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Preface

The aim of this thesis is to study, implement and evaluate fault-tolerant routing 

algorithms for the hypercube interconnection network. We have addressed and 

designed fault tolerant routing algorithms in the presence of high number of node 

and/or link faults. We addressed this issue by designing adaptive routing protocols for 

hypercube interconnection networks. This technique addresses network latency and 

bandwidth utilization for parallel architectures. Adaptive routing algorithms exploit 

gains of path redundancy in n-cube.

Interconnection networks play an important role in the performance of modern 

high performance computing systems. It consists of a series of nodes and links. Nodes 

interact with each other for communication through links. The interconnection 

network is a requirement of any parallel computer as it helps parallel systems in 

showing high performance by providing reliable and quick communication over the 

networks. Since most routing algorithms for parallel computers are not being designed 

to tolerate faults, component failures impact these systems terribly. Thus, one link 

and/or node failure may halt the entire computing system altogether and stop the 

scientic applications running on them.

In this thesis, we present fault-tolerant routing algorithms based on adaptive 

protocols. Adaptive routing protocols can use alternative paths between 

communicating nodes. Multipath networks and adaptive routing protocols 

dynamically adapt to network conditions, thus capable of serving interconnection 

networks affected by a large number of node/link failures. Three contributions are 

presented throughout this thesis, namely: fault-tolerant distributed node-to-node 

routing, fault-tolerant node-to-set disjoint-path routing, and reliable broadcasting via 

independent spanning trees.
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The aim of this thesis is to further study parallel computing, interconnection 

networks, routing, fault tolerance and node-disjoint paths. The scope of research given 

in this thesis is to design, implement and evaluate fault-tolerant routing strategies for 

the hypercube topology which can be utilized to frame the supercomputers.

Chapter 1 introduces parallel computing. It deals with the need for high 

performance computing and discusses the hypercube interconnection networks. 

General introduction to other related topics in parallel computing is covered to 

provide the span of the field.

Chapter 2 explains the basic terminologies of fault tolerance, then background 

on interconnection networks for HPC systems including topologies and routing. Then 

the concepts about hypercube interconnection networks and their routing methods and 

previous related works that explain routing strategy for both cases, routing without 

failures and routing in the presence of failures. The chapter provides complete 

theoretical and practical implementation of designing simple routing algorithms.

Chapter 3 describes in detail the first adaptive fault-tolerant node-to-node 

routing algorithm over all shortest node-disjoint paths in n-dimensional hypercube 

interconnection networks. It is designed in such a way that it can handle large number 

of node and link failures, while delivering all n messages over disjoint-paths in the 

presence of maximum permissible node/link failures. The chapter develops the idea 

from nodes and /or links failures in hyper networks towards fault tolerating 

interconnection networks.

Chapter 4 presents a node-to-set node-disjoint fault-tolerant routing algorithm 

based on subcubes of the hypercube networks. The n-dimensional hypercube can 

tolerate maximum n-1 faulty nodes. The proposed algorithm generates node disjoint-

paths which maximise the probability of setting up non-faulty path in a faulty 

xvi



environment.

Chapter 5 introduces data broadcasting on parallel computers through multiple 

independent spanning trees (ISTs). The n-IST based broadcasting from common root r

on the hypercube network can provide n-degree fault tolerance. The designed fault-

tolerant broadcasting algorithm using ISTs may increase message security in 

hypercube network.

Chapter 6 concludes the thesis and presents future directions in the research. 

This chapter also gives initiation to a broad range of open lines for fault-tolerant 

routing and further work.

In this thesis, we have designed, implemented and evaluated the different 

algorithms for fault-tolerant routing. The methodologies of all the algorithms are 

based on existing theories, knowledge and observations. The algorithms proposed in 

this thesis were developed on a theoretical basis and were implemented practically. 

With the help of relevant books and related research papers, we have focussed on the 

design, implementation, and evaluation of similar algorithms with efficient 

complexity. We have analysed the effectiveness of all the proposed fault-tolerant 

routing algorithms through simulation. For this, we have developed simulation models 

for experimental evaluation of our propositions.

Most of the concepts in the thesis are illustrated by several examples. This 

thesis can be useful to students and engineers who are interested in routing algorithms 

of high speed interconnection networks.

November, 2015 Lokendra Singh Umrao
IIT (BHU), Varanasi, India
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Abstract

Interconnection networks plays an important role for the performance of

modern high performance computing systems. It consists of a series of

nodes and links. Each node interact with each other for communications

through links. The interconnection network is a requirement of any paral-

lel computer because parallel system shows high performance by providing

reliable and quick communication over the networks. In this context, com-

ponents failures have an extremely high impact because most of the routing

algorithms have not been designed to tolerate faults. Since, one link and/or

node failure may halt the entire computing system and stop the scientific

applications running on them.

In this thesis, we present fault-tolerant routing algorithms based on adap-

tive protocols. Adaptive routing protocols can use alternative paths between

communicating nodes. Multipath networks and adaptive routing protocols

dynamically adapt to network conditions, thus capable of serving intercon-

nection networks affected by a large number of node/link failures. Three

contributions are presented throughout this thesis, namely: fault-tolerant

distributed node-to-node routing, fault-tolerant node-to-set disjoint-path

routing, and reliable broadcasting via independent spanning trees.

The aim of this thesis is to study, implement and evaluate fault-tolerant

routing algorithms for the hypercube interconnection network. We have

addressed and designed fault tolerant routing algorithms in the presence of

high number of node and/or link faults. We addressed this issue by de-

signing adaptive routing protocols for hypercube interconnection networks.

This technique addresses network latency and bandwidth utilization for

parallel architectures. Adaptive routing algorithms exploit gains of path

redundancy in n-cube.



The first contribution of this thesis is the adaptive fault-tolerant routing

algorithm for hypercube topology. This algorithm has been designed in

such a way that they can use alternative path available in hypercube topol-

ogy, making more efficient use of network bandwidth and allowing hyper-

cube networks to perform in the presence of large number of faults. The

proposed algorithm is a simple uniform distributed algorithm that can tol-

erate a large number of process failures, while delivering all n messages

over optimal-length disjoint paths. However, no distributed algorithm uses

acknowledgement messages (acks) for fault tolerance. So, for dealing the

faults, acknowledgement messages (acks) are included in the proposed al-

gorithm for routing messages over node-disjoint paths in the hypercube

network. Simulation results confirm that the proposed node-to-node rout-

ing algorithm provides an average of 10% improvement in the performance

of hypercube network in comparison with the previously proposed routing

algorithms–depth first search algorithm and unsafety vectors algorithm.

The second contribution is the node-to-set node-disjoint routing algorithm

for the hypercube networks with faulty nodes. This algorithm has been de-

signed to the problems of the disjoint shortest paths routing. The proposed

algorithm can tolerate maximum n− 1 faulty nodes, where n is the dimen-

sion of the hypercube. The proposed NoSeRo algorithm used the subcube

property of the n-dimensional hypercube. It adapts divide-and-conquer ap-

proach to take full advantage of the regularity of the hypercube. Hence,

proposed algorithm generates fault-free node-disjoint paths in a faulty en-

vironment. The proposed fault tolerant routing algorithm for faulty hy-

percube networks which finds n disjoint paths from source process s to n

destination processes in n-dimensional hypercube in O(n2) time with opti-

mal path lengths at most n + f + 1, where n is the number of destination

node and f is the number of faulty nodes. Then simulation results showed

that the proposed algorithm reduce the average path length by about 20%

in comparison of Bossard’s algorithm in 8-dimensional hypercube (H8).

The third contribution is the reliable data broadcasting scheme by gener-

ating Independent Spanning Trees (ISTs) on hypercubes. The proposed



scheme can be useful for secure message transmission. Using n-IST-based

broadcasting from same root r on hypercube network (N = 2n) provides n-

degree fault tolerance. The proposed algorithm can be easily implemented

in parallel or distributed systems. Using ISTs one can enhance the fault-

tolerance, bandwidth, and security. In this chapter, we study the existence

and construction of n ISTs rooted at an arbitrary vertex in Hn(n ≥ 1). A

parallel algorithm with the time complexity O(n) is proposed to construct

n ISTs on Hn, where n ≥ 1.

In this thesis, we have designed, implemented and evaluated the different

algorithms for fault-tolerant routing. The methodologies of all the algo-

rithms are based on existing theories, knowledge and observations. The

algorithms proposed in this thesis were developed on a theoretical basis

and were implemented practically. With the help of relevant books and

related research papers, we have focussed on the design, implementation,

and evaluation of similar algorithms with efficient complexity. We have

analysed the effectiveness of all the proposed fault-tolerant routing algo-

rithms through simulation. For this, we have developed simulation models

for experimental evaluation of our propositions.

All of the proposals made in this thesis are suitable (without hardware mod-

ification) to be implemented on currently personal computing systems and

all the proposed algorithms are able to tolerate dynamically a reasonable

number of faults.

Keywords: Hypercube interconnection networks, Fault tolerance, Fault-

tolerant routing, Node-disjoint paths, Independent spanning trees, Multi-

casting, Broadcasting.
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