Contents

Abbreviations	iv
List of Tables	vi
List of Figures	viii

Chapter 1: INTRODUCTION	
1.1. Antibiotics and their development	1
1.2. Curcumin as antimicrobial agent	3
1.3. Anti-malarial drugs and their development	4
1.4. New Targets for anti-malarial drug	6
1.5. Curcumin as anti-malarial	8
1.6. Malaria burden in India	9
1.7. Curcumin ring and its biological activities	10
1.8. Molecular docking	12
1.9. Quantitative Structure Activity Relationship (QSAR)	12
1.9.1. Role of QSAR in Drug Design	13
1.9.2. QSAR Descriptors	13
1.10. Matrix metalloproteinase (MMPs)	14
1.10.1. Biological function	14
1.10.2. Role in pathological processes	14
1.10.3. Curcumin and MMPs	15

Chapter 2: LITERATURE REVIEW

2.1. Microbial Infections	16
2.2. Curcumin as antimicrobial agent	16

37

2.3. Curcumin as anti-malarial agent	21
2.4. Pyrazole and hexahydraindazole as antimicrobial agent	27
2.5. Glucosamine-6-phosphate synthase: a novel target for antimicrobial agents	34
2.6. Curcumin and MMP	35

Chapter 3: RATIONALE OF APPROACH

Chapter 4. PLAN OF STUDY

4.1. Design and synthesis of curcumin analogues	41
4.2. Characterization of synthesized compounds by using modern analytical tools	41
4.3. Evaluation of <i>In vitro</i> antimicrobial activity of synthesized compounds	41
4.4. Molecular docking study of synthesized compounds against	
antimicrobial target Glucosamine-6-phosphate synthase	41
4.5. Evaluation of <i>In vitro</i> anti-malarial activity of synthesized compounds	41
4.6. Quantitative structure activity relationship (QSAR) study of synthesized	
compounds	41

Chapter 5. EXPERIMENTAL

5.1. General procedure for the synthesis of hexahydroindazole analogues	
of curcumin(A1-B5)	42
5.2. General procedure for synthesis of pyrazole analogues of	
curcumin (CP1-CP14)	43
5.3. General procedure for synthesis of cycloheptanones analogues of	
curcumin (C1-C14)	45
5.4. In-vitro anti microbial study of curcumin analogues	46
5.5. In-vitro anti-malarial study of curcumin analogues	46
5.6. Molecular docking study of curcumin analogues against	
Department of Dhammacouties IIT (PHII) Varanasi	;;

Department of Pharmaceutics, IIT (BHU), Varanasi.

antimicrobial target Glucosamine-6-phosphate synthase	48
5.7. Quantitative Structure Activity Relationship (QSAR) study for curcumin	
analogue as antimicrobial agent	48
Chapter 6. RESULTS AND DISCUSSION	
6.1. Characterization of synthesized Compounds	52
6.1.1 Synthesis and characterization of hexahydroindazole analogues of	
curcumin	53
6.1.2. Synthesis and characterization of pyrazole analogues of curcumin	60
6.1.3. Synthesis and characterization of cycloheptanones analogues of curcumin	66
6.2. In vitro antimicrobial screening of curcumin analogues	72
6.2.1. In vitro antimicrobial screening of hexahydroindazole analogues of curcumin	72
6.2.2. In vitro antimicrobial study of pyrazole analogues of curcumin	75
6.2.3. In vitro antimicrobial study of cycloheptanone analogues of curcumin	78
6.3. Antimalarial screening of curcumin analogues	80
6.3.1. Cytotoxicity study of curcumin analogues active against HepG2 line cells	83
6.3.2 Comparison of anti-malarial activity and cytotoxicity on basis of	
selectivity index	84
6.4. In silico study of analogues of curcumin	85
6.4.1.Molecular Docking study of hexahydroindazole analogues of curcumin	86
6.4.2.Molecular Docking study of pyrazole analogues of curcumin	89
6.5. Quantitative structure activity relatioship (QSAR) study of synthesized	
compounds	93
6.5.1.Quantitative structure activity relationship (QSAR) study	93
Chapter 7. CONCLUSIONS	112
SUMMARY	116
REFERENCES	119

Department of Pharmaceutics, IIT (BHU), Varanasi.

Abbreviations	
---------------	--

ADDICVIATION	15
ACPase-	Acid phosphatase
ACTs-	Artemesinin based Combination Therapies
AGS-	Human Gastric epithelial cells
AKT	Protien Kinase B
ALKase-	Alkaline Phosphatase
AMPK	Adenosine Monophosphate-Activated Protein Kinase
ART-	Artemesinin
ATCC	American Type Culture Collection
Αβ-	Amyloid-β-protein
BBB-	Blood Brain Barrier
Bcl-2 -	B-cell lymphoma 2
Bcl-XL-	B-cell lymphoma Xtra-Large
C –myc-	Proto-Oncogene Proteins c-myc
Cflip-	Cellular FLICE-Like Inhibitory Protein C-IAPI
CM-	Cerebral Malaria
CNS-	Central Nervous System
CoMFA-	Comparative Molecular Field Analysis
COX-2-	Cyclooxygenase-2
CQ-	Chloroquine
CQ-R-	Chloroquine Resistant
CQ-S-	Chloroquine Sensitive
DNA-	Deoxyribonucleic acid
ECM-	Extracellular Matrix
EE-	Entrapment Efficiency
FtsZ-	Filamenting temperature-sensitive mutant Z
G6PD-	Glucose-6-phosphate dehydrogenase
GlcN-6-P-	Glucosamine-6-phosphate
GlmS-	Glucosamine-6-phosphate synthase
HASMCs-	Human Aortic Smooth Muscle Cells
HAT-	Histone Acetyl Transferase
Hp-	Helicobacter pylori
HSL-	Acyl Homoserine Lactone
IC50-	Half maximal Inhibitory Concentration

INH-	Isoniazid
JNK	Jun N-terminal Protein Kinase
LC-	Loading Capacity
MCCD-	Mcertification of Cause of Death
MCT-	Medium Chain Triglyceride
MDR-	Multi Drug Resistant
MIC-	Minimum Inhibitory Concentration
MMPs-	Matrix Metalloproteinases
MRSA-	Methicillin-Resistant Staphylococcus aureus
MSA-	Molecular Surface Area
NF-Kb	Nuclear Factor-Kappa B
PAO1-	Pseudomonas aeruginosa strain
PDB-	Protein Data Bank
PfATP6	Plasmodium falciparum ATPase 6
PfGR	Plasmodium Falciparum Glutathione Reductase
PfTrxR	P. falciparum Thioredoxin Reductase
QS-	Quorum sensing
QSAR-	Quantitative Structure–Activity Relationship
RBC-	Red Blood Cells
RLU-	Relative Light Units
RNA-	Ribonucleic Acid
ROS-	Reactive Oxygen Species
SAR-	Structural Activity Relationship
SDH-	Succinic Dehydrogenase
SOD-	Superoxide Dismutase
SP-	Sulphadoxine-Pyrimethamine
TBARS-	Thiobarbituric Acid Reactant Substances
TIMPs-	Tissue Inhibitors of Metalloproteinases
TNF-	Tumor Necrosis Factor alpha
UDP-	GlcNAc- uridine 5'-diphospho-N-acetyl-D-glucosamine
WHO-	World Health Organization
XIAP	X-linked Inhibitor of Apoptosis

	List of Tables	
Table No.	Table Caption	Page No.
1.1	Targets and available therapeutic compounds	7
5.1	Different substitutions on aryl ring of synthesized compounds(A1-B5)	43
5.2	Different substitutions on aryl ring of synthesized compounds(CP1-CP14).	44
5.3	Different substitutions on aryl ring of synthesized compounds(C1-C14).	46
5.4	Structural features of both pyrazole analogues of curcumin for QSAR model 2	50
5.5	Structural features of both pyrazole analogues of curcumin for QSAR model 2	51
6.1	Physical properties of hexahydroindazole analogues of curcumin	53
6.2	Physical properties of pyrazole analogues of curcumin	60
6.3	Physical properties of cycloheptanone analogues of curcumin	66
6.4	Antimicrobial activity of hexahydroindazole analogues of curcumin	74
6.5	Antimicrobial activity of hexahydroindazole analogues of curcumin.	77
6.6	Antimicrobial activity of synthesized cycloheptanone analogues of curcumin	79
6.7	Inhibitory concentrations (IC ₅₀) of active samples tested against <i>P. falciparum</i> clone W2 (Chloroquine-resistant).	81
6.8	Antimalarial activity classification of samples tested against <i>P</i> . <i>falciparum</i> clone W2 (Chloroquine-resistant)	83
6.9	Cytotoxic concentrations (CC ₅₀) of curcumin analogues that inhibits growth of 50% of HepG2 cells.	84
6.10	Comparison of anti-malarial activity and cytotoxicity on basis of selectivity index	85
6.11	Theoretical ADME prediction of hexahydroindazole analogues of curcumin using PreADMET Server.	86
6.12	Molecular docking of hexahydroindazole analogues of curcumin with glucosamine-6-phosphate synthase.	87
6.13	Theoretical ADME prediction of pyrazole analogues of curcumin using PreADMET Server.	89
6.14	Molecular docking of pyrazole analogues of curcumin with glucosamine-6-phosphate synthase at Active Site1.	90

List of Tables

6.1	Molecular docking of pyrazole analogues of curcumin with glucosamine-6-phosphate synthase at Active Site 2.	91
6.1	5 Statistics of significant equations.	95