters such as RMR, size of the gallery, depth of seam and different combinations of bolt patterns have been studied. Optimum required rock bolt density at various locations in depillared area has been observed based on the following set criteria

Bolt length should be more than 30 cm of maximum observed value of RLH.

Bolt capacity (anchorage strength) should be more than factor of safety (FOS)
i.e., 1.5 times of observed axial load developed on the bolt from simulation.

Statistical analysis of data observed by simulated model results gives the mathematical expression of required support load density at a critical location near goaf edge.

A Three-dimension numerical simulation of the bord and pillar system of mining has been carried out to evaluate the performance of the roof bolt. Two cases have been chosen of Indian coal mines worked by bord and pillar system of mining. The representative model of these cases has been simulated and validated with the help of the observed monitored value of instrumented rock bolt during field observation. Total

XX

Abstract

One hundred and forty four models have been constructed considering different geomining parameters, i.e., depth, RMR, gallery width, and bolt density. The response on the bolt in terms of axial load and roof yield has been monitored during depillaring stages. Based on the number of data observed from simulated models, the criteria for suggesting the optimum support design have been proposed based on rock load height and axial load developed on the bolt.

The numerical simulation approach provides an opportunity to develop a guideline for support design. The design guideline has been developed based on the field and simulated study. The result of numerical modelling is analysed using a simple statistical approach to identify the major influencing parameters. The technical relevance of this analysis is examined through the observed facts of the field studies. Finally, on the basis of different correlations under the detailed study of strata mechanics phenomenon, the generalised empirical relationship is developed for the design of the required support system in mechanised depillaring operation.