
Chapter 4

Fault-Tolerant Node-to-Set

Disjoint-Path Routing

In this chapter we present methodology based on the use of disjoint paths to provide

fault tolerance in the presence of components failures. The objective of the proposed

method is to provide an alternative disjoint path which is non-faulty, when failure

occurs in the path.

Data transmission is the critical issue when dealing with parallel processing systems.

As the number of processors increases day by day inside the supercomputers, faults are

very common to occur. Therefore, generating node-disjoint paths is the guarantee to

sending message from source process to destination process successfully, since single

faulty process can affect maximum one path. Beyond selecting right and efficient in-

terconnection network, routing is also a major issue to propagate the data in a efficient

way. This chapter presents a fault tolerant routing algorithm for faulty hypercube net-

works which finds n disjoint paths from source process s to n destination processes in

n-dimensional hypercube in O(n2) time with optimal path lengths at most n+ f + 1,

where n is the number of destination node and f is the number of faulty nodes. The

simulation results showed that the proposed algorithm reduce the average path length

by about 20% in comparison of Bossard’s algorithm in 8-dimensional hypercube (H8).

Some general properties of hypercube and related works is described in section 4.1.

Section 4.2 describes the importance of subcubes for reliable computation. In sec-

tion 4.3, the node-to-set routing algorithm is described. The correctness and the com-

plexity of the algorithm are studied and a formal proof is defined in section 4.4. Sec-

73



4. FAULT-TOLERANT NODE-TO-SET DISJOINT-PATH ROUTING

tion 4.5 provide the evaluation model of the contribution. Performance analysis of the

algorithm is showed in section 4.6. Finally, the proposal is summarized and discussed

in section 4.7.

4.1 Overview

Parallel processing is a very attractive research topic because today’s computer sys-

tems equipped with various CPU cores. Personal computers consists few number of

cores (currently eight), but supercomputers consists hundreds of thousands of cores.

Recently, Tianhe-2 (MilkyWay-2) supercomputer developed by China’s National Uni-

versity of Defense Technology (NUDT) connects 3,120,000 cores with a performance of

33.86 petaflops [1]. Hence, retaining high performance computing (HPC) in the pres-

ence of faults when routing the message from source node s to d destination nodes is a

critical issue.

Hypercube topology is one of the most popular interconnection network of parallel

systems due to its elegant properties like simplicity, regularity, high symmetric, maximal

fault-tolerance, and strong hierarchical structure. An n-dimensional hypercube Hn,

also called n-cube or binary n-cube, has 2n nodes and n.2n−1 links and each nodes

represented by n-bit unique binary address. Two nodes are connected by a link in a

hypercube if their Hamming distance is equal to one. Hence, the degree and diameter of

hypercube is equal to n [107]. For any dimension (0 ≤ i ≤ n−1), an n-dimensional Hn

consists of two (n − 1)-dimensional subcubes H0
n−1 and H1

n−1, whose most significant

bit (MSB) position or ith bit is set to 0 and 1, respectively. Figure 2.9 shows a 4-

dimensional hypercube H4 and its subcubes H0
3 and H1

3 , whose MSB position or 3rd

bit is set to 0 and 1, respectively.

In a hypercube, there may be faulty nodes and/or faulty links. In this case the

hypercube is called faulty hypercube. If non-faulty nodes and links exist in n-cube, it

is called a complete cube. A cube is called a subcube of complete n-cube if at least

one dependent (0 or 1) coordinate exists in the cube with dimension n. A cube Hj is

the subcube of cube Hi if Hi ⊗Hj = Hj . A subcube Hi is called a maximal subcube,

if subcube Hi is not a subcube of any other subcubes. Otherwise the subcube Hi is

called nonmaximal. A subcube Hf is called complete faulty subcube if Hf is a subcube

74



4.1 Overview

including only faulty nodes and/or links. In complete n-cube W (r), r-subcubes exist.

Equation 4.1 determined the number of all subcubes in complete n-cube:

W (r) = (0 ≤ r ≤ n) =
n∑

r=0

2n−r
[
n
r

]
(4.1)

Naturally, a set of the maximal subcubes, nonevidently includes nonmaximal sub-

cubes. Thus, in order to define the desired subcube, it is necessary and sufficient to

have a set of maximal subcubes.

The interesting properties of hypercube topology are very much useful for parallel

computing and therefore, motivated to researchers to solve classical problems e.g.,

image and signal processing [23], traveling salesman problem (TSP) [17], finding node-

disjoint shortest paths [72], node-to-set disjoint path routing [15]. In a parallel systems,

when the size of the network grows, the probability of node or link faults occur more

frequently. So, maintaining reliability of hypercube based parallel systems is highly

desirable. Several fault-tolerant routing strategies for any interconnection network

has been proposed to resolve the faults when transmitting the data. There are many

variants of the hypercube topology like crossed cubes [20], twisted cubes [21], folded

cubes [45] and hierarchical cubes [86]. Hence, all these variants of hypercube also

increase the importance of hypercube routing.

Creating node-disjoint paths has advantages in fault tolerance routing. The node-

to-set disjoint path routing problem for any interconnection network is as follows: given

a source node s and a set of n destination nodes, to find the n node disjoint paths from

source node to each distinct destination nodes. The two paths are disjoint if they do

not have common node except the source node. The node-to-set node disjoint path

routing has the ability to tolerant the faults for multicasting communication. There

are many algorithms for node-to-set routing problem [16, 55, 79]. These algorithms are

very much useful for fault-tolerant routing.

In 1998, Gu and Peng [55] described a node-to-set fault-tolerant routing algorithm

for hypercube in O(|F |n) time, where F is the set of faulty nodes, with path length at

most n+2. In 2010, Bossard et al. [16] proposed an extended fault-tolerant node-to-set

disjoint-path routing algorithm, that finds paths of length at most n+ k + 4 in O(n2)

time in hypercubes, where k is the number of destination nodes. In 2012, Lai [72]

proposed an optimal all shortest node-disjoint paths in hypercube in O(mn1.5 +m3n)

75



4. FAULT-TOLERANT NODE-TO-SET DISJOINT-PATH ROUTING

time with minimized length in the worst case, where m is the number of destination

nodes. Recently, in 2014, Bossard and Kaneko [15] improves the time complexity by

O(kn), where (k ≤ n) with optimal path length (at most n+ 1) for node-to-set disjoint

paths routing in hypercubes. However, no distributed algorithm for data routing over

node-disjoint paths in a hypercube topology exists. In this chapter, we propose a fault-

tolerant routing algorithm in hypercube in O(n2) time with maximum n+ f + 1 path

length.

4.2 Subcube Reliability Computation

According to the reliability concept with respect to subcubes, it can be computed in

terms of the number of disjoint subcubes in hypercube Hn. Subcubes can be embedded

in an n-cube in the presence of node and/or link failures [108]. In the presence of

any type of failures, (n− 1)-dimensional subcube embedded in an n-dimensional cube.

Considering only node failures in the system, then one can embedded a fault-free (n−1)-

subcube in an n-cube. In the case of one faulty node in an n-cube, we can split it into

a fault-free (n− 1)-subcube. But, two faulty nodes could damage all (n− 1)-subcubes

of an n-cube.

Example 4.2.1. In an n-dimensional hypercube, if node 0 = 00 . . . 00 and node N−1 =

11 . . . 11 are faulty, then there is no mode of embedding a (n − 1)-subcube. If all

failures occur in Hn such a way that they can be enclosed in k-subcube with condition

k < n, then a fault-free (n−1)-subcube exists. In a 4-dimensional cube, Figure 4.1 and

Figure 4.2 illustrates the case when embedding is not possible since no fault-free 3-cube

exists and Figure 4.3 and Figure 4.4 illustrates the case when embedding is possible

since fault-free 3-cube exists.

4.3 Algorithm

In this section, we propose an algorithm NoSeRo (Node to Set Routing) which finds

disjoint paths from one source node s to n destination nodes inside an n-dimensional

hypercube. Suppose a set of destination nodes be D = {d1, d2, . . . , dn} and F is a set

of faulty nodes. Due to symmetric structure of hypercubes, we can always take the

source node s is 00 . . . 0 without loss of generality.

76



4.3 Algorithm

Figure 4.1: Embedding is not possible in a faulty 4-cube since no fault-free 3-cube exist.

Figure 4.2: Embedding is not possible in a faulty 4-cube since no fault-free 3-cube exist.

Figure 4.3: Embedding is possible in a faulty 4-cube since fault-free 3-cube exists.

The first subsection 4.3.1 describes the fault-tolerant node-to-node routing in hy-

percube from s to d of length at most n+ 2 in O(n) time and second subsection 4.3.2

describes the fault-tolerant node-to-set routing in hypercube from s to n destination

nodes of length at most n+ f + 1 in O(n2) time.

77



4. FAULT-TOLERANT NODE-TO-SET DISJOINT-PATH ROUTING

Figure 4.4: Embedding is possible in a faulty 4-cube since fault-free 3-cube exists.

4.3.1 Fault-Tolerant Node-to-Node Routing in Hypercube

Given a source node s, a set of destination nodes D and a set of faulty nodes F , such

that |F | ≤ n − 1 and |D| ≤ 2n − |F |. We will explain the fault-tolerant node-to-node

routing in hypercube with the help of three cases. Before applying the cases, we have

to divide the hypercube Hn into two subcube of smaller dimension n − 1 until each

subcube is fault-free.

Case 1- |F | = 0

If there is no faulty nodes in the hypercube topology, then apply a shortest-path

routing algorithm to find out the path from s to D with nearest destination node.

Case 2- |D| = 1

If there is only single destination node in the hypercube topology, then apply fault-

tolerant node-to-node routing algorithm to find the path from single source node s to

single destination node D.

Case 3- Otherwise

If there are several faulty nodes in the hypercube, then reduce Hn along a dimension

into two (n− 1)-dimensional subcubes H0
n−1 and H1

n−1 such that

F ∩H1
n−1 6= φ

Case 3-1- H1
n−1 ⊃ D

Case 3-1-1- H0
n−1 ∩ F = φ

If there is no faulty node in H0
n−1, then by using one link map one d ∈ H1

n−1 onto

a d′ ∈ H0
n−1 and if d′ 6= s, then connect them by applying a shortest-path routing

algorithm inside H0
n−1.

78



4.3 Algorithm

Case 3-1-2- Otherwise

If there is faulty node in H0
n−1, then map s ∈ H0

n−1 onto a node s′ ∈ H1
n−1 with a

fault-free path of length at most 2. If s′ ∈ D we accomplished, otherwise recursively

apply this algorithm on H1
n−1.

Case 3-2- H0
n−1 ∩D 6= φ

Recursively apply this algorithm on H0
n−1

In this approach, we can always map s ∈ H0
n−1 onto a node s′ ∈ H1

n−1 with a fault-free

path of length at most 2. Since |F | < n, and each time reduction of Hn sets at least

one faulty node into H1
n−1. Hence, during a reduction of Hn which is always done in

parallel, all time decreasing the dimension by one puts one faulty node into H1
n−1. So,

there is at least one fault-free path of length at most 2 to map s onto s′ in H1
n−1.

Finding a suitable dimension which fulfils all the above condition can be exercised in

O(n) time with path length at most n+2. Hence, the time complexity of fault-tolerant

node-to-node algorithm is O(n) with the path length at most n+ |F |
2 + 2.

4.3.2 The Proposed Node-to-Set Routing Algorithm

In this section, we propose an algorithm NoSeRo that finds disjoint paths connecting

with one common source node s and n distinct destination nodes in an n-dimensional

hypercubes Hn. Let source node be s ∈ Hn, set of destination nodes be D = {d1, d2, . . .,
dn}, and set of faulty nodes F = {f1, f2, . . . , fn−1}.

This algorithm uses the symmetric and recursive properties of the hypercube Hn

to perform node-to-set fault-tolerant node-disjoint path routing. By using recursive

property, the Hn can be split in arbitrary dimension i (0 ≤ i ≤ n−1) into two subcubes

of lower dimension, called H0
n−1 and H1

n−1. Subcube H0
n−1 contains the source node

s and s′ is the set of neighbour nodes of s. For Algorithm 3, the inputs are single

common source node, multiple destination nodes, number of faulty nodes and output

is node-disjoint paths from source to destination with optimal path lengths. NoSeRo

algorithm have several distinguished cases.

Case 1: If D = 1 and F = φ, propagate the message by flipping the corresponding

bit position according to HD(s, d), which produce optimized path.

Case 2: If F ≥ 1, split Hn into H0
n−1 and H1

n−1 along an arbitrary dimension

i (0 ≤ i ≤ n− 1).

Case 3: If H1
n−1 has at least one faulty node, then two cases exists

79



4. FAULT-TOLERANT NODE-TO-SET DISJOINT-PATH ROUTING

Algorithm 3 NoSeRo (Hn, D = {d1, d2, . . . , dn}, F = {f1, f2, . . . , fn−1})
1: if D = 1 and F = φ then i = (i+ 1) mod n

2: Propagate the message to next processor through HD(s, d)

3: end if

4: Split Hn to H0
n−1 and H1

n−1|H0
n−1 ∩ F = φ

5: if ∃ s′ then

6: Route the message from s to D via s′

7: else

8: for all di|D ∩H1
n−1 do

9: Route the message from the destination node H1
n−1 to another destination

node in H0
n−1

10: end for

11: end if

Case 3.1: If s′ in H1
n−1 is a non-faulty node, route the message from s to s′ then

one destination node of H1
n−1 and finally map back into H0

n−1 all the destination nodes

of H1
n−1 remaining.

Case 3.2: If s′ in H1
n−1 is a faulty node, then perform a back-map to route all the

destination nodes of H1
n−1 back into H0

n−1 with maximum 1 link.

After finishing these cases, recursively call NoSeRo algorithm in subcube H0
n−1 for

routing all the destination nodes.

Example 4.3.1. Let Figure 4.5 for 5-dimensional hypercube. For n = 5, this example

perform the routing according to the NoSeRo algorithm in a hypercube H5. Let the

source s, the set of destination nodes and the set of faulty nodes are as follow:

s = 00000

D = {d1 = 01011, d2 = 10100, d3 = 10111}
F = {f1 = 10010, f2 = 10101}
First of all, H5 is partitioned by dimension 4 into two subcubes H0 and H1. H0 has

{d1} and does not contain any faulty nodes; i.e., H0 is fault free hypercube. Therefore,

we can directly apply unicast algorithm on H0 and find out the optimal path from s

to {d1}. One can find out optimal path by evaluating the Hamming distance between

source node to destination node; i.e., HD(0000, 01011) = 01011. By altering the bit-

position of 0, 1 and 3 in the source node, the optimal path is given below–

00000
0−→ 00001

1−→ 00011
3−→ 01011

In this way, we find out the path from s to d1.

80



4.4 Complexities Analysis

Figure 4.5: A 5-dimensional hypercube.

H1 contains {d2, d3} and has {f1, f2}. Since s′ is a non-faulty node in H1, a routing

path is constructed from s via s′ to d2. The path is given below–

00000
4−→ 10000

2−→ 10100

In this way, we find out the path from s to d2 and d3 is mapped to d3
′(00110) in H0

via 10110. The map back path is given below–

10111
0−→ 10110

4−→ 00110

Secondly, H4 is partitioned by dimension 3 into two subcubes H0 and H1. H0

contains {d2, d3} and {f1, f2}. This time H1 does not contain any destination and/or

faulty nodes; i.e., H1 is fault free hypercube. Since s′ is a non-faulty node in H0, a

routing path is constructed from s via s′ to d3. The path is given below–

00000
0−→ 00001

4−→ 10111

4.4 Complexities Analysis

As we know that a hypercube Hn reduction uses just one bit of the n bits in node

addresses. For each reduction performed, the described NoSeRo algorithm always set

81



4. FAULT-TOLERANT NODE-TO-SET DISJOINT-PATH ROUTING

at least one faulty node inside reduced hypercube before recursive call. In this way,

the proposed NoSeRo algorithm decreases the number of faulty nodes for the next

reductions by at least one. Therefore, the NoSeRo algorithm will perform maximum F

hypercube reductions.

For one reduction, |F | decreases by at least one. Therefore, |D| may also decreases.

For the initial condition |D|+ |F | ≤ n and |F | ≤ n, we assure that the n bits of node

addresses sufficient to build the |D| disjoint paths. In other words, n reductions is

sufficient to build the |D| disjoint paths.

Now we analyse the time complexity and maximal path length of proposed NoSeRo

algorithm.

Let T (n, n) denotes the time complexity of NoSeRo algorithm in Hn with n = D.

Suppose n0 = D ∩H0
n−1 and n1 = D ∩H1

n−1. From step 1 to 3 in NoSeRo algorithm

(when D = 1), then algorithm generates single shortest path routing. In this case the

time complexity be T (1, n) = O(n1). From step 5 to 11 of the Algorithm 3 requires

T (n1, n−1) time for H1
n−1 subcube and another subcube H0

n−1 also requires T (n0, n−1).

Therefore, total time complexity induced by all the cases have:

T (1, n) = O(n)

T (n, n) = T (n0, n− 1) + T (n1, n− 1) +O(n1)

= O(n2) (4.2)

Where 1 ≤ n0, n1 ≤ n − 1 and n0 + n1 = n. So, the total time complexity of NoSeRo

algorithm is O(n2).

We can also understand directly from the NoSeRo algorithm that each subcube

required O(n) time complexity to pass the message from single source node to all

destinations nodes, so both subcubes or an n-dimensional hypercube required O(n2)

time complexity.

An n-dimensional hypercube Hn can tolerate maximum n − 1 faulty nodes f(f ≤
n − 1). Hence, there exists m(m ≤ n − f) non-faulty nodes in H1

n−1 to H0
n−1 for

node-disjoint paths of length at most 2. So, the destination nodes can be explored

back with at most 2∗f times. Suppose subcube Hm of Hn has single destination node,

then the path length will be at most m(m = n − f) for generating unicast path. If

subcube Hm of Hn has multiple destination nodes, then the path length will be at most

82



4.5 Evaluation Model

n−f +1. Therefore, in Hn with f faulty nodes and multiple destinations, the maximal

path length

Pmax = max{2f + (n− f), 2f + (n− f + 1)}

= max{n+ f, n+ f + 1}

= n+ f + 1 (4.3)

From this discussion, we state the main results of this chapter in Theorem 4.4.1.

Theorem 4.4.1. Given a source node s, a set of n distinct destination nodes D and a

set of faulty nodes F , one can find n node-disjoint paths from s to D of optimal path

lengths at most n+f +1 in O(n2) time complexity in an n-dimensional hypercube Hn.

4.5 Evaluation Model

We have simulated our work on CPN (Colored Petri nets) tool to validate the per-

formance of the improved algorithm in hypercube topology. Figure 4.6 shows the

simulator’s configuration. Firstly, service requests are sent to the client from the users,

then the service requests are transferred to the scheduler. The scheduler receives the

service request and decides its sequence according to the schedule rules and dispatches

these results to processor and further it decides which one processor to execute the

service request. The main purpose of our algorithm is to realize fault-tolerance. Our

simulations are based on exponential distribution of node failures, i.e., every node has

an continuous and independent failure probability.

Figure 4.10 represents the monitoring of service where the complete service having

no fault is sent to client and then to user. If there is any fault in the execution of

service, then service is sent to task scheduler from where it is either rescheduled or is

aborted.

4.6 Performance Evaluation

The algorithm has been tried statically for hypercubes of various dimensions. We

have implemented this algorithm using the CPN tools running over 32-bit Windows

operating system with core i7 and 4 GB RAM for various hypercube dimensions

and injected faults at various nodes and showed that the algorithm provides correct

83



4. FAULT-TOLERANT NODE-TO-SET DISJOINT-PATH ROUTING

Figure 4.6: CPN model for computing.

Figure 4.7: CPN model for date generation.

84



4.6 Performance Evaluation

Figure 4.8: CPN model for task scheduler.

Figure 4.9: CPN model for computing.

Figure 4.10: CPN model for computing.

85



4. FAULT-TOLERANT NODE-TO-SET DISJOINT-PATH ROUTING

Figure 4.11: CPN model for computing.

routes in the event of failed nodes. We gave performance comparison among Lai’s

method [72], Bossard’s algorithm [16] and the NoSeRo Algorithm 3 on H8. For prac-

tical behaviour, we set s = 0, destination nodes D = (d1, d2, . . . , d7) and faulty nodes

F = (f1, f2, . . . , f8−d). Then execute the NoSeRo algorithm to get the paths and anal-

yse the collected data for measuring the average paths length on 10,000 times of the

hypercube node-to-set disjoint paths routing problem.

Figure 4.12 and Figure 4.13 showed the node-to-set disjoint paths routing results.

One can analysed from Figure 4.12 that the path length of NoSeRo algorithm has about

12% better than Bossard’s algorithm and about 8% worse than Lai’s method in the case

of without any faulty nodes (set F = φ). Figure 4.13 showed that the path length of

NoSeRo algorithm has about 20% better than Bossard’s algorithm while Lai’s method

can not work in the case of faulty nodes (F = 8− d). So, NoSeRo algorithm effectively

generates the n paths which are mutually node-disjoint in both cases in the system.

The node-disjoint property follows from the fact that, we are computing the path

from the source node to the n destination nodes and at any stage the hypercube has

two subcubes: the 0-subcube and the 1-subcube. Since n-dimensional hypercubes have

n links connecting n nodes, so in the presence of failures they choose the alternative

paths. Thus, the paths computed at any stage of recursion cannot intersect with each

other. The advantageous of node-disjoint paths is if a task tries to move to a faulty

86



4.6 Performance Evaluation

Number of Destination Nodes 

Figure 4.12: Comparison in terms of path length with failures for node-to-set disjoint

path routing in H8

Number of Destination Nodes

Figure 4.13: Comparison in terms of path length without failures for node-to-set disjoint

path routing in H8

node, it will try an alternative route.

87



4. FAULT-TOLERANT NODE-TO-SET DISJOINT-PATH ROUTING

4.7 Conclusion

In this chapter we have described an optimal node-to-set fault-tolerant routing algo-

rithm in hypercubes, which finds disjoint paths from single source node to multiple

destinations nodes in O(n2) time with optimal path length at most n + f + 1. Since

N = 2n which can rewrite in this way n = log2N . Thus we can say that this algorithm

runs in Logarithmic Time which is log22N . The proposed NoSeRo algorithm can toler-

ate maximum n− 1 faulty nodes. Experimental results showed that applying NoSeRo

algorithm approach reduce path length about 20% in H8.

The Table 4.1 showed that our algorithm is better in terms of average path length

and time complexity.

Authors Year Path length Time complexity

A. Bossard, K. Kaneko and S. Peng 2010 n+ k + 4 O(n2)

A. Bossard and K. Kaneko 2012 n+ 1 O(kn)

C. N. Lai 2012 does not work −
E. Wang 2014 n+ f + 2 O(nm)

Our 2015 n+ f + 1 O(n2)

Table 4.1: Comparison in terms of path length and time complexity

The proposed method does not need the use of virtual channels hence avoiding

scalability problems. The main advantage of the proposed algorithm is that they avoid

the faults by accessing resources as per need and independent from the other faults.

The NoSeRo algorithm provides the feasible solution to the problem which is useful

for current HPC systems. This approach may be applied to the other interconnection

networks like Recursive Dual-Net (RDN) for node-to-set disjoint-path routing, since

RDN is a newly proposed interconnection network for massive parallel computers.

88


