
Chapter 5

Reliable Broadcasting via

Independent Spanning Trees

Parallel computers offer high speed and throughput needed in solving large and complex

problems. Parallel computers consist two main components. These are the intercon-

nection network and processing elements. The secret of high performance computing is

the interconnection network, so a faulty interconnection network can result to message

losses and/or performance degradation of the system. Hence, it is necessary to toler-

ate faults in interconnection network and also consider reliability aspects to produce a

desired effect.

Fault-tolerant broadcasting for parallel and distributed computing is an important

issue for many applications in interconnection networks. Independent Spanning Trees

(ISTs) provide a number of advantages in data broadcasting in the networks. Using

ISTs one can enhance the fault-tolerance, bandwidth, and security. In this chapter,

we study the existence and construction of n ISTs rooted at an arbitrary vertex in

Hn(n ≥ 1). A parallel algorithm with the time complexityO(n) is proposed to construct

n ISTs on Hn, where n ≥ 1.

Section 5.1 recalls some existing important methods for constructing ISTs. Also,

some general definitions are given which is used later. In section 5.2, the broadcasting

algorithm is described with the form of virtual roots. The correctness of the algorithm

is studied in section 5.3. Experimental results are given in section 5.4 and section 5.5

finally summarizes this chapter.

89

5. RELIABLE BROADCASTING VIA INDEPENDENT SPANNING
TREES

5.1 Overview

Today’s computer systems are based on multi-core processor technology. Actually,

the performance of such multi-core systems are depend on the interconnection net-

work connecting these cores. According to google search results, the rate of published

papers associated to hypercube networks and their variants averages at about 20 pa-

pers annually since 1980. The topology of an interconnection networks can be clas-

sified as static and dynamic. Static interconnection networks use direct links which

are fixed once built and made of point-to-point direct connections. It includes linear

array, ring, chordal ring, tree, star, mesh, torus, hypercubes, cube-connected cycles

and k-ary n-cube networks. Dynamic interconnection networks are implemented with

switched channels and include bus systems, multistage interconnection networks, and

crossbar switch networks. Hypercube multi-computer interconnection network is used

for connecting distributed memory machine. A number of distributed memory paral-

lel computers utilized hypercubes; e.g., iPSC/2 [87], iPSC/860 [46], nCUBE [43], SGI

Origin [84], and Caltech Hypercube [90]. Traditional measurements such as speedup

and throughput are central measures for performance evaluation of multi-computer

systems. However, developers insist that evaluating the fault tolerance and reliability,

is as other performance measures.

Interconnection networks play an important role in parallel and distributed systems.

If any node and/or link in the broadcasting tree on multicomputer systems is faulty,

then the source node will not transmit the data and hence the broadcasting will not

be successful. Fault tolerance reliable data broadcasting can be achieved by sending

the message over multiple ISTs to provide other paths for handling some faulty nodes

and/or links. Applying IST based broadcasting on interconnection network is a new

solution for more reliability, which is an alternative answer to the previous study done

by Ramanathan et al. [102].

Finding a high degree of fault tolerance in broadcasting relies on specific intercon-

nection networks and one of the popular networks is the n-dimensional hypercube (Hn).

Broadcasting in a network is sending a message from a given vertex to all the other

vertices in the network. A fault-tolerant broadcasting protocol can be designed by

means of independent spanning trees. If a spanning tree rooted at the source node in a

network is viewed as a broadcast channel for data communication, then fault-tolerant

90

5.1 Overview

broadcasting can be achieved by sending n copies of a message along n ISTs on the

network provided that there are at most n− 1 faulty nodes/edges in the network.

An interconnection network can be denoted by a graph G = (V,E), where V (G)

is the set of processors and E(G) is the set of communication links in the network.

For x, y ∈ V (G), two paths P and Q from x to y are said to be internally disjoint

(vertex/edge disjoint), if they have no common vertex and edge except the end vertices

(i.e., E(P) ∩ E(Q) = φ and V (P) ∩ V (Q) = x, y). A tree T in a graph G is called its

spanning tree (an acyclic connected graph) if T contains all vertices of G. Spanning

tree is very much useful for data broadcasting in distributed system because it reduces

the number of links that the data must to cross to reach all the processes.

Two rooted spanning trees, T and T ′ of a graph G with the same root (r) are said

to be independent if for every x ∈ V (G) the paths from x to the root r in T , and T ′ are

unique. Also, we call a set of rooted spanning trees of G to be independent if they are

pairwise independent. The Hamming distance between two nodes in Hn is the number

of positions for which the corresponding symbols are different.

The n-dimensional hypercube Hn, suggested first by Sullivan and Bashkow [114],

is one of the most popular, versatile and efficient interconnection networks, which pos-

sesses many excellent features such as logarithmic number of links per node, logarithmic

diameter, high symmetry, recursive structure, linear bisection width and, thus, becomes

the first choice for the topological structure of parallel processing and computing sys-

tems. As demonstrated in Figure 2.9, an n-dimensional hypercube, Hn, consists of

N = 2n nodes, which are labelled 0, 1, . . . , 2n−1; two nodes are adjacent if their labels

differ in exactly one bit position. This property highly facilitates the broadcasting of

data through the network. In addition, the regular nature of the network provides fault

tolerance. The network diameter is defined as the shortest path between most distant

nodes and is formulated as log2 N . Symmetric structure of the network provides the

load balancing where every node can become the source of a broadcast as the root of a

spanning tree of the network, since the load will always be shared equally in hypercubes.

It is well known that the hypercube network can be considered as a spanning tree

in which any vertex could be considered individually as a root node. It is obvious

that the difference between parent and child labels in this tree is only in one bit and

the maximum number of children of each vertex would be log2 N . The hypercube

topology allows creating an optimal spanning tree in terms of messages sent. It is

91

5. RELIABLE BROADCASTING VIA INDEPENDENT SPANNING
TREES

always possible to create a spanning tree, starting with any node of the hypercube, so

that the maximum number of message transmissions is N − 1, and every node receives

the message exactly once.

We can see that traditional broadcasting in the hypercube consists of n steps, which

can be represented in Figure 5.1 as spanning binomial tree. A 0-level binomial tree B0

has one vertex. An n-level binomial tree Bn is constructed out of two (n − 1)-level

binomial trees by adding one edge between the roots of the two trees and by making

either root the new root. But their data broadcasting pattern has been limited due to

components failures.

Figure 5.1: The spanning binomial trees with r = 0 on H4.

The study of independent spanning trees has applications in fault-tolerant proto-

cols for distributed computing networks. Itai and Rodeh [65] proved for n = 2 that

n-connected graph there exist n ISTs rooted at any vertex. For n = 3 it was inde-

pendently proved by Zehavi and Itai [135], and Cheriyan and Maheshwari [29]. In

2006, Curran et al. [35] proved for n-connected graphs with n = 4. However, sev-

eral algorithms are known in some classes of graphs such as product graphs [93], pla-

nar graphs [64], De Brujin and Kautz graphs, chordal rings, star graphs, hypercubes,

torus [116], folded hypercubes, locally twisted cubes, recursive circulant graphs [131],

and Möbius cubes [28], etc.

In 2004, Tang et al. [115] developed an algorithm to construct ISTs on Hn by using

recursive feature from Hn−1, i.e., it is necessary to construct n− 1 trees in advance to

obtain the n ISTs. In 2007, Yang et al. [132] presented an algorithm based on Hamming

Distance Latin Square (HDLS) distance, which is not recursive like the one presented

in [115] and can, therefore, be parallelized.

Marco and Vaccaro [89] considered the problem of broadcasting in the n-dimensional

hypercube under the hypothesis that each node can inform in one unit of time all of

92

5.1 Overview

its n neighbours and that 1 message transmissions can fail during each time unit. Bao

et al. [10] considered the case where all nodes are faultless but links may fail randomly

in the n-cube. Bermond et al. [13] describe the neighbourhood broadcasting problem,

they consider the node that is broadcasting needs to inform only its neighbours. In our

proposed approach, one can broadcast the message at any node to remaining nodes at

the same time.

In this chapter, we propose an efficient and optimal parallel algorithm for con-

structing ISTs on hypercube through which broadcasting is done. For the generation

of parent node, our algorithm uses negation and XOR logical operators. Correctness

of our parallel algorithm for broadcasting on Hn will be proved and the generated op-

timal ISTs complexity will be O(n). The algorithm is easily implemented in parallel

and distributed computing systems.

5.1.1 Parent Exchange-based n-IST Optimal Construction

In 2004, Tang et al. [115] modified the algorithm given by Obokata et al. [93] in order

to reduce the height from 6 to 5 by performing the parent exchange operation. But,

the time complexity of both the algorithm was same.

5.1.2 HDLS-based n-IST Parallel Construction

In 2007, Yang et al. [132] proposed the parallel construction of n optimal ISTs (r = 0)

on hypercubes. In this approach, the HDLS matrix was used to generate all unique

paths from all destination nodes (x) to source node(r). They design an algorithm for

describing the parent of every node in each spanning tree Ti. Algorithm 4 requires the

HDLS preprocessing in which every node x except 0 computes the corresponding HDLS

matrix in parallel. For Algorithm 4, the inputs are all nodes of a hypercube and fix

root node to 0 and output is to generate a tree rooted at root node 0.

Algorithm 4 construct a tree Ti, rooted at node r = 0 and requires O(n) time to

be parallelized on Hn, where 0 ≤ i ≤ n − 1. Let a binary string of the root r be

(rn−1 . . . ri . . . r1r0) and the binary string of any node x(6= 0) be (xn−1 . . . xi . . . x1x0).

If xi = 1, then HDLS is applied for construction of Ti. The HDLS of x is a Latin square

matrix whose entries are rotated from the Hamming distance set Hn(x) = {i : 0 ≤ i ≤
n − 1 and xi = 1}. Suppose a node x(6= 0) has Hamming distance t(≤ n) to the root

node (r = 0) and Hn(x) = {i0, i1, . . . , it−1} such that i0 < i1 < . . . < it−1. From the

93

5. RELIABLE BROADCASTING VIA INDEPENDENT SPANNING
TREES

Algorithm 4 GEN-PARENTS

1: for every node x(6= 0) ∈ V (Hn) with binary string x = xn−1 . . . xi . . . x0 do

2: for every i(0 ≤ i ≤ n− 1) do

3: if (xi = 1) then

4: parent(Ti, x) = x− 2succ(i)

5: else if (xi = 0) then

6: parent(Ti, x) = x+ 2i

7: end if

8: end for

9: end for

HDLSn(x) matrix, if i = ip is an element in matrix then the successor of ip is ip+1.

Then, the matrix defined below is:

HDLSn(x) =

i0 i1 . . . it−2 it−1
i1 i2 . . . it−1 i0
...

...
. . .

...
...

it−2 it−1 . . . it−4 it−3
it−1 i0 . . . it−3 it−2

Example 5.1.1. Consider node x = 1011 in H4. The matrix defined is given by

HDLS4(11) =

0 1 3

1 3 0

3 0 1

Since the successor of ip is ip+1 where 0 ≤ ip ≤ n− 1, in HDLS4(11) for x = 1011 then

successor of 0 is 1, the successor of 1 is 3, and the successor of 3 is 0.

Example 5.1.2. If x = 11, by applying Algorithm 4 on H4 provides the parent node of

x. For construction of T0, the parent(T0, 11) = 11−21 = 9. In T1, the parent(T1, 11) =

11 − 23 = 3. In T2, the parent(T2, 11) = 11 + 22 = 15. In T3, the parent(T3, 11) =

11− 20 = 10.

In this way, we can construct n ISTs which requires n iterations. For H4, four ISTs

are constructed as depicted in Figure 5.2.

94

5.2 Constructing Independent Spanning Trees on Hypercube

Figure 5.2: Four pairwise independent spanning trees of H4 rooted at the vertex 0.

5.2 Constructing Independent Spanning Trees on Hyper-

cube

In this section, an efficient parallel algorithm is given which construct optimal n ISTs

for reliable broadcasting on the hypercube (Hn). The time complexity of our algorithm

is optimal in terms of height and space. Since our algorithm uses H(r,x) set to generate

unique paths with time O(n) and space ≤ 2n(N−1). we can also broadcast the message

from a dynamic root r = 0, 1, 2, . . ., or 2n − 1.

Section 5.2.1 defines the virtual roots and construction of n ISTs. Next, section 5.2.2

presents the efficient parallel preprocessing for generating n ISTs and then, section 5.2.3

elaborate the efficient construction of parallel n ISTs with the help of examples.

95

5. RELIABLE BROADCASTING VIA INDEPENDENT SPANNING
TREES

5.2.1 Virtual Roots for Reliable Broadcasting

The total number of ISTs on Hn are n ISTs (T0, T1, . . . , Ti, . . . , Tn−1). The root node

r = rn−1 . . . , ri . . . r1r0 of each Ti has a unique connection v = rn−1 . . . , r̄i . . . r1r0, which

is the one of the n virtual roots of the n ISTs. When xi = ri, the proposed algorithm

generates unique paths from (N/2) − 1 leaf nodes for each Ti and when xi 6= ri, the

proposed algorithm generates unique paths from (N/2) non-leaf nodes for each Ti. We

can get the leaf node (x) of the longest path by x = v̄. Clearly, in each spanning

tree the root node has exactly one child by inverting each binary bit in every possible

dimension (for example in H4, if root node is 0000 then inverting bit in 1st dimension

gives 0001 : 1, in 2nd dimension gives 0010 : 2, in 3rd dimension gives 0100 : 4, and in

4th dimension gives 1000 : 8) and so the set of the independent spanning trees can be

denoted by {Ti, 0 ≤ i ≤ n− 1}. The message passing through broadcasting via n-ISTs

have the advantages for providing n-degree fault tolerance.

Example 5.2.1. A 4-dimensional hypercube Hn with their four ISTs (T0, T1, T2, T3)

as shown in Figure 5.2. For root node r = 0 : 0000, the virtual roots be v = 1 : 0001, 2 :

0010, 4 : 0100, 8 : 1000. Let’s suppose, if a node 13 and/or a link (9, 13) is faulty during

broadcasting of T0, then nodes 12, 13, 14 and 15 will not receive the message. However,

at the same time the message will be forwarded to those nodes through the T1, T2 and

T3.

5.2.2 Parallel Preprocessing for Generating n ISTs

Parallel preprocessing is needed for unique parent-child connection during construction

of n ISTs (T0, T1, T3, . . . , Tn−1). Our algorithm uses H(r,x) (Hamming distance) to set

corresponding parent nodes. The H(r,x) preprocessing is applied for getting unique

paths in an arbitrary r = 0, 1, 2, . . . , 2n − 1 for constructing n ISTs. On each {Ti, 0 ≤

i ≤ n − 1}, if xi = ri or xi 6= vi then for leaf nodes with respect to the root r, parent

nodes (p) will be evaluated by setting pi = x̄i. If xi 6= ri, then for non-leaf nodes the

corresponding H(r,x) are applied for evaluating parent-child relation from x to r. The

parent p of each node x except root node r is made out by pj = x̄j , where j is the

next position of different bits between x and r.

96

5.2 Constructing Independent Spanning Trees on Hypercube

5.2.3 Algorithm

In this section, we propose a simple algorithm for generating optimal independent

spanning trees rooted at any vertex in the graph G. Algorithm 5 uses n iterations

for generating n ISTs (Ti, i = 0, 1, 2, n − 1) on Hn. For generating Ti in parallel,

every node x = xn−1 . . . xi . . . x1x0 except r = rn−1 . . . ri . . . r1r0 determines its parent

p = pn−1 . . . pi . . . p1p0. Two functions are required when determining p of x in each Ti

and they are:

1. One for N/2− 1 leaf nodes

2. Another for N/2 non-leaf nodes

If xi = ri, then for each leaf nodes (x) their parent (p) has all bits similar to x

except at bit position i and if xi 6= ri, then for each non-leaf nodes x their parent (p)

has all similar to x except at bit position j (where j = succ(i)).

To generate spanning tree Ti, the following algorithm determines the parent of each

vertex x(= xn−1xn−2 . . . xi . . . x1x0) other than the root r. The algorithm depends only

on the Hamming distance between x and r, and so it can be easily implemented in

parallel or distributed systems. The following algorithm is used to generate the ISTs.

It is optimized to execute using logic operators such as negate and XOR, whose task

is to compare vertices indexes and avoid edge repetitions. For Algorithm 5, the inputs

are all nodes of a hypercube with condition x 6= r and output is to generate a tree

rooted at root node.

Algorithm 5 Efficient parallel ISTs

1: for every node x(6= r) ∈ V (Hn) with binary string x = xn−1 . . . xi . . . x0 do

2: for every i(0 ≤ i ≤ n− 1) do

3: for virtual root invert the bit of x in every possible dimension

4: if (xi = ri) then

5: parent(Ti, x) = x̄i

6: else if (xi 6= ri) then

7: parent(Ti, x) = x⊕ 2succ(i)

8: end if

9: end for

10: end for

97

5. RELIABLE BROADCASTING VIA INDEPENDENT SPANNING
TREES

In our algorithm, for finding each unique path of Ti, if xi = ri then bitwise negation

is performed on a leaf node x at position i with parent(Ti, x) = x̄i and if xi 6= ri

then each of its corresponding non-leaf nodes to the root r at positions succ(i) with

parent(Ti, x) = x ⊕ 2succ(i), according to a sequence of locations (xi 6= ri) with the

Hamming distance between r and x at index i.

Example 5.2.2. Let the binary address of r be r3r2r1r0 = 0000 and x = x3x2x1x0.

Table 5.1, Table 5.2, Table 5.3, and Table 5.4 shows the computation of all p =

parent(Ti, x) = p3p2p1p0 for constructing T0, T1, T2 and T3 with respect to r.

Table 5.1 is used for constructing T0 with i = 0 and virtual root v = 0001. For leaf

nodes with condition x0 = r0, there are seven nodes x = {2, 4, 6, 8, 10, 12, 14} and their

corresponding parents (by applying p0 = x̄0) are p = {3, 5, 7, 9, 11, 13, 15}, connecting

along the first dimension (i = 0).

For non-leaf nodes with condition x0 6= r0, there are eight nodes x = {1, 3, 5, 7, 9, 11,

13, 15}. In this case, their parents (Ti, x) are identified by using the corresponding

H(r,x) tables in order to find position succ(0) (i.e., parent(Ti, x) = x⊕ 2succ(i)), defined

as follows:

• Along dimension 1, for every x with succ(0) = 0, which is x = {0001 : 1}, then

parent(Ti, x) = 1⊕ 20 = 0000 : 0.

• Along dimension 2, for every x with succ(0) = 1, which are x = {0011 : 3, 0111 :

7, 1011 : 11, 1111 : 15}, then parent(Ti, x) = 3 ⊕ 21 = 0001 : 1, 7 ⊕ 21 = 0101 :

5, 11⊕ 21 = 1001 : 9, 15⊕ 21 = 1101 : 13.

• Along dimension 3, for every x with succ(0) = 2, which are x = {0101 : 5, 1101 :

13}, then parent(Ti, x) = 5⊕ 22 = 0001 : 0, 13⊕ 22 = 1001 : 9.

• Along dimension 4, for every x with succ(0) = 3, which is x = {1001 : 9}, then

parent(Ti, x) = 9⊕ 23 = 0001 : 1.

Similarly, one can construct the trees for T1(i = 1), T2(i = 2) and T3(i = 3).

Figure 5.2 depicts the construction of four ISTs (T0, T1, T2, T3) for H4(n = 4) with root

0.

Example 5.2.3. The construction of T4 for H5(n = 5) from Figure 4.5, one of five ISTs

(T0, T1, T2, T3, T4), rooted at r = 8 : 01000. For computing T4 in parallel, Table 5.5

illustrates H(r,x), succ(i), and all parents (p) with respect to r.

98

5.2 Constructing Independent Spanning Trees on Hypercube

x x3x2x1x0 H(r,x) succ(0) 2succ(0) parent(T0, x)

0 0000

1 0001 〈0〉 0 1 0000 : 0

2 0010 〈1〉 − − 0011 : 3

3 0011 〈0, 1〉 1 2 0001 : 1

4 0100 〈2〉 − − 0101 : 5

5 0101 〈0, 2〉 2 4 0001 : 1

6 0110 〈1, 2〉 − − 0111 : 7

7 0111 〈0, 1, 2〉 1 2 0101 : 5

8 1000 〈3〉 − − 1001 : 9

9 1001 〈0, 3〉 3 8 0001 : 1

10 1010 〈1, 3〉 − − 1011 : 11

11 1011 〈0, 1, 3〉 1 2 1001 : 9

12 1100 〈2, 3〉 − − 1101 : 13

13 1101 〈0, 2, 3〉 2 4 1001 : 9

14 1110 〈1, 2, 3〉 − − 1111 : 15

15 1111 〈0, 1, 2, 3〉 1 2 1101 : 13

Table 5.1: Parent of a node x ∈ H4 in T0(r = 0), i = 0

Let the binary string of r be r4r3r2r1r0 = 01000 and x be x4x3x2x1x0 = {00000,

00001, 00010, . . . , 10000, . . . , 11111}. For generating T4, the virtual root of r is v = 24 :

11000.

For leaf nodes (x4 = r4), there are 15 nodes x = {0 : 00000, 1 : 00001, 2 : 00010, 3 :

00011, 4 : 00100, 5 : 00101, 6 : 00110, 7 : 00111, 9 : 01001, 10 : 01010, 11 : 01011, 12 :

01100, 13 : 01101, 14 : 01110, 15 : 01111} and their corresponding parent nodes (by

applying p4 = x̄4) are p = {16 : 10000, 17 : 10001, 18 : 10010, 19 : 10011, 20 : 10100, 21 :

10101, 22 : 10110, 23 : 10111, 25 : 11001, 26 : 11010, 27 : 11011, 28 : 11100, 29 :

11101, 30 : 11110, 31 : 11111}.
For non-leaf nodes x4 6= r4, there are 16 nodes x = {16 : 10000, 17 : 10001, 18 :

10010, 19 : 10011, 20 : 10100, 21 : 10101, 22 : 10110, 23 : 10111, 24 : 11000, 25 :

11001, 26 : 11010, 27 : 11011, 28 : 11100, 29 : 11101, 30 : 11110, 31 : 11111}, of which

parents (p) are identified by applying the H(r,x) tables in order to find position j and

by setting pj = x̄j , where j = succ(i), i = 4. For every x with succ(4) = 0, which are

x = {17 : 10001, 19 : 10011, 21 : 10100, 23 : 10111, 25 : 11001, 27 : 11011, 29 : 11101, 31 :

11111} and their corresponding parent nodes are p = {16 : 10000, 18 : 10010, 20 :

99

5. RELIABLE BROADCASTING VIA INDEPENDENT SPANNING
TREES

x x3x2x1x0 H(r,x) succ(1) 2succ(1) parent(T1, x)

0 0000

1 0001 〈0〉 − − 0011 : 3

2 0010 〈1〉 1 2 0000 : 0

3 0011 〈1, 0〉 0 1 0010 : 2

4 0100 〈2〉 − − 0110 : 6

5 0101 〈0, 2〉 − − 0111 : 7

6 0110 〈1, 2〉 2 4 0010 : 2

7 0111 〈1, 2, 0〉 2 4 0011 : 3

8 1000 〈3〉 − − 1010 : 10

9 1001 〈0, 3〉 − − 1011 : 11

10 1010 〈1, 3〉 3 8 0010 : 2

11 1011 〈1, 3, 0〉 3 8 0011 : 3

12 1100 〈2, 3〉 − − 1110 : 14

13 1101 〈2, 3, 0〉 − − 1111 : 15

14 1110 〈1, 2, 3〉 2 4 1010 : 10

15 1111 〈1, 2, 3, 0〉 2 4 1011 : 11

Table 5.2: Parent of a node x ∈ H4 in T1(r = 0), i = 1

10100, 22 : 10110, 24 : 11000, 26 : 11010, 28 : 11100, 30 : 11110}. For every x with

succ(4) = 1, which are x = {18 : 10010, 22 : 10110, 26 : 11010, 30 : 11110} and their

corresponding parent nodes are p = {16 : 10000, 20 : 10100, 24 : 11000, 28 : 11100}. For

every x with succ(4) = 2, which are x = {20 : 10100, 28 : 11100} and their correspond-

ing parent nodes are p = {16 : 10000, 24 : 11000}. For every x with succ(4) = 3, which

is x = {16 : 10000} and their corresponding parent node is p = {24 : 11000}. For every

x with succ(4) = 4, which is x = {24 : 11000} and their corresponding parent node is

p = {8 : 01000}.

5.3 Correctness

Lemma 5.3.1. All Ti(T0, T1, . . . , Tn−1) share the same root node (r) on Hn.

Proof. A root node r : rn−1rn−2 . . . ri . . . r1r0 has n child nodes v = vn−1vn−2 . . . vi

. . . v1v0 due to inverting each binary bit in every possible dimension. Since every

root node r is connecting with n virtual roots of Ti, where 0 ≤ i ≤ n − 1. The

100

5.3 Correctness

x x3x2x1x0 H(r,x) succ(2) 2succ(2) parent(T2, x)

0 0000

1 0001 〈0〉 − − 0101 : 5

2 0010 〈1〉 − − 0110 : 6

3 0011 〈0, 1〉 − − 0111 : 7

4 0100 〈2〉 2 4 0000 : 0

5 0101 〈2, 0〉 0 1 0100 : 4

6 0110 〈2, 1〉 1 2 0100 : 4

7 0111 〈2, 0, 1〉 0 1 0110 : 6

8 1000 〈3〉 − − 1100 : 12

9 1001 〈3, 0〉 − − 1101 : 13

10 1010 〈3, 1〉 − − 1110 : 14

11 1011 〈3, 0, 1〉 − − 1111 : 15

12 1100 〈2, 3〉 3 8 0100 : 4

13 1101 〈2, 3, 0〉 3 8 0101 : 5

14 1110 〈2, 3, 1〉 3 8 0110 : 6

15 1111 〈2, 3, 0, 1〉 3 8 0111 : 7

Table 5.3: Parent of a node x ∈ H4 in T2(r = 0), i = 2

child node (v) of the root (r) in that Ti is obtained by inverting the bit ri in every

dimension (i.e., inverting the bit in 1st dimension rn−1rn−2 . . . ri . . . r1r̄0 gives T0, in-

verting the bit in 2nd dimension rn−1rn−2 . . . ri . . . r̄1r0 gives T1, inverting the bit in

ith dimension rn−1rn−2 . . . r̄i . . . r1r0 gives Ti, inverting the bit in (n − 1)th dimension

¯rn−1rn−2 . . . ri . . . r1r0 gives Tn−1) and clearly we say that all Ti share the same root

node (r).

Lemma 5.3.2. Spanning trees (T0, T1, . . . , Ti, . . . , Tn−1) generated by algorithm are

mutually independent in the hypercube Hn.

Proof. Let Ti and Tj denotes two spanning trees in the hypercube topology. For any

vertex x : xn−1xn−2 . . . xi . . . xj . . . x1x0, let Pi(x) and Pj(x) be the unique path from

root node r to x in Ti and Tj , respectively. We are to show that Pi(x) and Pj(x) are

internally disjoint (i.e., they do not have common vertices except for their endpoints).

Let v = vn−1vn−2 . . . vi . . . v1v0 be any intermediate node between r and x in Pi(x), and

w = wn−1wn−2 . . . wj . . . w1w0 be any intermediate node between r and x in Pj(x). In

this way, v is an ancestor of x in Ti, and w is an ancestor of x in Tj . We are to show

101

5. RELIABLE BROADCASTING VIA INDEPENDENT SPANNING
TREES

x x3x2x1x0 H(r,x) succ(3) 2succ(3) parent(T3, x)

0 0000

1 0001 〈0〉 − − 1001 : 9

2 0010 〈1〉 − − 1010 : 10

3 0011 〈0, 1〉 − − 1011 : 11

4 0100 〈2〉 − − 1100 : 12

5 0101 〈0, 2〉 − − 1101 : 13

6 0110 〈1, 2〉 − − 1110 : 14

7 0111 〈0, 1, 2〉 − − 1111 : 15

8 1000 〈3〉 3 8 0000 : 0

9 1001 〈3, 0〉 0 1 1000 : 8

10 1010 〈3, 1〉 1 2 1000 : 8

11 1011 〈3, 0, 1〉 0 1 1010 : 10

12 1100 〈3, 2〉 2 4 1000 : 8

13 1101 〈3, 0, 2〉 0 1 1100 : 12

14 1110 〈3, 1, 2〉 1 2 1100 : 12

15 1111 〈3, 0, 1, 2〉 0 1 1110 : 14

Table 5.4: Parent of a node x ∈ H4 in T3(r = 0), i = 3

that v 6= w.

Notation x : xn−1xn−2 . . . xi . . . xj . . . x1x0 → v : xn−1xn−2 . . . x̄i . . . xj . . . x1x0 means

x and v are adjacent at location i , and x : xn−1xn−2 . . . xi . . . xj . . . x1x0 → w :

xn−1xn−2 . . . xi . . . x̄j . . . x1x0 means x and w are adjacent at location j. Next, to find

all v and w in Ti and Tj with unique edges in parallel, there are two cases:

Case 1: For all leaf nodes x (xi = ri) will connect to v and w by setting vi = x̄i

and wj = x̄j in Ti and Tj , respectively. Since every leaf nodes x has unique binary

address, so the connected edge to its parent is unique. Hence v 6= w.

Case 2: For all non-leaf nodes x (xi 6= ri) will connect to v and w by setting

x⊕2succ(i), where succ(i) evaluated by hamming distance between x and r. Hence, the

unique path connecting x to r in Ti is from the non-leaf node (x : xn−1xn−2 . . . xi . . . xj

. . . x1x0) to (y : xn−1xn−2 . . . x̄i . . . xj . . . x1x0) → . . . → (v : vn−1vn−2 . . . vi . . . v1v0) →
(r : vn−1vn−2 . . . v̄i . . . v1v0), and the unique path connecting x to r in Tj is from the non-

leaf node (x : xn−1xn−2 . . . xi . . . xj . . . x1x0) to (y : xn−1xn−2 . . . xi . . . x̄j . . . x1x0) →
. . . → (w : wn−1wn−2 . . . wj . . . w1w0) → (r : wn−1wn−2 . . . w̄j . . . w1w0). Since every

non-leaf node x (xi 6= ri) has unique binary address (x : xn−1xn−2 . . . xi . . . x1x0) and

102

5.3 Correctness

x x4x3x2x1x0 H(r,x) succ(4) 2succ(4) parent(T4, x)

0 00000 〈3〉 − − 10000 : 16

1 00001 〈0, 3〉 − − 10001 : 17

2 00010 〈2, 3〉 − − 10010 : 18

3 00011 〈0, 1, 3〉 − − 10011 : 19

4 00100 〈2, 3〉 − − 10100 : 20

5 00101 〈0, 2, 3〉 − − 10101 : 21

6 00110 〈1, 2, 3〉 − − 10110 : 22

7 00111 〈0, 1, 2, 3〉 − − 10111 : 23

8 01000

9 01001 〈0〉 − − 11001 : 25

10 01010 〈1〉 − − 11010 : 26

11 01011 〈0, 1〉 − − 11011 : 27

12 01100 〈2〉 − − 11100 : 28

13 01101 〈0, 2〉 − − 11101 : 29

14 01110 〈1, 2〉 − − 11110 : 30

15 01111 〈0, 1, 2〉 − − 11111 : 31

16 10000 〈4, 3〉 3 8 11000 : 24

17 10001 〈4, 0, 3〉 0 1 10000 : 16

18 10010 〈4, 1, 3〉 1 2 10000 : 16

19 10011 〈4, 0, 1, 3〉 0 1 10010 : 18

20 10100 〈4, 2, 3〉 2 4 10000 : 16

21 10101 〈4, 0, 2, 3〉 0 1 10100 : 20

22 10110 〈4, 1, 2, 3〉 1 2 10100 : 20

23 10111 〈4, 0, 1, 2, 3〉 0 1 10110 : 22

24 11000 〈4〉 4 16 01000 : 8

25 11001 〈4, 0〉 0 1 11000 : 24

26 11010 〈4, 1〉 1 2 11000 : 24

27 11011 〈4, 0, 1〉 0 1 11010 : 26

28 11100 〈4, 2〉 2 4 11000 : 24

29 11101 〈4, 0, 2〉 0 1 11100 : 28

30 11110 〈4, 1, 2〉 1 2 11100 : 28

31 11111 〈4, 0, 1, 2〉 0 1 11110 : 30

Table 5.5: Parent of a node x ∈ H5 in T4(r = 8), i = 4

103

5. RELIABLE BROADCASTING VIA INDEPENDENT SPANNING
TREES

unique succ(i) of the corresponding h(x,r), then the connected edge to its parent is also

unique. Hence v 6= w.

We shown that there are unique paths connecting from nodes x to r in Ti and

Tj . Hence, both case 1 and case 2 proves that Ti and Tj are mutually independent in

Hn.

Lemma 5.3.3. All n ISTs (T0, T1, . . . , Ti, . . . , Tn−1) on Hn of any node x utilize unique

paths.

Proof. We have already shown that there are unique paths in Ti. From Lemma 3.2,

when concatenating case 1 with case 2 will provide the complete unique path from x

to r. Therefore, Ti utilize unique paths.

For solving the problem of many-to-many disjoint paths in the hypercube Hn, the

h(x,r) preprocessing is applied for finding unique paths in n ISTs with an arbitrary

root r = 0, 1, 2, . . ., or 2n − 1. We consider the node 1011 of H4. Let Pi(1011, 0000)

denote the unique path from 1011 to 0000 in Pi for 0 ≤ i ≤ n − 1. Pi(1011, 0000) for

0 ≤ i ≤ n− 1 is as follows:

1. P0(1011, 0000) : 1011→ 1001→ 0001→ 0000,

2. P1(1011, 0000) : 1011→ 0011→ 0010→ 0000,

3. P2(1011, 0000) : 1011→ 1111→ 0111→ 0110→ 0100→ 0000,

4. P3(1011, 0000) : 1011→ 1010→ 1000→ 0000.

This shows that all n ISTs on Hn of the same root r utilize unique paths.

Theorem 5.3.4. Optimal data broadcasting via ISTs is done in O(n) time, where

n = log2N .

Proof. Parallel generation of the h(r,x) tables and corresponding succ(i) for all x with

respect to root r requires N − 1 processing elements when (x 6= r). h(r,x) require

n iterations for the different bits between x and r, so the time complexity is O(n).

All N − 1 processing elements requires n− 1 iterations to compute the corresponding

h(r,x) tables in O(n) time. Therefore, data broadcasting is done in O(n) time, where

n = log2 N via ISTs.

104

5.4 Experimental Results

Broadcasting via ISTs on Hn can construct an optimal broadcast tree. To solve the

single node broadcast problem, it is sufficient to transmit the data along the optimal

broadcast tree produced by algorithm. It requires 2n − 1 link transmissions. This

is optimal, since each of the other 2n − 1 nodes must receive the information from

the source node. The number of time steps equals the diameter of Hn, which is also

optimal and the single node broadcast using the optimal broadcast tree on Hn requires

n transmission steps.

5.4 Experimental Results

By simulation results, we have analysed the performance of our efficient parallel al-

gorithm to generate the n ISTs on Hn. The evaluation of the algorithm is based on

response time and reliable broadcasting. We have evaluated the response time by count-

ing the computation steps, and evaluated the reliable broadcasting by calculating the

percentage of fault tolerance. At last, a number of simulation results have been taken

on Hn in various system sizes (N = 16, 32, 64, 128, and 256).

5.4.1 Response Time of the Parallel Construction of n ISTs

In simulation, the response time of the parallel construction of n ISTs using N PEs

was studies in terms of the number of computation steps. The response time mainly

contains the following three functions:

1. Computation of H(r,x) in t1 ≤ n steps (suppose required t1 time)

2. Computation of succ(n) in t2 ≤ n steps (suppose required t2 time)

3. Construction of n ISTs in t3 = n steps (suppose required t3 time)

Table 5.6 depict the parallel response time (say tR), where tR = t1 + t2 + t3 = 3n

steps, executed by all PEs (i.e., x = 0, 1, 2, . . . , N − 1 except root r). In experiments,

our response time of ISTs have been improved in comparison of the HDLS-ISTs on

Hn for all system sizes (N = 2n). Our efficient algorithm taking less computing steps

because the computation time is dependent on H(r,x) table and succ(n) table.

Figure 5.3, showed that our IST linearly requires increasing time when system sizes

increases, whereas the HDLS-IST need more time.

105

5. RELIABLE BROADCASTING VIA INDEPENDENT SPANNING
TREES

Response time: HDLS-based ISTs vs Our algorithm based ISTs

N HDLS-ISTs Our ISTs

16 40 15

32 61 19

64 87 23

128 118 27

256 154 31

Table 5.6: Comparison in terms of no. of computation steps on H8

System sizes (N)

Figure 5.3: Response time of the parallel construction of n ISTs

5.4.2 Reliable Broadcasting

We have measured fault tolerance for successful broadcasting on a number of dy-

namic link faults. During n ISTs broadcasting on H4, there were several possibilities

of link faults. For example in Figure 5.2, if link (1, 9) in T0 was faulty, then nodes

8, 9, 10, 11, 12, 13, 14, 15 would not received the messages. If links (2, 6), (10, 8), (3, 7),

(11, 9) in T1 were faulty, then nodes 4, 5, 6, 7, 8, 9 would not received the messages.

If links (12, 8), (5, 1), (13, 9)(6, 2), (7, 3) in T2 were faulty, then nodes 1, 2, 3, 8, 9 would

not received the messages, and if links (9, 1), (10, 2), (12, 4), (14, 6) in T3 were faulty,

then nodes 1, 2, 4, 6 would not received the messages. So, we can say that the broad-

casting was successful because all sixteen nodes (0 ≤ x ≤ 15) received the onwards

message (i.e., nodes 1, 2, 3, 4, 5, 6, 7 in T0, nodes 1, 2, 3, 10, 11, 12, 13, 14, 15 in T1, nodes

106

5.5 Conclusion

4, 5, 6, 7, 10, 11, 12, 13, 14, 15 in T2, and nodes 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15 in T3).

For different sizes of a system for evaluation (N = 16, 32, 64, 128, 256), Table 5.7 de-

picts dynamic link faults for reliable broadcasting along n ISTs. The common spanning

tree for successful broadcasting cannot allow any faulty link.

N No. of links in n ISTs Faulty links Fault tolerance (%)

16 60 14 23.3

32 155 28 18.0

64 378 59 15.6

128 889 124 14.0

256 2040 238 11.7

Table 5.7: Reliable broadcasting in faulty links

In simulation, we have taken randomly faulty links (1, 2, 3, 4, . . .) in all possible ISTs.

In performance perspective, we have checked the successful/unsuccessful broadcasting

by setting random link faults. Broadcasting was verified. If all nodes receives the

message then it is called successful broadcasting and if all nodes does not receives the

message then it is called unsuccessful broadcasting. We repeated the process until all

nodes receives the message.

For different sizes of a system, Figure 5.4 represented the ratio between faulty links

over total links. This case conceded fault tolerance 12%−23% in reliable broadcasting.

As we can see from the Table 5.7 that for smaller N the fault tolerance was nearly 23%,

which is more than that (12%) for the larger N . For the hypercube topology, we found

successful broadcasting in a system under 14 faulty links over 60 links (or 23.3%). For

the large N(N = 256, n = 8), the successful broadcasting was done under 238 faulty

links over 2040 links (or 11.7%). So, for every node x in every IST (T0, T1, T2, . . . , Tn−1),

there exists n-degree fault tolerance. As we can see in Figure 5.2, for example the node

is x = 9. For this, there are four links to reach at node 9, which is the link (1, 9) in T0,

the link (11, 9) in T1, the link (13, 9) in T2, and the link (8, 9) in T3.

5.5 Conclusion

In this chapter the basic idea of hypercubes and their contribution to the improvement

of spanning tree protocols in broadcasting was discussed. This chapter proposed a

107

5. RELIABLE BROADCASTING VIA INDEPENDENT SPANNING
TREES

System sizes (N)

Figure 5.4: Ratio b/w faulty links vs total links in reliable broadcasting.

fault-tolerant broadcasting protocol by means of multiple independent spanning trees

(ISTs) in a hypercube network Hn. Fault tolerance can be achieved by sending n

copies of the message along n independent spanning trees rooted at the same root r.

The proposed algorithm is applied to solve any node broadcast problem for hypercubes.

All independent spanning trees constructed by the algorithm presented in this chapter

broadcast the data in O(n) time. Since N = 2n which can rewrite in this way n =

log2N . Thus we can say that this algorithm runs in Logarithmic Time.

With the help of Table 5.8, one can analysed that our proposed algorithm is fast

and more reliable. In our approach, one can broadcast the message at any node to

remaining nodes at the same time.

Authors Year Approach Advantages

S. M. Tang 2004 Sequential Fast computing

J. S. Yang 2007 Parallel HDLS matrix More reliable

J. Werapun 2012 Hamming distance More reliable

Our 2014 Parallel Fast and reliable for broadcasting

Table 5.8: Comparison in terms of approach and advantages

108

