LIST OF TABLES

Figur	CHAPTER	Page	
e No.		No.	
СНАРТ	ER 1: ZnO based Varistor Ceramics - An Introduction		
1.1.	Timeline of the proposed conduction model in ZnO varistor	8	
	[after Eda (1989)].		
1.2.	Roles of additives in ZnO varistors [after K. Eda (1989)]	10	
1.3.	The parameters of a typical ZnO [Najafi (2012)]	22	
СНАРТ	ER 2: Literature Review		
2.1.	$Summary\ of\ Varistor\ parameters\ for\ ZnO\text{-}V_2O_5\ ceramics\ sintered$	34	
	at 900 °C.		
2.2.	Electrical properties and density of prepared ceramics	37	
СНАРТ	ER 4: Synthesis and Characterization Methods		
4.1.	Material used	52	
CHAPTER 5: Electrical and structural characterization of Nb $_2O_5$ doped			
Z	Z_{10} nO- V_{2} O ₅ varistor ceramics sintered at different temperatures.		
5.1.	Summary of samples composition and their nomenclature,	74	
	sintered density ' $\rho\text{'}\text{and}$ average grain size for samples sintered		
	at 850°C for 3h		
5.2.	Summary of samples composition and their nomenclature,	74	
	sintered density ' ρ^{\prime} and average grain size for samples sintered		
	at 900°C for 3h		
5.3.	Summary of samples composition and their nomenclature,	74	
	sintered density ' ρ ' and average grain size for samples sintered		
	at 950°C for 3h		
5.4.	Lattice parameters, percentage theoretical density (T.D) and	80	
	crystallite size D (nm) for (002) of Nb_2O_5 doped samples		
	sintered at 850 °C.		

- 5.5. Lattice parameters, percentage theoretical density (T.D) and 80 crystallite size D (nm) of Nb_2O_5 doped samples sintered at 900 °C.
- 5.6. Lattice parameters, percentage theoretical density (T.D) and $\,$ 81 crystallite size D (nm) of Nb₂O₅ doped samples sintered at 950 $\,^{\circ}$ C.
- 5.7. Summary of electrical results obtained for Nb₂O₅ doped ZnO- 100 V_2O_5 materials sintered at 850 °C
- 5.8. Summary of electrical results obtained for Nb_2O_5 doped ZnO-101 V_2O_5 -materials sintered at $900\,^{\circ}C$
- 5.9. Summary of electrical results obtained for Nb_2O_5 doped ZnO-102 V_2O_5 materials sintered at 950 °C
- 5.10. Summary of fitted electrical parameter obtained from EIS 120 software measured at 50 °C for Nb₂O₅ doped samples sintered at 850 °C.
- 5.11. Summary of fitted electrical parameter obtained from EIS 121 software measured at 150 °C for Nb_2O_5 doped samples sintered at 850 °C.
- 5.12. Summary of fitted electrical parameter obtained from EIS 121 software measured at 250 °C for Nb_2O_5 doped samples sintered at 850 °C.
- 5.13. Summary of Fitted Electrical parameter obtained from EIS 122 software measured at 50 °C for Nb_2O_5 doped samples sintered at 900 °C.
- 5.14. Summary of fitted electrical parameter obtained from EIS 122 software measured at 150 °C for Nb_2O_5 doped samples sintered at 900 °C.
- 5.15. Summary of fitted electrical parameter obtained from EIS 122 software measured at 250 °C for Nb_2O_5 doped samples sintered at 900 °C.

- 5.16. Summary of fitted electrical parameter obtained from EIS 123 software measured at 50 °C for Nb_2O_5 doped samples sintered at 950 °C.
- 5.17. Summary of fitted electrical parameter obtained from EIS 123 software measured at 150 °C for Nb_2O_5 doped samples sintered at 950°C.
- 5.18. Summary of fitted electrical parameter obtained from EIS 124 software measured at 250 °C for Nb_2O_5 doped samples sintered at 950°C.
- 5.19. Activation energies calculated from the Arrhenius plot at low 130 and high frequency region for the samples sintered at 850 °C.
- 5.20. Activation energies calculated from the Arrhenius plot at low 130 and high frequency region for the samples sintered at 900 °C.
- 5.21. Activation energies calculated from the Arrhenius plot at low 130 and high frequency region for the samples sintered at 950 °C.

CHAPTER 6: Electrical and structural characterization of MnO doped ZnO $-V_2O_5 - Nb_2O_5$ varistor ceramics sintered at different temperatures.

- 6.1. Summary of samples composition and their nomenclature, 139 sintered density ' ρ ' and average grain size for samples sintered at 850 °C for 3 h
- 6.2. Summary of samples composition and their nomenclature, 139 sintered density ' ρ ' and average grain size for samples sintered at 900 °C for 3 h
- 6.3. Summary of samples composition and their nomenclature, 139 sintered density ' ρ ' and average grain size for samples sintered at 950 °C for 3 h.
- 6.4. Lattice parameters, percentage theoretical density (T.D) and 141 crystallite size D (nm) MnO doped ZnO- V_2O_5 -Nb $_2O_5$ varistor sintered at 850 °C.

- 6.5. Lattice parameters, percentage theoretical density (T.D) & 142 crystallite size D (nm) for MnO doped ZnO- V_2O_5 -Nb $_2O_5$ varistor sintered at 900 °C
- 6.6. Lattice parameters, percentage theoretical density (T.D) & 143 crystallite size D (nm) for MnO doped ZnO- V_2O_5 -Nb₂O₅ varistor sintered at 950 °C
- 6.7. Summary of electrical results obtained for MnO doped ZnO- 165 V_2O_5 -Nb₂O₅ varistors sintered at 850 °C
- 6.8. Summary of electrical results obtained for MnO doped ZnO- 166 V_2O_5 -Nb $_2O_5$ varistors sintered at $900\,^{\circ}\text{C}$
- 6.9. Summary of Electrical Results obtained for MnO doped ZnO- 168 $V_2O_5\text{-Nb}_2O_5 \text{ materials sintered at }950\ ^\circ\text{C}$
- 6.10. Summary of fitted electrical parameter obtained from EIS 180 software for MnO doped ZnO- V_2O_5 -Nb $_2O_5$ materials sintered at 850 °C and measured at 50 °C.
- 6.11. Summary of fitted electrical parameter obtained from EIS 180 software for MnO doped ZnO- V_2O_5 -Nb $_2O_5$ materials sintered at 850 °C and measured at 150 °C.
- 6.12. Summary of fitted electrical parameter obtained from EIS 180 software for MnO doped ZnO- V_2O_5 -Nb $_2O_5$ materials sintered at 850 °C and measured at 250 °C.
- 6.13. Summary of fitted electrical parameter obtained from EIS 185 software measured at 50 °C for MnO doped ZnO- V_2O_5 -Nb $_2O_5$ samples sintered at 900 °C.
- 6.14. Summary of fitted electrical parameter obtained from EIS 185 software measured at 150 °C for MnO doped ZnO- V_2O_5 -Nb₂O₅ samples sintered at 900 °C.
- 6.15. Summary of fitted electrical parameter obtained from EIS 185 software measured at 250 °C for MnO doped ZnO- V_2O_5 -Nb $_2O_5$ samples sintered at 900 °C.

- 6.16. Summary of fitted electrical parameter obtained from EIS 189 software measured at 50 °C for MnO doped ZnO- V_2O_5 -Nb $_2O_5$ samples sintered at 950 °C.
- 6.17. Summary of fitted electrical parameter obtained from EIS 189 software measured at 150 °C for MnO doped ZnO- V_2O_5 -Nb₂O₅ samples sintered at 950 °C.
- 6.18. Summary of fitted electrical parameter obtained from EIS 189 software measured at 250 °C for MnO doped ZnO- V_2O_5 -Nb $_2O_5$ samples sintered at 950 °C.
- 6.19. Activation energies calculated from the Arrhenius plot at low 195 and high frequency region for the temperature range below and above 150 °C for the samples sintered at 850 °C.
- 6.20. Activation energies calculated from the Arrhenius plot at low 196 and high frequency region for the temperature range below and above 150°C/200°C for the samples sintered at 900 °C.
- 6.21. Activation energies calculated from the Arrhenius plot at low 196 and high frequency region for the temperature range below and above 150°C/200°C for the samples sintered at 950 °C.

CHAPTER 7: Electrical and Structural Characterization of ZrO_2 doped $ZnO - V_2O_5 - Cr_2O_3$ Varistor Ceramics Sintered at Different Temperatures.

- 7.1. Summary of samples composition and their nomenclature, 201 sintered density ' ρ ' and average grain size for samples sintered at 850 °C for 3 h.
- 7.2. Summary of samples composition and their nomenclature, 201 sintered density ' ρ ' and average grain size for samples sintered at 900 °C for 3 h.
- 7.3. Summary of samples composition and their nomenclature, 201 sintered density ' ρ ' and average grain size for samples sintered at 950 °C for 3 h.

7.4.	Lattice parameters, percentage theoretical density (T.D) and	205
	crystallite size D (nm) for (002) of ZrO_2 doped samples sintered	
	at 850°C.	

- 7.5. Lattice parameters, percentage theoretical density (T.D) and 205 crystallite size D (nm) for (002) of ZrO_2 doped samples sintered at 900 °C.
- 7.6. Lattice parameters, percentage theoretical density (T.D) and 205 crystallite size D (nm) for (002) of ZrO_2 doped samples sintered at 950 °C.
- 7.7. Summary of electrical results obtained for ZrO_2 doped ZnO-227 $V_2O_5-Cr_2O_3$ samples sintered at 850 °C
- 7.8. Summary of electrical results obtained for ZrO_2 doped ZnO_2 229 V_2O_5 – Cr_2O_3 samples sintered at 900 °C
- 7.9. Summary of Electrical Results obtained for ZrO_2 doped ZnO_2 231 $V_2O_5-Cr_2O_3$ samples sintered at 950°C
- 7.10. Summary of fitted electrical parameter obtained from EIS 243 software for ZrO_2 doped samples sintered at 850 °C and measured at 50 °C.
- 7.11. Summary of fitted electrical parameter obtained from EIS 243 software for ZrO_2 doped samples sintered at 850 °C and measured at 150 °C.
- 7.12. Summary of fitted electrical parameter obtained from EIS 243 software for ZrO_2 doped samples sintered at 850 °C and measured at 250 °C.
- 7.13. Summary of fitted electrical parameter obtained from EIS 247 software measured at 50 °C for ZrO_2 doped samples sintered at 900 °C.
- 7.14. Summary of fitted electrical parameter obtained from EIS 247 software measured at $150\,^{\circ}\text{C}$ for ZrO_2 doped samples sintered at $900\,^{\circ}\text{C}$.

- 7.15. Summary of fitted electrical parameter obtained from EIS 247 software measured at 250 °C for $\rm ZrO_2$ doped samples sintered at 900 °C.
- 7.16. Summary of fitted electrical parameter obtained from EIS 251 software measured at 50 °C for the samples sintered at 950 °C.
- 7.17. Summary of fitted electrical parameter obtained from EIS 251 software measured at 150 °C for the samples sintered at 950 °C.
- 7.18. Summary of fitted electrical parameter obtained from EIS 252 software measured at 250 °C for the samples sintered at 950 °C.
- 7.19. Activation energies calculated from the Arrhenius plot at low 258 and high frequency region for the temperature range below and above 150 °C for the samples sintered at 850 °C.
- 7.20. Activation energies calculated from the Arrhenius plot at low 258 and high frequency region for the temperature range below and above 150°C for the samples sintered at 900 °C.
- 7.21. Activation energies calculated from the Arrhenius plot at low 258 and high frequency region for the temperature range below and above 150°C for the samples sintered at 950 °C.