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Abstract
Multi-objective optimization problems can be solved through Simulation-Optimization 
(S-O) techniques where the pareto front gives the optimal solutions in the problem 
domains. During the selection of different modelling methods, optimization techniques 
and management scenarios, several pareto fronts can be generated. In the present work, 
an attempt has been made by performing intensive comparisons between different pareto 
fronts to compare the efficiency and convergence of different S-O models. In this pro-
cess, groundwater models were developed to simulate the River-Aquifer (R-A) exchanges 
for the study area as groundwater pumping influences the rate of R-A exchanges and 
alters the flow dynamics. The developed models were coupled with optimization models 
and were executed to solve the multi-objective optimization problems based on the maxi-
mization of discharge through pumping wells and maximization of groundwater input 
into the river through R-A exchanges. The distinctive features of the paper include a 
pareto front comparison where fronts developed by different S-O models were compared 
and analysed based on various parameters. The results show the dominance of Multi-
Objective Particle Swarm Optimization (MOPSO) over other optimization algorithms 
and concluded that the maximization of pumping rate significantly changes after consid-
ering the R-A exchanges-based objective functions. This study concludes that the model 
domain also alters the output of simulation–optimization. Therefore, model domain and 
corresponding boundary conditions should be selected carefully for the field applica-
tion of management models. The artificial neural network (ANN) models have been also 
developed to deal with the computationally expensive simulation models by reducing the 
processing time and found efficient.
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1 Introduction

The R-A exchange influences both the quantity and the quality aspects of groundwater and surface 
water systems significantly. Consequently, proper and effective quantification and representation of 
R-A exchange are very important for the management of water resources and aquatic ecosystems 
(Gomo 2011). The climate and groundwater pumping for irrigation have caused rapid groundwater 
depletion in India and other parts of the world (Dangar et  al. 2021). For the best possible 
conservation of water resources, Conant et al. (2019) suggested that it is essential to understand 
and quantify the exchange activities between rivers and groundwater. The exchange  between 
rivers and groundwater is significant in a variety of current concerns, including providing drinking 
water, characterizing and managing environmental flow regimes, preserving or restoring riverine 
ecosystem health and functioning, and reducing the effect of toxins (Paran et al. 2012). Several 
works have been carried out for the identification and the quantification of groundwater and 
surface water interactions i.e., R-A exchanges (Atwell et  al.  1971; Kay et  al. 2005; Handcock  
et  al. 2006; Loheide and Gorelick 2006; Cristea and Burges 2009; Wawrzyniak et  al. 2012; 
Constantz  1998; Sophocleous 2002; Becker et  al. 2004; Anderson 2005; Kalbus et  al. 2006; 
Keery et al. 2007; Lowry et al. 2007). However, some studies also demonstrate the effects of R-A 
exchange on river temperature (Westhoff et al. 2007; Burkholder et al. 2008; Hebert et al. 2011).

The Simulation–Optimization (S–O) techniques are often used in identifying the optimal 
management practices of groundwater for the selected area (Etsias and Katsifarakis 2017; 
Mao et al. 2017). In multi-objective optimization problems, result comparison becomes more 
important since various Pareto fronts can be developed using S–O models and management 
scenarios, with some similarities and perhaps few differences. Multi-objective optimization 
problems related to water resources have been studied and solved using different algorithms. 
(Hernández-Lobato et al. 2016; Emmerich and Deutz 2018; Abd-Elmaboud et al. 2021; Marjit 
and Hopfe 2009; Asadzadeh et al. 2014; Audet et al. 2020; Jha et al. 2020; Li et al. 2010).

The qualitative assessment of Pareto fronts which was addressed by Calandra et  al. 
(2014) and Belakaria and Deshwal (2019) brings up an interesting point to qualitatively 
analyse the pareto front developed by multi-objective optimization (Horn et  al. 2018; 
Höllermann and Evers 2019). Moreover, calculating the bias and its statistical analysis 
associated with the solution of multi-objective problems becomes very decisive in under-
standing the uncertainties concerning Pareto fronts (Binois et  al.  2015; Cao et  al.  2017; 
Bassi et al. 2018; Avent et al. 2020; Asadzadeh et al. 2014; Marjit and Hopfe 2009).

This present work was carried out to compare the different pareto fronts quantitatively 
by addressing the issues of R-A exchanges. Different model domain demarcations for the 
same river system were considered for the development of the groundwater model, and 
their impact on R-A exchanges was analysed. In addition, various optimization techniques 
were also used and their outputs (i.e., Pareto fronts) were compared. Finally, this set of 
optimal result was interpreted in terms of groundwater management.

2  Study Area

The Ain River has an oceanic hydrologic regime and drains a basin of about 3630  km2. 
It is located in the southern Jura Mountains, France. The length of the Ain River is about 
200 km and it is the right bank tributary of the Rhône River. The lower part of the Ain 
River, which is located between the Allement dam and the confluence with the Rhône 
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River, was taken for the present study purpose. Figure 1 shows the location of the lower 
Ain River area. Along this section, the average channel width is about 60 m and the slope is 
about 1.3%. The mean annual discharge of the river, between 1959 to 2019, was evaluated 

Fig. 1  Study Area
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as 120  m3/s at the measuring station of Chazey-sur-Ain. Most floods occur between Octo-
ber and March and summer is characterized by low flow conditions. Further details about 
the study area are provided in the groundwater model section.

3  Methodology

In the objective functions, the first aim was to identify the maximum pumping rates of 
the wells by considering the R-A exchanges component. This also includes examining the 
impact of different types of model domains on the output of R-A exchanges and to find 
the best model domain and boundary conditions. Whereas, the second objective was to 
compare the Pareto front developed by different optimization techniques using coupled 
simulation–optimization models. Total four optimization techniques, (Multi-objective 
Genetic Algorithm (MOGA), MOPSO, Pareto Search (PS), and Multi-objective Evolution-
ary Algorithm Based on Decomposition (MOEA/D)) were compared. To deal with a large 
number of wells, the wells in the area were grouped based on the municipal zones and 
distance of the wells from the river. If any well in the municipal zone had a distance from 
the river less than a threshold of 1 km, then it was classified as a new well zone. Figure 2 
shows the flow chart of the methodology.

Groundwater models were developed to simulate the R-A exchanges for the lower part 
of the River Ain, France. These models were coupled with optimization algorithms in 
the MATLAB platform. To implement the coupling between the two systems, MATLAB 
scripts were developed which carried out the following tasks, (i) run the simulation model, 
extract and post-process the output of the simulation model to calculate a cost for optimi-
zation model, (ii) read and write the decision variables from the ‘.h5’ input file for MOD-
FLOW, (iii) run the optimization model with MODFLOW as cost function.

Further, the set of optimized costs were compared using various criteria (convergence, 
diversity, and uniformity) and metrics (hypervolume, spread, and Inverted Generational 
Distance).

3.1  Groundwater Model Development

The groundwater flow modelling was performed using MODFLOW (McDonald and 
Harbaugh 1988). A conceptual model was developed by creating the different geospatial 
data-based input layers for defining the surface recharge, boundary conditions, and vari-
ous aquifer parameters. The initial piezometric surface of groundwater was created using 
hydrograph data of 15 wells in the study area.

The top, bottom and surface of the study area was found in the range of 240 m to 550 m 
where Shuttle Radar Topography Mission (SRTM) data was used. The bottom surface was 
prepared with the help of well log data obtained by Bureau de Recherches Géologiques et 
Minières (BRGM). The two-layered model was developed for the underlying sediments 
where each layer was assumed to be horizontal, homogeneous, and isotropic. The mean 
thickness of the layer was taken as 25 m. The initial values of hydraulic conductivity were 
taken from 0.0018  m/s for the older sediment and 0.003  m/s for the younger sediment. 
Specific yield (Ss) values for the alluvial deposits were found in the range from 1 to 17%.

Boundary Conditions The model was developed by defining two types of external 
model boundaries i.e., constant head and constant flow boundaries. Figure  3 shows the 

1866 M. Bajpai et al.



1 3

different types of domains that were considered to perform the groundwater modelling. 
In the Domain-1, eastern & western sides of the model were defined based on the water-
shed divide line i.e. no-flow boundary respectively. In Domain-2, alluvium plain of the 
river were considered and the eastern & western side of the model domain was defined 
on the basis of constant flow boundaries. Domain-3 was chosen as same as the Domain-1 
with one modification in the lower eastern part. The Rhône River was introduced in the 
model domain through the constant head boundary. This modification helped to calculate 
the impact of incorporating the Rhône River in the modelling area.

Piezometer and River Water Level Data In this study, a total of 15 piezometers were availa-
ble, where a few piezometers had the data for the period of 2008 to 2010 and the remaining 
piezometers consisted of the data from 2002 to 2015. The collected data demonstrated that 

Data Collection and Calibration of
Groundwater Simulation Model

Domain 1 Domain 2 Domain 3

Simulation Model

Pareto
Search MOEA/D

MOPSO Genetic
AlgorithmGenetic

Algorithm

MOEA/DMOPSO

ANN Modell

Pareto front comparison based upon Convergence, Diversity and Uniformity

Fig. 2  Flow chart showing the 2 main steps in the optimization process considering (1) different in bound-
ary conditions and (2) with and without speeding up calculation using ANN model
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the piezometer doesn’t show very high fluctuation in head values. The head ranged from 
3.7 m to 1.2 m, which showed that the groundwater table, and correspondingly ground-
water scenario, is stable in the region. The trend analysis of the data showed a fluctuation 
range of 2.54 m at Chezy and 1.67 m at point de’Ain for the river Ain.

Recharge & Evapotranspiration The rainfall was considered as the source of groundwa-
ter recharge. The rainfall data from the Météo France database was used to calculate the 
recharge input values and applied uniformly over the polygons constructed in the model 
domain. The different recharge polygons were developed based on a land-use map created 
from satellite imageries. The initial value of recharge was taken as 10%, 50%, 50%, 80%, 
and 60% for built-up, agriculture, vegetation, sand, and fellow land respectively. The esti-
mated evapotranspiration was taken as 638 mm/year with an extinction depth of 2 m. It is 
considered that the potential evapotranspiration was uniformly distributed over the study 
area. The recharge and evapotranspiration rates were further calibrated.

Water Demand and Supply The water consumption in the study area is mainly done by 
agriculture (27,000,000  m3 annual draft). The rest is used for domestic purposes (8,340,700 
 m3 annual draft) and some for industrial usage (5,063,204  m3 annual draft). The field sur-
vey was carried out to collect the information of water demand as per the cropping pattern 
and domestic water consumption. The quantitative data, is obtained from three sources—
the Rhône-Méditerranée-Corse Water Agency (AERMC), the Directorate Department of 
Agriculture and Forestry (DDAF), and the Association Syndicale of Ain Irrigation (ASIA).

Calibration and Validation A regional groundwater flow model was constructed and cali-
brated to the transient-state condition with a stress period of four months. In calibration 
of the model, the value of recharge and boundary inflow was taken. Calibration was per-
formed based on the computed and observed values of groundwater head, at 20 m evenly 
distributed points in the study area. The model was calibrated from 2008 to 2010 based on 
all piezometers and further from 2010 to 2012 on the basis of remaining wells. Further the 
model was validated based on data from 2012 to 2015. Initially, the constant flow boundary 
was calibrated in the steady-state condition to incorporate the groundwater in-flow from 

Fig. 3  Different Groundwater Modelling Domains
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the adjacent aquifer. The recharge rate was calibrated with the help of PEST (parameter 
estimation tool). The R-A exchanges were calculated with the help of a calibrated model.

3.2  Optimization Problem

The objectives of the optimization model are to maximize the water withdrawal rate from 
the aquifer (Total discharge, Q) and water gain of the river from the aquifer (Leakage out, 
L). The pumping rate is assumed constant for the well zones and specified time steps. The 
water withdrawal rate from the well zones, leakage rate out of the aquifer into the river, of 
the last time step, are considered for optimization. The drawdown at the wells was consid-
ered a constraint. The domain contains different zones of the wells, based on the distance 
from the river and municipal zone data. To achieve the objective, the discharge in these 
zones are adjusted by the following optimization algorithm:

where  Li = rate of leakage out of the aquifer to the river;  Qi = rate of discharge of ith well 
zone; R = set of the river grid cells with leakage out;  nz = the total number of well zones; 
 Ni = number of wells in the  ith zone; P = penalty imposed due to drawdown constraint viola-
tion;  (Qi)lb = lower bound of the discharge for the  ith well zone;  (Qi)ub = upper bound of the 
discharge for the  ith well zone.

The penalty (P) is a static distance-based penalty, which is calculated as:

where,  di = drawdown at  ith well; W = set of wells;  dthreshold = threshold value of drawdown, 
taken as 2 m;  ddist = distance-based metric for drawdown;  Cmodel = constant to amplify the 
penalty. The value of  Cmodel is calculated such that the penalty is of the same order as that 
of the cost. Both the cost has values of order  105 and from the multiple (500) random 
model evaluations, an expected value of  ddist is obtained.

3.3  Optimization Techniques

Total four techniques viz. MOGA, MOPSO, PS, and MOEA/D were compared on three 
groundwater model domain sizes. The following subsections discuss the details of the opti-
mization algorithms.
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3.3.1  Multi‑Objective Genetic Algorithm

In MATLAB, ‘gamultiobj’ is the function used for the Multi-objective GA. This function 
uses a controlled and elitist genetic algorithm (The MathWork Inc.), which is a variant 
of NSGA-II, (Deb 2001). This algorithm increases the diversity by favouring a variety of 
individuals even if they have a lower fitness value. After the initialization, generic opera-
tions (crossover, mutation, and selection) are iteratively performed. Consequently, crosso-
ver fraction, mutation rate, number of generations, and population size are major param-
eters affecting the performance of the algorithm. For the ANN model, these parameters 
were set to 0.85, 0.015, 2000, and 200 respectively, and for the simulation model, these 
were set as 0.85, 0.015, 150, and 25 respectively.

3.3.2  Multi‑Objective Particle Swarm Optimization

This heuristic algorithm is inspired by the movement of a bird flock. Each bird or parti-
cle has a position and local velocity in the feasible solution domain. The exploration of 
the domain by these particles is governed by both local and global velocity, which are 
computed based on the personal best and the global best solution obtained in the domain. 
Coello et al. (2004), have used the implementation of MOPSO by introducing a mutation 
operator that enriches the exploration capability of the algorithm. Martínez-Cagigal (2020) 
provides a MATLAB implementation of Coello et al. (2004), which is used in this work. 
The c1 and c2 were set to 2 for both ANN and simulation models. Maximum iterations and 
number of particles, for the ANN model, were set to 1000 and 100 respectively. For the 
simulation model, these were 150 and 25.

3.3.3  Pareto Search

The Pareto search algorithm by MATLAB, finds the non-dominated solution by the use of 
Pareto search in a set of points (archives and iterates). The algorithm uses the poll to find 
better solutions and if better solution is not available, then in the next iteration it multiplies 
the mesh size by half. Theoretically, the algorithm converges to points near the true Pareto 
front (The MathWork Inc.). In MATLAB, paretosearch function is used for its implemen-
tation. No parameter tuning is required for the Pareto search algorithm, though stopping 
criteria based upon tolerance and time can be adjusted.

3.3.4  Multi‑objective Evolutionary Algorithm Based on Decomposition

MOEA/D solves multi-objective problems by decomposing them into multiple scalar 
sub-problems and solving them simultaneously. The solution of these sub-problems 
is evaluated based on its neighbouring sub-problems, which makes its computational 
cost lower in each generation in comparison to NSGA-II (Zhang and Li  2007). The 
polynomial mutation (order n) is used as the mutation function. Several sub-problems, 
maximum iterations, percentage of the neighbourhood, and mutation rate are the major 
parameters for MOEA/D. For the final ANN model, these parameters were set to 1500, 
100, 40%, and 1/n respectively. For the simulation model, these were set to 100, 20, 
40%, and 1/n respectively.
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The use of these algorithms is computationally expensive with the groundwater simu-
lation models, which require a few seconds for a single run and require days to complete 
the single solution (Tigkas et  al. 2016). Therefore, an ANN model is also developed 
to speed up the evaluation of cost function. The efficiency of the ANN-Optimization 
model is measured with the performance of the actual simulation–optimization algo-
rithm by performing a feasible number of simulations. The ANN model was trained 
with a dataset generated by simulation models itself.

3.4  ANN‑Optimization Model

The ANN is a widely used technique to map non-linear and black box functions for fast 
evaluations. The Feed Forward Neural Network (FFNN) is the most commonly used 
ANN. It consists of multiple parallel layers of memory units (neurons). Each layer of 
neuron is fully connected with its adjacent layer and the strength of the connection is 
defined as its weight. The backpropagation technique is used to find out these weights 
such that error between the actual and predicted values, is minimized.

For this work, nearly  104 random data points, with zone-wise discharge as input and 
leakage out (L with penalty) and total discharge (Q with penalty) as output, were gener-
ated using a calibrated groundwater simulation model. The total data is divided into three 
subsets: training (70%), validation (15%), and testing (15%). Since, the ANN training 
time increases with an increase in the size of the training dataset and layer size (neurons), 
this makes the combination of a large training data set and layer size infeasible. Different 
layer sizes (20, 10, 25) were tested and the best of the ANN model was selected based on 
R-square and Mean Absolute Percentage Error (MAPE) of Leakage out because the total 
discharge predictions were accurate. Along with these matrices, the values of Maximum 
Absolute Error (MXAE) and Root Mean Squared Error (RMSE) are shown in Table 1.

3.5  Performance Metrics

In multi-objective optimization algorithms, the solution set generated approximates the 
actual Pareto front (Salomon et al. 2018). The approximated fronts can be compared based 
on convergence, diversity, and uniformity. In this work, six metrics are used, namely, epsi-
lon, spread, generalized spread, generational distance, inverted generational distance, and 
hypervolume (Table  2). A detailed comparison of various performance metrics can be 
found in Zitzler et al. (2003).

The unary e-indicator metric represents the smallest distance that an approximate 
Pareto front must be translated to completely dominate the reference Pareto set (Kollat 
and Reed 2005). The average Euclidean distance between the reference Pareto set and 
the approximate Pareto solutions is called the Generational distance (GD). Both, epsilon 
and generational distance measure the convergence. The smaller the value of epsilon 
and generational distance, the better is the convergence. The diversity of the Pareto front 
can be compared based on the distribution of the solution set (uniformity) and its extent. 
Spread and generalized spread quantify the non-uniformity of approximate Pareto front. 
The small values of these matrices indicate, a better and more diverse set of approxi-
mate Pareto front. The inverted GD is the average distance between each member of 
the reference Pareto front and the approximate Pareto front. Hypervolume measures the 
size of the space enclosed by the approximate Pareto front. Both, inverted generational 
distance and hypervolume are a unary metric that considers convergence and diversity. 
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In addition, hypervolume is the most widely used performance metric (Riquelme et al. 
2015). Auger et al. (2009) has provided a method to choose the value of reference point 
for the calculation of hypervolume. Unlike inverted generational distance, the higher the 
hypervolume better is the combined effect of convergence and diversity of the approxi-
mate Pareto front.

Table 1  ANN optimization results

Model 1
Leakage 
out

Total 
discharge

Layer size MXAE RMSE R square MAPE (%) MXAE RMSE R square MAPE (%)

20 11172.1 1856.1 0.984 1.010 1496.2 323.5 1.000 0.105
10 12573.0 1970.5 0.982 1.140 1622.5 351.1 1.000 0.114
25 12713.2 1872.8 0.984 1.035 1735.5 312.7 1.000 0.095
Model 2

Leakage 
out

Total 
discharge

Layer size MXAE RMSE R square MAPE (%) MXAE RMSE R square MAPE (%)
20 92676.2 5677.8 0.974 25.963 91579.4 5513.9 0.980 1.601
10 93669.8 5482.7 0.976 27.137 91244.6 5219.5 0.982 1.715
25 94107.8 6822.7 0.963 28.047 94727.1 6663.2 0.971 2.038
Model 3

Leakage 
out

Total 
discharge

Layer size MXAE RMSE R square MAPE (%) MXAE RMSE R square MAPE (%)
20 4033.8 456.6 0.999 0.456 832.3 220.0 1.000 0.070
10 3676.8 584.6 0.998 0.630 897.0 241.8 1.000 0.080
25 3017.9 435.3 0.999 0.433 940.4 225.4 1.000 0.072

Table 2  Evaluation criteria

Metric Evaluation criteria
Convergence Diversity

(Total)
Uniformity
(Sub component 
of diversity)

Epsilon ✔ - -
Spread - - ✔
Generalized Spread - - ✔
Generational distance ✔ - -
Inverted generational distance ✔ ✔ -
Hypervolume ✔ ✔ -
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4  Results

4.1  Simulation–Optimization Model

Each combination of the simulation model and optimization technique was evaluated 
up to 5000 points depending upon the optimization algorithm and its parameters. In all 
the three models, the Pareto fronts by MOPSO are more converged, whereas the results 
obtained from GA are more diverse for model 1 and model 3 (Fig. 4). The Pareto search 
and MOEA/D are more converged in comparison to GA, but they lack diversity. Only in 
model 2, the diversity of the Pareto front of MOPSO outperforms that of GA.

To understand the impact of different model domains on optimal outputs, the best-
performed MOPSO front was studied. The Pareto fronts show that Domain-1 is giving a 
high value of leakage out in comparison to the optimal value of groundwater discharge 
through wells whereas the output of Domain-2 is higher than Domain-3. The Pareto fronts 
also depict the effect of a model domain on the optimal discharge and river gain relation 
(Fig. 4). For instance, in the case of MOPSO, an increase of discharge by 50,000  m3/day 
(from 200,000  m3/day to 250,000  m3/day) leads to a decrease in river gain by 15,820  m3/
day, 37,657  m3/day, and 19,535  m3/day for the model domain 1, 2, and 3 respectively. Cor-
respondingly, the Pareto search demonstrates a decrease of river gain by 22,278.9  m3/day, 
40,116  m3/day, and 20,457.4  m3/day for the previously mentioned discharge increase.

Fig. 4  Pareto front comparison of optimization techniques through Simulation-Optimization model
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In model 3, even though the Pareto front of GA is diverse, the solutions are not uniform 
due to which the spread of GA is high. For model 3, MOPSO is much more uniformly dis-
tributed and hence has a low value of the spread.

4.2  ANN‑Optimization Model

MOPSO showed significant improvement in terms of convergence, diversity, and uniform-
ity of the solutions (Fig. 5). MOEA/D showed improved diversity and uniformity whereas 
convergence was still similar to the Pareto search (without ANN). The Pareto search solu-
tion without the use of ANN can be taken as the reference for the comparison (Figs. 4 and 
5). The diversity and uniformity of the GA and MOPSO are close and comparable. Spread 
and generalized spread depict that the MOPSO and GA have a uniform distribution of the 
solutions. Whereas the MOEA/D shows a polar and non-uniform distribution of solutions. 
The MOPSO is superior to other algorithms, in terms of convergence, suggested by epsi-
lon and generational distance. The combined effect of convergence and diversity, meas-
ured with hypervolume and inverted GD, is also best for MOPSO. GA, PS, and MOEA/D 
show a close value of hypervolume and inverted GD indicating a nearly equivalent perfor-
mance in terms of convergence and diversity. The percentage increase in hypervolume and 
decrease in inverted GD, both show that MOPSO in model 1 and MOEA/D in model 3, has 
significant improvement. Whereas GA and MOEA/D in model 1 show the least improve-
ment. However, the GA and MOPSO (in Model 3) showed conflict in the change in val-
ues. Inverted GD is less reliable because it is strongly influenced by the distribution of the 
approximate Pareto front.

5  Discussions

The results show that solutions of GA are highly diverse in model 1 and model 3, even 
at a low number of simulations. Other than the optimization algorithm, the Pareto fronts 
trends are determined by the model demarcation and its boundary conditions. It shows 

Fig. 5  Pareto front comparison of optimization techniques with ANN models
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that adding the Rhône River in the model alters the groundwater flow and correspondingly 
water budget of the area. The results show that Domain-2 which consists of the shortest 
area along with the dominated constant boundary inflow is providing less groundwater 
to the river in comparison to Domain-1 which consists of a larger area in the simulation 
along with a one-sided watershed boundary. It can be observed that even though all three 
domains extract the same amount of groundwater, the modelled effect on the river varies 
for each domain. In addition, the data from the Pareto front suggest that in model 2, the 
extraction from the well and the river gain are heavily related to each other. This relation 
will not only influence the simulation results but will also affect the decision-making in 
groundwater management. In ANN Optimization model, it is evident that in terms of con-
vergence, the solution points of MOPSO dominate every other solution, and solution points 
of GA are dominated by most of the other points. PS and MOEA/D solutions lie between 
GA and MOPSO front for both models. MOPSO solutions largely consist of outliers with 
either too small or too large box bounds. MOEA/D solutions are largely uniform and cover 
the lower and upper bound of decision variables. Regardless of the small difference, the 
overall trend is: wells close to rivers extract less groundwater than far away. Another fac-
tor, that can contribute to the high discharge of a close well is spatial heterogeneity in the 
aquifer properties.

6  Conclusions

Three different domain sizes of groundwater model for optimization of withdrawal and gain 
in the river from the aquifer, by four different optimization algorithms were conferred. The 
groundwater model development, optimization models, ANN model to reduce evaluation 
time, performance metrics for Pareto fronts, and the comparison of the distribution of optimal 
decision variables for different optimization techniques, were discussed. The ANN model for 
three domains shows the difference in accuracy, suggesting a change in domain size and con-
sequently boundary conditions can alter the performance of ANN. The results show that the 
boundary conditions and domain size influence the result of simulation–optimization models. 
Domain-1 was found more efficient and was capable to give a higher value of R-A exchange 
corresponding to the discharge of pumping wells.

The result of the simulation–optimization model suggests that GA produced a diverse 
set of Pareto solutions even for a low number of evaluations but the solution of other algo-
rithms was dominating, with MOPSO being the best. Among the three domains, model 2 
consistently implied a greater interrelation between the two costs, i.e., total discharge and 
river gain. In the ANN-Optimization model, MOPSO showed significant improvement in 
both diversity and convergence. GA solutions did not show major improvement in conver-
gence. This suggested the use of GA to obtain a tentative solution set that can be obtained 
without the use of the ANN model. The use of ANN can significantly improve the perfor-
mance of MOPSO by allowing it to have a greater number of evaluations, which was lim-
ited in the raw simulation model due to the infeasible computation time.

In case of decision-making problems, this study can be helpful to have a good distri-
bution of decision variables, even though they provide a better solution but not the best 
one. Apart from the statistical distribution of solutions, the spatial distribution of optimized 
decision variables (well discharge) provided a lot of information regarding the physical 
interpretation and conceptual verification of the solutions. These solutions followed an 
expected trend of higher discharge at faraway wells and lower discharge at the close wells. 
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From this study, the influence of domain demarcation, boundary conditions, and optimiza-
tion algorithm has been observed on the Pareto fronts and optimized decision variables. 
The conceptual verification of the Pareto solutions was also explained. Besides this, the use 
of ANN and handling the constraints of the optimization problem is also considered for a 
real-world groundwater problem. Still, several challenges in R-A exchange-related ground-
water decision-making exist. Accurate R-A exchange modelling, precise surrogate models 
to reduce S–O time, and dealing with high heterogeneity of the domain, to name a few.
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