LIST OF FIGURES

Figure No.	Figure Caption	Page No.
Fig 1.1:	Typical composition and structure of engine exhaust particles [Kittelson 1998]	03
Fig 1.2:	Typical particle composition for a heavy-duty diesel engine tested in a heavy	04
	duty transient cycle. [Kittelson 1998]	
Fig 1.3:	Schematic diagram of a steady burning jet on the basis of laser measurements	05
Fig 1.4:	Formation of PM [Tree and Svensson 2007]	07
Fig 1.5:	Typical Structure of Soot	08
Fig 1.6:	Schematic of mass and number based particle size distributions from diesel	09
	engines	
Fig 1.7:	Transport of the PM with breath according to their size	10
Fig 1.8:	Effect of soot on vegetation	11
Fig 1.9:	Localized Effect of soot on environment	14
Fig1.10:	Effect of soot emission on monuments	15
Fig1.11:	Overall pollution control units in a typical diesel engine exhaust pipe	19
Fig1.12:	Schematic diagram of DPF	20
Fig1.13:	Diesel Oxidation catalyst	21
Fig1.14:	Diesel Particulate Filter	22
Fig1.15:	Active Regeneration of DPF (a) eletrical heater, (b) fuel burner	23
Fig1.16:	Passive Regeneration of DPF	24
Fig1.17:	Flow pattern in wall flow monolith	26
Fig1.18:	Wash coated filter	27
Fig1.19	Partial flow diesel particulate filter	29
Fig1.20:	CRT filter system	30
Fig 1.21:	Flow diagram of catalyst Reclamation	34
Fig 2.1:	(a) ABO ₃ ideal cubic perovskite structure (b) perovskite framework	47
Fig 2.2:	SEM images of catalyst-soot mixture with (a) tight contact and (b) loose	57
	contact	
Fig 2.3:	Temperature programmed oxidations of soot over $K_2 Ti_2 O_5$ with different types	58
	of contact. The inset shows the atomic structure of $K_2Ti_2O_5$.	
Fig 3.1:	Schematic diagram for perovskite catalyst preparation by co-ppt method	61
Fig 3.2:	Flow diagram of Sol-gel method	63

Fig 3.3:	Flow diagram of SCS method	65
Fig 3.4:	Thermograms of lanthanum nitrate-chromium nitrate-urea precursor [Biamino	
	and Badini 2004]	66
Fig 3.5:	Flow diagram of reactive grinding method	67
Fig 3.6	(a)Planetary ball mill, (b) Jar and grinding balls (ZrO ₂)	68
Fig 3.7	General view of the Bomb Calorimeter	71
Fig 3.8	Schematic diagram of Experimental Setup	82
Fig 3.9	Schematic diagram of the Reactor	83
Fig 3.10	General view of the Experiment Assembly	84
Fig 3.11	General view of the Gas Chromatograph	85
Fig 3.12	Schematic diagram of Gas Chromatograph	86
Fig 3.13	Injector diagram for Gas Chromatograph	87
Fig 3.14	Schematic diagram of the Flame Ionization Detector.	89
Fig 3.15	A typical plot of chromatogram area of CO_2 formed by soot oxidation vs.	91
	Temperature	
Fig 3.16	Atypical plot of soot conversion vs. temperature	91
Fig4.1	Schematic diagram of preparation of diesel soot	92
Fig 4.2	Particle size analysis based on particle number density	94
Fig 4.3	Particle size analysis based on particle volume density	95
Fig 4.2	X-Ray pattern of the laboratory prepared diesel soot	95
Fig 4.3	SEM images of the laboratory prepared diesel soot	96
Fig 5.1	N_2 Physisorption isotherms of catalysts (a) A-750 (b) C-750 and (c) B-750,	103
	calcined at 750°C	
Fig 5.2	Pore size distribution curves of catalysts (a) A-750 (b) C-750 and (c) B-750	104
Fig 5.3	XRD patterns of LaCoO ₃ prepared by (A) Co-ppt, (B) SCS, (C) SG and calcined	106
	at 750°C	
Fig 5.4	XRD analysis of LaCoO ₃ calcined at different temperatures, 600, 750 and $800^{\circ}C$	107
Fig 5.5	FTIR spectra of the LaCoO ₃ (co-ppt) catalyst	108
Fig 5.6	XPS spectra of catalyst A-750	110
Fig 5.7	SEM images of LaCoO ₃ prepared by (a) Co-ppt,(b) SG, (c) SCS and calcined at	111
	750°C	
Fig 5.8	Effect of preparation method on soot oxidation over LaCoO ₃ calcined at 750°C	112
Fig 5.9	Effect of calcination temperature on soot oxidation over LaCoO ₃ prepared by (a)	
	Co-ppt (b) SG and (c) SCS method	114

Fig 6.1	N_2 Physisorption isotherms of catalysts (a) $La_{0.9}Sr_{0.1}CoO_3$, (b)	123
	$La_{0.9}Sr_{0.1}Co_{0.5}Ni_{0.5}O_3$, (c) $La_{0.9}Sr_{0.1}Co_{0.5}Cu_{0.5}O_3$ and (d) $La_{0.9}Sr_{0.1}Co_{0.5}Fe_{0.5}O_3$	
Fig 6.2	Pore size distribution curves of catalysts (a) $La_{0.9}Sr_{0.1}CoO_3$, (b)	124
	$La_{0.9}Sr_{0.1}Co_{0.5}Ni_{0.5}O_3$, (c) $La_{0.9}Sr_{0.1}Co_{0.5}Cu_{0.5}O_3$ and (d) $La_{0.9}Sr_{0.1}Co_{0.5}Fe_{0.5}O_3$	
Fig 6.3	XRD Pattern of (A) LaCoO ₃ , (B) LaFeO ₃ , (C) LaNiO ₃ and (D) LaZnO _y	126
Fig 6.4	XRD Pattern of Pure and Substituted Perovskite Catalysts	128
Fig 6.5	FTIR spectra of (A) LaCoO ₃ , (B) LaFeO ₃ , (C) LaNiO ₃	129
Fig 6.6	FTIR spectra of the LaZnO _y	129
Fig 6.7	FTIR spectra of Pure and Substituted Perovskite Catalysts	130
Fig 6.8	XPS Spectra of LaCoO ₃	132
Fig 6.9	XPS Spectra of LaFeO ₃	133
Fig 6.10	XPS Spectra of La _{0.9} Sr _{0.1} CoO ₃	134
Fig 6.11	XPS Spectra of $La_{0.9}Sr_{0.1}Co_{0.5}Ni_{0.5}O_3$	134
Fig 6.12	XPS Spectra of $La_{0.9}Sr_{0.1}Co_{0.5}Cu_{0.5}O_3$	135
Fig 6.13	XPS Spectra of $La_{0.9}Sr_{0.1}Co_{0.5}Fe_{0.5}O_3$	136
Fig 6.14	SEM images of LaZnO _y catalyst; (A) 1000x (B) 2,000x (C) 5,000xs and (D)	137
	10,000x magnification	
Fig 6.15	SEM images of (E) LaCoO ₃ ,(F) LaFeO ₃ , (G) LaNiO ₃	137
Fig 6.16	SEM images of (H) $La_{0.9}Sr_{0.1}CoO_3$, (I) $La_{0.9}Sr_{0.1}Co_{0.5}Ni_{0.5}O_3$, (J)	138
	$La_{0.9}Sr_{0.1}Co_{0.5}Cu_{0.5}O_3$ and (K) $La_{0.9}Sr_{0.1}Co_{0.5}Fe_{0.5}O_3$	
Fig 6.17	Soot conversion over Perovskite-type Catalysts, Calcined at 750 $^{\rm o}\text{C},$ Catalyst/	140
	Soot: 10/1, Tight Contact, Air flow rate: 150ml/min	
Fig 6.18	Soot conversion over single Sr-substituted Perovskite-type Catalysts, Calcined	141
	at 750 °C, Catalyst/ Soot: 10/1, Tight Contact, Air flow rate: 150ml/min	
Fig 6.19	Soot conversion over substituted Perovskite-type Catalysts, Calcined at 750 °C,	142
	Catalyst/ Soot: 10/1, Tight Contact, Air flow rate: 150ml/min	
Fig 6.20	Effect of gas hourly space velocity on soot oxidation, by $La_{0.9}Sr_{0.1}Co_{0.5}Fe_{0.5}O_3$,	143
	(Catalyst/Soot: 10/1)	
Fig 6.21	Effect of contact type on soot oxidation on $LaCoO_3$ catalyst, Calcination 750°C	145
	Catalyst/Soot: 10/1, air flow rate: 150ml/min	
Fig 6.22	Comparison of soot conversion over transition metal and noble metal based	
	Perovskite-type Catalysts	146
Fig 7.1	(a) N_2 Physisorption isotherms and (b) Pore size distribution of Cat-CC	152
Fig 7.2	(a) N_2 Physisorption isotherms and (b) Pore size distribution of Cat-RC	152
Fig 7.3	X-Ray Patterns of Cat-CC and Cat-RC Perovskite Catalysts	153
Fig 7.4	XPS Spectra of Cat-CC (La _{0.9} Sr _{0.1} Co _{0.5} Fe _{0.5} O ₃)	155

Fig 7.5	XPS Spectra of Cat -RC ($La_{0.9}Sr_{0.1}Co_{0.5}Fe_{0.5}O_3$)	156
Fig 7.6	FTIR spectra of pure and substituted perovskite catalysts	157
Fig 7.7	SEM images of (A) Cat-CCand (B) Cat-RC perovskite catalyst	158
Fig 7.8	EDX spectra of (A) Cat-CC and (B) Cat-RC perovskite catalyst	159
Fig 7.9	Conversion of soot with Air and RC- $La_{0.9}Sr_{0.1}Co_{0.5}Fe_{0.5}O_3$ Perovskite Catalysts	159
Fig 7.10	Conversion of soot with different Cat-Soot ratio over RC- $La_{0.9}Sr_{0.1}Co_{0.5}Fe_{0.5}O_3$	160
		1.00
Fig 7.11	Conversion of soot with different Cat-Soot Contact Conditions over RC-	160
-	$La_{0.9}Sr_{0.1}Co_{0.5}Fe_{0.5}O_3$	
Fig 8.1	Cat-CC (a) N_2 adsorption/desorption isotherms and (b) pore size distribution curves	167
Fig 8.2	Cat-RGA (a) N_2 sorption/desorption isotherms, (b) pore size distribution curves	168
Fig 8.3	X-Ray patterns of SG and RG prepared Perovskite Catalysts	169
Fig 8.4	FTIR spectra of SG and RG prepared Perovskite Catalysts	170
Fig 8.5	XPS Spectra of Cat-CC	171
Fig 8.6	XPS Spectra of Cat-RGA	172
Fig 8.7	SEM images of Perovskite Catalysts	173
Fig 8.8	EDX spectra of (A) Cat-CC and (B) Cat-RGA perovskite catalyst	174
Fig 8.9	Performance of the catalysts for Diesel Soot Oxidation	175
Fig 8.10	The Performance of the Cat-RGA for Diesel Soot Oxidation in Loose and Tight	176
	contact	
Fig 9.1	Schematic diagram of the semi-batch reactor	183
Fig 9.2	XRD pattern and FTIR spectra of the Perovskite Catalyst	184
Fig 9.3	SEM images of the perovskite Catalyst at different magnifications	185
Fig 9.4	Soot conversion over La _{0.9} Sr _{0.1} Co _{0.5} Fe _{0.5} O ₃ , calcinations at 750°C, catalyst/soot:	
	10/1, tight contact, air flow rate: 150 ml/min	186
Fig 9.5	Plot of chromatogram area of CO_2 (ACO ₂) vs time at four constant temperatures	
	over La _{0.9} Sr _{0.1} Co _{0.5} Fe _{0.5} O ₃	187
Fig 9.6	First order kinetics model for catalytic oxidation of soot at different temperature	188
Fig 9.7	Arrhenius plot for catalytic oxidation of soot	189