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PAPERS

A novel principal component-based virtual sensor
approach for efficient classification of gases/odors

Shiv Nath Chaudhri1 , Navin Singh Rajput1 , Ashutosh Mishra2

High-performance detection and estimation of gases/odors are challenging, especially in real-time gas sensing applications.
Recently, efficient electronic noses (e-noses) are being developed using convolutional neural networks (CNNs). Further, CNNs
perform better when they operate on a minimal size of vector response. In this paper, dimensions of the operational vectors
have been augmented by using virtual sensor responses. These virtual responses are obtained from the principal components
of the physical sensor responses. Accordingly, two sets of data are upscaled as a one-dimensional one. Another level of
upscaling is further obtained by using the mirror mosaicking technique. Hence, with our proposed novel approach, the final
vector size for CNN operations achieves a new dimension. With this upscaled hybrid dataset, consisting of physical and virtual
sensor responses, a simpler CNN has achieved 100 percent correct classification in two different experimental settings. To
the best of authors information, it is for the first time that an e-nose has been designed using a principal component-based
hybrid, upscaled dataset and achieves 100 percent correct classification of the considered gases/odors.

K e y w o r d s: electronic nose (e-nose), gas sensor array, convolutional neural network (CNN), principal component
analysis (PCA), zero-padding, mirror mosaicking

1 Introduction

Detection and estimation of gases/odors are gaining

significant importance in real-time applications of elec-

tronic noses (e-Noses) in almost all the sectors of indus-

try and society [1, 2]. Further details on e-Nose applica-

tions can be found elsewhere [3, 4]. The e-Noses are pri-

marily developed by using pattern recognition methods

including various statistical and probabilistic approaches

or by using artificial intelligence (AI)-based methods like

artificial neural networks (ANNs), convolutional neural
networks (CNNs), deep networks (DNs), etc. by mim-

icking the human olfactory system. The statistical and

probabilistic methods require full access to the dataset

every time a new sample is tested, creating a bottle-

neck for its real-time application development [5]. For

example, K-nearest neighbor (KNN) is a popular statis-

tical method that requires the storage of training sam-

ples adding space complexity, and inhibiting real-time

processing [6]. In contrast, AI-based approaches are best

suited for real-time gas/odor classification application

development [1, 2, 7]. A schematic diagram of an AI-

based intelligent gas-sensing system (IGS) is presented

in Fig. 1(a). It can be observed that the raw sensor array
responses are first pre-processed for statistical normaliza-

tion. Pattern recognition techniques are then applied to

this normalized data for suitable detection and estima-

tion of gases/odors. Furthermore, our proposed AI-based

IGS utilizing hybrid analysis space has been shown in

Fig. 1(b).

In an IGS, the gas sensor array responses are captured
both in their transient and steady states. Normally, a
sensor array consists of 4 to 16 gas sensor elements [8–
13]. Recently, efficient e-Noses are being developed using
convolutional neural networks (CNNs).

Peng et al (2018) have implemented a 2D Deep CNN
to classify four gases/odors (Carbon Monoxide, Ethy-
lene, Hydrogen, and Methane) [6]. Their proposed net-
work “GasNet” is very complex and comprises 38 lay-
ers. Their classification accuracy is 95.20% while each
sample is an 8 × 1000 sized-input vector and they have
used a total of 1200 vectors for designing the network.
Further, Wei et al (2019) have developed a 2D-CNN to
classify Carbon Monoxide, Methane, and its mixture [14].
Their proposed 2D-CNN is an augmentation of LeNet-5
(image processing CNN) [15] for gas/odor classification
which achieves a classification accuracy of 98.67% us-
ing 1000 vectors, with each sample having 12 × 480 el-
ements. In another experiment, Han et al (2019) have
detected three gases/odors (Carbon Monoxide, Ethylene,
and Methane) and their two binary mixtures [13]. They
achieved a classification accuracy of 96.67% by using an
8× 3000 sized-input sample vector in their dataset com-
prising of 540 sample vectors. In the aforesaid works, the
authors have presented the data in 1D or 2D vectors. In-
terestingly, in these pioneering papers, the input sample
vector achieves a high dimension due to the high sam-
pling rate to sample each event of gas-sensor array expo-
sure. Whereas the steady-state responses of metal oxide
(MOX)-based non-selective sensors to respective analyte
can only the considered as the golden response of a gas
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Fig. 1. (a) – AI-based intelligent gas-sensing system, (b) – AI-based IGS utilizing proposed hybrid analysis space

sensor array [16, 17]. Further, in real-field applications
capturing transient response is impractical because the
gas sensor array is continuously exposed to varying con-
centrations of various analytes. It can now be observed
that in the above-referred publications the authors have
used transient as well as steady-state responses making
the input sample vectors to be a high dimensional vector
with much less utility. Further, because of the large input
sample vectors, corresponding CNN architectures are also
deep and complex [6, 13–15]. Although, in recent publica-
tions simpler hybrid CNNs using analysis space transfor-
mation at the data preprocessing stage called drift toler-
ant robust classifier (DTRC) have also been reported as
efficient gas/odor classifiers [18].

In contrast, in our proposed novel approach, we have
optimally reduced the size of input sample vectors by tak-
ing the average of steady responses of the sensor array.
This approach reduces the size of the input sample vector
from 8 × 600× 100 to 8× 1 and 5× 300× 25 to 5× 1,
respectively. Further, considering that CNNs have the in-
herent capability to automatically extract more informa-
tion if simpler one-dimensional (1D) data is upscaled in
the form of multidimensional (2D or 3D) data structures.
Accordingly, Table 1 shows the dimensions of interme-
diate stages of the input sample vectors during the pro-
posed process of upscaling. It can be seen that the pro-
cess of upscaling has two distinct processes viz., non-zero
virtual sensor response-based data padding, and mirror
mosaicking-based upscaling.

2 Proposed approach

In this section, details of our proposed approach have
been presented under specific headings.

2.1 Gas sensor array response characteristic

Typically, a MOX-based gas sensor array consists of
multiple gas sensing elements with varying characteris-
tics. Such elements are produced by doping the base ma-
terial of the sensor element with different dopants. The
gas sensor array is interfaced with a data acquisition unit
capable of sampling the responses at a very high fre-
quency. The response of an activated sensing element to
the exposing analyte is shown in Fig. 2.

Table 1. Intermediate dimensions of input sample vector in pro-
posed upscaling process

Raw sample Averaged
Padding Squared

Mosaicked

vector size steady
virtual shape of

sample

(N × Sd × Sr) responses
sensor sample

vector
responses vector

8× 600× 100 8× 1 9× 1 3× 3 9× 9

8× 600× 100 5× 1 9× 1 3× 3 9× 9

N - Number of physical gas sensors

Sd - Sampling duration (s), Sr - Sampling rate (Hz)

It can be observed that the sensor element response
shows a significant drop in its characteristic resistance
which is proportional to the affinity of the analyte with
the sensing element and the analyte samples concentra-
tion called the transient response of a gas sensor element.
Further, after some time the sensor element response ar-
rives at a steady value of resistance change, usually mea-
sured in terms of percentage change in resistance called a
steady-state response of a sensor element. While transient
responses contain certain useful information about the
class and respective sample concentration of the analyte,
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Fig. 2. Response curve of an activated MOX-based sensing element
during the exposure of analyte

steady-state responses are the actual representative of the
analyte which is truly proportional to the respective class
and concentration of the sample. Steady-state responses
are normally called gold responses of a gas sensor array
and contain most of the overall information when com-
pared with the transient responses. Accordingly, in the
considered dataset available publicly, we have first ex-
tracted steady-state values from each of the 640 and 58
samples, respectively. In this way, the large input sample
vector for each sample is downsampled from 8×600×100
to 8× 1 and 5× 300× 25 to 5× 1, respectively.

2.2 Upscaling of the input sample vectors

CNNs have the inherent capability to automatically
extract more information if simpler 1D data is upscaled
and presented to the CNN, in the form of 2D or 3D data
structures. The input sample vectors obtained from the
gas sensor array can be upscaled by using the popular
mirror mosaicking technique [8]. However, mirror mo-
saicking requires the input sample vector in the form of a
2D-squared data structure as shown in Fig. 3. Further, ev-
ery 1D data cannot be restructured as a 2D-squared data
structure until the number of elements in the 1D data
vector is a perfect square. Hence, if the sensor array re-
sponse vector is not a perfect square, additional vector
elements can be padded to make the 1D data to its near-
est perfect square. Routinely, zero-padding has been quite
popular for various padding-based purposes [19–22]. How-
ever, zero-padding does not contribute to information ad-
dition. Therefore, in this paper, we have demonstrated
a novel approach for non-zero padding. In our proposed
approach, we have padded additional information vector
elements to the physical vector elements, in the form of
non-zero virtual sensor response-based padding.

2.3 Virtual sensor responses

Mirror mosaicking inherently requires the input sam-
ple vector in the form of a 2D-squared data structure.
However, the vector dimensions of raw gas sensor array
responses depend on the number of physical gas sensor
elements. If this physical sensor response vector is not a
perfect square, it cannot be restructured as a 2D squared

input sample vector. Hence, from the real physical sen-
sor responses, additional information is further generated
called the “virtual sensor response element” by using a
variety of techniques as reported in [23]. These virtual
elements are then appended with the real physical sensor
response vector until the newly formed sensor response
vector becomes a perfect square. A sensor response vec-
tor, consisting of real sensor responses and virtual sensor
responses is called “hybrid sensor responses”. Depending
on the need, more virtual elements are appended to reach
a perfect squared number. The process of virtual sensor
response padding and its restructuring into a 2D-squared
data vector is shown in Fig. 3.

Fig. 3. A schematic showing procedure of non-zero virtual sensor
response padding and 2D squared data vector

It can be observed that the two considered dataset 1
and dataset 2 have been first padded with a non-zero
virtual sensor element, to make the input sensor response
vector a perfect square, in the form of a hybrid vector.
This 1D hybrid data, which is now a perfect square is
then restructured as a 2D squared data vector.

2.4 Zero and non-zero padding

A generalized algorithm for non-zero padding can be
explained as follows. Let us assume, the responses have
been captured using a gas sensor array consisting of
n gas sensor elements. Hence, the corresponding response
dataset has n data points in each of the samples resulting
from physical gas sensor elements. In this scenario, the
following two cases arise:

1) If n represents a perfect square number, no padding of
virtual sensor response is required. Since n can already
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be denoted as x× = x where x represents a positive
integer.

2) If n does not represent a perfect square number, some
virtual sensor responses are needed to pad in the physi-
cal sensor responses because n cannot be denoted itself
as x×x = n where x is a positive integer. In this sce-
nario, we need to pad (p−n) virtual sensor responses,
where p is the smallest perfect square number such
that p > n. After padding the required number of vir-
tual sensor responses, p can be denoted as y× y = p ,
where y is a positive integer.

The non-zero virtual sensor responses as required to
make the hybrid sensor response vector, a perfect square,
are generated from the physical sensor response vector
itself [23]. The effectiveness of the so produced virtual
sensor responses depends on the technique used. For ex-
ample, with our proposed novel approach, a four-element
physical sensor response can be appended with four more
vector elements, by obtaining four principal components
from the dataset, for use as virtual sensor responses. Prin-
cipal Components Analysis (PCA) is a very effective tech-
nique for dimensionality reduction and data compaction
through its principal components. Its principal compo-
nents retain all the information a dataset has and only
a few components can retain almost 95% of the total in-
formation contained in the raw data set on which PCA
has been applied [24]. In our proposed method, we have
utilized this property of PCA for the generation of vir-
tual sensor responses. In our novel approach, the virtual
sensor elements are also true representatives of the phys-
ical sensor responses Hence, a CNN when trained using
such a hybrid sensor response used in a 2D or 3D format,
performs with very high efficiency.

A detailed mathematical description of the process
of PCA application is presented as follows. Let X be
a dataset consisting of N number of observed samples
for S variables. Here, each element in this dataset can
be denoted as xi,j : ∀i = 1, 2, . . . , N : j = 1, 2, . . . , S.
This data matrix is adjusted by subtracting the mean of
each variable to be centered about the origin. For the
aforesaid purpose, we calculate the mean for each vari-
able µj : ∀j = 1, . . . , S . After subtracting the corre-
sponding mean from each column, we get origin centered
data matrix X ′ where x′

i,j = xi,j . Later, the covariance

matrix of this centered data matrix X ′ is obtained as
C′

X = 1/(N − 1)X : ∀X ′⊤. Determine the eigenvalues
and eigenvectors of this covariance matrix, and sort the
eigenvalues in descending order. Arrange the eigenvec-
tors of the D sorted eigenvalues in column-wise fashion
so that we get a matrix V where each element is repre-
sented as vi,j Thus, we get a projection matrix V consist-
ing of independent D eigenvectors. The desired PCs can
be calculated by projecting the centered data matrix on
the obtained projection matrix. The corresponding PCs
are achieved as

PCi = x′
i1 vi1 + x′

i2 vi2 + · · ·+ x′
ij vij , (1)

where: ∀x′
i,j : i = 1, . . . , N and ∀ vi,j : i = 1, . . . , S,

j = 1, . . . , D.

The obtained PCs as our requirement are then padded
in physical sensor responses considering virtual sensor re-
sponses. Thus, each sample in the resulting hybrid dataset
is converted into a 2D squared input sample vector. Fur-
ther upscaling of the samples is obtained by using the
mirror mosaicking technique.

2.5 Mirror mosaicking

Mirror mosaicking is a popular sample upscaling tech-
nique [8, 25]. For sample upscaling, the 1D hybrid sensor
response vector is first restructured as a 2D-squared data
vector. This 2D-squared data vector is then flipped over
its eight directional axes viz. W-E-N-S-NW-SE-SW-NE.
Hence, in a 2D space, we get eight possible orientations
to flip the primary 2D-squared data vector resulting in
eight mirror images, as shown in Fig. 4(a).

Fig. 4. Mirror mosaicking procedure showing with: (a) – zero-
padded virtual sensor responses, (b) – non-zero-padded virtual sen-

sor responses

In other words, the corresponding eight images are ob-
tained by flipping the primary 2D-squared data vector,
held at the center, along each of the eight axes. Later,
these mirror images are mosaicked together to form a
large-sized upscaled hybrid 2D-squared data structure.
It can be observed that the mosaicked vector is now up-
scaled by three times than its primary 2D-squared vector.
Interestingly, each element of the upscaled 2D-squared
data vector, carried a good amount of information than
the zero-padded situation, if used, as shown in Fig. 4(b).
Figure 4 illustrates the mirror mosaicking technique with
the help of a 2D-squared data structure having a 2 × 2
dimension. Here, 1, 2 are regarded as physical sensor re-
sponses and 3, 4 as virtual sensor responses, respectively.
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Table 2. Hyperparameters of used simpler 2D-CNN

2D-CNN Labels of Hyperparameter
layers hyperparameter value

Input Layer 1 Input dimension 9×9×1

Conv Kernel/filter size 3×3
layer 2 No. of kernels 8

Conv Kernel/filter size 3×3

layer 3 No. of kernels 16

Fully connected Number of
32/Dense Layer 4 neurons

Output Layer 5 Output Classes 4

Optimizer Adam Learning rate 0.001

2.6 2D convolutional neural network (2D-CNN)

The 2D-hybrid input sensor responses so generated are
used to train and test a CNN for gas/odor classification.
As presented earlier, we have two different datasets viz.
dataset 1 and dataset 2. Both the datasets are upscaled
in the 9 × 9 vector size. The general architecture of a
CNN is presented in Fig. 5(a). It comprises multiple con-
volutional and pooling layers.

Fig. 5. (a) – General architecture of a CNN, (b) – architecture of
the proposed CNN

Further, in the general architecture, it can be observed
that a pooling layer is also used, especially for image pro-
cessing applications, because adjacent pixels bear corre-
lated information based on the information it carries. In
contrast, in a gas sensor response system, steady-state
responses of any two samples are mutually independent
and the pooling layer does not serve any purpose. Hence,

in our proposed novel architecture, we have simplified the
CNN as shown in Fig. 5(b). It can be observed that the
proposed architecture is much simpler and takes in a large
multidimensional 2D- hybrid input sensor response vec-
tor with each element bearing significant information due
to the non-zero PCA-based virtual sensor response ap-
proach. Considering that the input response to the CNN
is hugely informative, the chosen CNN architecture con-
sists of 5 layers only. Next to the input layer, we have used
a pair of convolutional layers each followed by a pooling
layer. Subsequently, the received final outputs from the
previous layers are flattened to pass them into a fully
connected layer. Eventually, the output of the fully con-
nected layer is then passed through the softmax layer to
provide the final classification results for the considered
gases/odors. The hyper-parameters as used, have been
given in Tab. 2.

3 Experimental results and discussion

3.1 Gas sensor array response data

In this work, the first dataset (dataset 1) has been
taken from an open-source machine learning dataset
repository [26]. It consists of transient responses of four
considered gases/odors, Carbon Monoxide (CO), Ethanol
(C2H5OH), Ethylene (C2H4), and Methane (CH4) at di-
fferent sample concentrations (CO: 25-250ppm, C2H5OH:
12.5–125ppm, C2H4 : 12.5−125 ppm, andCH4 : 25−250
ppm). In this dataset, a gas sensor array with eight
MOX-based gas sensor elements has been used. It con-
sists of a total of 640 samples (160 samples of each
gas/odor), while each sample is a time-series sensor array
response captured over 600 seconds at a sampling rate
of 100 Hz [27]. A ten-fold cross-validation data with a
ratio of 80% and 20% for training and testing purposes
have been respectively used. Accordingly, dataset 1 con-
sists of 512 training (133-carbon monoxide, 127-ethanol,
131-ethylene, 121-methane) and 128 testing samples (27-
carbon monoxide, 33-ethanol, 29-ethylene, 39-methane),
respectively.

In this paper, we have also used another dataset for
an exhaustive assessment of our proposed method. The
second dataset has also been taken from an open-source
machine learning dataset repository [26]. The dataset 2
has been captured using a 16-element MOX gas sensor
array, using five different TGS-brand of gas sensors from
Figaro Inc.

Table 3. TGS sensor elements in the referred gas sensor array

New/old

1/1

2/3

3/4

4/6

5/8
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Fig. 6. Gases/odors cluster representation for both datasets

Construction details of this 16-element gas sensor ar-
ray are given in Tab. 3. It can be observed that this sensor
array has been constructed by using five different sen-
sors, which are then used repeatedly to form the said
16-element gas sensor array. The sensor array responses
are then captured by exposing the array with two types
of gases viz ethanol and acetone and its binary mixer.
Further, ambient air has been considered as the fourth
class in this dataset. Accordingly, rather than using all
the responses from the 16-elements of the sensor array,
we have only taken the sensor data from five different
sensors only. Hence, dataset 2 is the curated dataset on
which we have applied our proposed method and achieved
excellent results, even without using the whole data set
available in the referred open database. The extracted
dataset has a total of 58 samples of different concentra-
tions of the considered gases, viz 15-ethanol, 15-acetone,
20-binary mixer, and 8-ambient air. Further detail about
this dataset can be found in [28]. We have further segre-
gated the dataset 2 into a training dataset (39 samples)
and a testing dataset (19 samples).

The scatter plots of both the datasets viz dataset 1 and
dataset 2 have been shown in Fig. 6. Using the first three
PCs we plot the clusters in a 3D space. It can be ob-
served that different gases are well separated in differ-
ent classes, although they have a significant amount of
overlapping. The used PCs collectively explain 90.92%
variance (PC1: 48.05%, PC2: 26.18%, PC3: 16.69%)
for dataset 1, and 99.99% variance (PC1: 86.37%, PC2:
13.54%, PC3: 0.08%) for dataset 2. Both the datasets
show overlapped clusters which inevitably pose a chal-
lenge to classify the considered gases/odors.

3.2 Approach implementation on the considered
datasets

The dataset 1 has eight physical sensor responses re-
quiring one virtual sensor response to implement the pro-
posed approach. On the other hand, dataset 2 has five
physical sensor responses. Here, we need four virtual sen-
sor responses, accordingly. For both the datasets, only

the average of steady responses has been used to classify
the considered gases/odors. Henceforth, each dataset con-
sists of nine hybrid responses (physical sensor responses
and padded virtual sensor responses). Now, each hybrid
dataset can be restructured in a 2D-squared sensor array
response of 3×3 dimensions. With our proposed method,
each hybrid sample is further upscaled to a 9 × 9 di-
mension. The flowchart is given in Fig. 7. presents the
workflow of the proposed methodology for efficient clas-
sification of the considered gases/odors using a simpler
2D-CNN.

Fig. 7. Flowchart of the proposed approach

4 Results and discussion

The designed simpler 2D-CNN has been used, both for
the datasets with the same hyperparameters.We have 128
and 19 unknown test samples respectively for dataset 1
and dataset 2. With our proposed approach, we achieved
100% classification accuracy for both datasets. Thus, the
obtained performances prove the efficacy of our proposed
approach while classifying the considered gases/odors us-
ing a simpler 2D-CNN. Also, the performance of our pro-
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Table 4. Performance comparison

Physical Zero- PCs

Response Padded -padded Enhanced

/virtual virtual virtual performance

response responses responses

Dataset 1 8/1 1 1 -

OCA (%) - 96.88 100 3.12

K - 0.96 1.0 0.04

MSE - 1.41 × 10-2 7.75 × 10-3 6.35 × 10-3

Training
- 19.232 23.855 -

time (s)

Dataset 2 5/4 4 4
-

OCA (%) - 94.74 100 5.26

K - 0.93 1.0 0.07

MSE - 5.40 × 10-2 4.20 × 10-2 1.20 × 10-2

Training
- 1.027 1.133 -

time (s)

posed approach has been compared with the baseline per-
formance obtained while using zero-padded virtual sensor
responses. In these scenarios, the achieved performance
for gas/odor classification has been presented in Tab. 4.

The obtained performance have been presented in
terms of three performance metrics viz overall classifica-
tion accuracy (OCA), kappa coefficient (K), and mean
squared error (MSE). These metrics have been given in
Tab. 4. The associated mathematical expressions to these
performance metrics are denoted as

OCA =

∑C

i=1 Gii
∑C

i,j=1 Gij,i6=j

, (2)

K =
N

∑C

i=1 Gii − (
∑C

i=1 Gi,actGi,pred)

N2 −
∑C

i=1 Gi,actGi,pred

, (3)

MSE =
1

N

C
∑

i=1

(

Gi,act −Gi,pred

)2
, (4)

where C is the number of gas/odor classes, Gij is the
number of well-classified samples for i = j and misclassi-
fied samples for i 6= j. Moreover, Gi,act and Gi,pred are
the actual and predicted gas classes.

The use of PC -based padding for efficient classification
of gases/odors using a simpler 2D-CNN provides an in-
sight that only the classification task can be achieved with
a simpler classifier network and compressed input vec-
tors. With our proposed approach, better classification of
gases/odors can be achieved even using zero-padded vir-
tual sensor responses. But the significant enhancement
in the performance using PC -based padding is clearly
shown in Tab. 4. Moreover, based on the performance en-
hancement so achieved, other virtual sensor responses can
also be used for the generation of the virtual sensor re-
sponses by using other normalization and transformation
techniques. In this way, with our proposed novel approach
we can apply the proposed methods universally.

The insight behind the use of PCA-based non-zero-
padding is that it generates all the required virtual sen-
sor responses with inherent ranking carries most of the
information in its principal components, which justifies
the success of our proposed method. zero-padding, in
contrast, is the conventional padding scheme and sup-
plies zero information. On using non-zero-padding (PCs-
based padding) the performance enhancement can be seen
through each of the used performance assessment metrics.
This is further observed that the use of non-zero-padded
virtual sensor responses presents more information to the
CNN which eventually enhances the classification perfor-
mance, without actually requiring the need of 16-physical
sensor elements. Instead, we have achieved 100% correct
classification results, for both the datasets by using test
vectors, which were not used during the training of the
CNNs so trained.

5 Conclusion

E-noses, designed using a real-physical multi-element
gas sensor array has been an age-old approach in the field
of gas/odor classification to achieve high performance.
The use of transient and steady responses of the gas sen-
sor array, in conjunction with artificial neural networks
and other pattern recognition methods, has also been
quite popular. However, with the advent of 6th Gener-
ation Internet of Things (6G-IoT) technologies, there is
a need to significantly reduce the consumed power in the
sensor array while performance is also mandatory. Now
with the Intelligence-on-the-edge and computer power on
the sensor node, we can also embed CNNs on the sen-
sor node itself. Hence, in our proposed novel approach,
we have leveraged the CNNs and by using the upscaled
form of sensor responses in the hybrid form, we have been
able to achieve very high accuracy in respect of the perfor-
mance so achieved by the authors who have used the same
reference of dataset 1 and dataset 2. Our results surpass
the previously published results on the same datasets. We
have used the hybrid non-zero virtual sensor response
padded approach by using the virtual sensor responses
derived from principal component analysis of the curated
real-physical responses themselves. It is also evident, that
simpler CNNs can perform far better with even much less
information, if the same information could be presented
with more diversity, such as, in the form of virtual sen-
sor responses, obtained in the form of principal compo-
nents. Furthermore, our concept of non-zero padding also
paves the way to explore other techniques of virtual sensor
response generation by using various normalization and
transformation techniques. With our proposed novel ap-
proach, the high-performance classification of gases/odors
has been successfully achieved by using simpler CNNs
and by using a much smaller number of real-physical sen-
sors on the sensor nodes. It can also be appreciated that
the gas sensor elements contribute to high power require-
ments on the sensor node and reduction of the number
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of real-physical sensor elements significantly reduces the
power requirements of the sensor node incurring any loss
of performance. To the best of the authors’ knowledge,
the use of upscaled hybrid sensor responses with principal
components as virtual sensor responses for efficient classi-
fication of the considered gases/odors has been presented
for the first time and the CNN used is also a simpler
2D-CNN.
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