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Abstract— Orthogonal time frequency space (OTFS) has
emerged as the most sought-after modulation technique in a
high mobility scenario. Sparse code multiple access (SCMA) is an
attractive code-domain non-orthogonal multiple access (NOMA)
technique. Recently a code-domain NOMA approach for OTFS,
named OTFS-SCMA, is proposed. OTFS-SCMA is a promising
framework that meets the demands of high mobility and massive
connectivity. This paper presents a channel estimation technique
based on the convolutional sparse coding (CSC) approach for
OTFS-SCMA in the uplink. The channel estimation task is for-
mulated as a CSC problem following a careful rearrangement of
the OTFS input-output relation. We use an embedded pilot-aided
sparse-pilot structure that enjoys the features of both OTFS and
SCMA. The existing channel estimation techniques for OTFS in
multi-user scenarios for uplink demand extremely high overhead
for pilot and guard symbols, proportional to the number of users.
The proposed method maintains a minimal overhead equivalent
to a single user without compromising on the estimation error.
The results show that the proposed channel estimation algorithm
is very efficient in bit error rate (BER), normalized mean square
error (NMSE), and spectral efficiency (SE).

Index Terms— OTFS, SCMA, NOMA, channel estimation,
compressive sensing, convolutional sparse coding.

I. INTRODUCTION

A. Motivation

IN CURRENT communication standards for 4G and 5G,
orthogonal frequency division multiplexing (OFDM) has

been undisputedly recommended for modulation. OFDM
was particularly designed to eliminate the inter-symbol-
interference (ISI) caused by the time dispersion of the channel.
The success of OFDM depends on the orthogonality of the
sub-carriers. If the channel introduces frequency dispersion
too in the form of Doppler shifts, the orthogonality of
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the sub-carriers is destroyed. This results in inter-carrier-
interference (ICI), which hinders the application of OFDM
in high Doppler scenario. The coming generation of wireless
networks implicates high Doppler due to increased mobility
in environments like vehicle-to-everything (V2X) and high
carrier frequency such as in mmWave communication. Orthog-
onal time frequency space (OTFS) has turned up as a solution
to boost up the potential of such communication scenario [1].
The remarkable performance of OTFS is attributed to the two-
dimensional (2D) modulation technique in which both the data
and the channel are represented in the delay-Doppler (DD)
domain, by exploiting the quasi-periodicity property in this
domain. OTFS modulation benefits from the existence of 2D
localised pulses in the DD domain. These pulses subsequently
occupy the entire time-frequency (TF) grid, thereby achieving
full diversity. All the symbols in an OTFS DD frame experi-
ence nearly the same channel. Moreover, fewer parameters are
required to describe the channel in the DD domain facilitating
a sparse representation, which makes the channel estimation
an easy task.

The superior performance of OTFS is evident in multi-user
scenarios also. There can be two approaches: (1) orthogo-
nal multiple access (OMA) and (2) non-orthogonal multi-
ple access (NOMA). In NOMA, unlike in OMA, various
users share resources. The spectral efficiency of NOMA is
significantly better than that of OMA. OTFS-OMA with
different interleaving patterns was proposed in [2], [3].
OTFS with power-domain NOMA was explored in [4], [5].
Recently, we proposed a code-domain NOMA approach
for OTFS based on sparse code multiple access (SCMA),
named OTFS-SCMA [6]. The simulation results and diversity
analysis showed the superiority of OTFS-SCMA over other
multi-user techniques of OTFS. Any channel estimation tech-
nique for OTFS can be easily extended to OTFS-SCMA in
downlink, unlike in uplink. Thus, it is highly relevant to devise
a channel estimation technique for OTFS-SCMA in uplink.

B. Related Prior Works

The detection of an OTFS-based system necessitates an
accurate channel estimation. OTFS-SCMA integrates the tech-
niques of modulation of OTFS and the multiple access scheme
of SCMA. Hence, to devise the channel estimation algorithm
of OTFS-SCMA, the conventional methods used for both
OTFS and SCMA are to be analyzed. The commonly-adopted
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approach of channel estimation for OTFS is the pilot-aided
method presented in [7]. With the help of the pilot symbols
placed in the DD grid, the channel coefficients are estimated.
Following this approach, the authors in [8] presented a sys-
tematic method for channel estimation using an embedded
single QAM pilot symbol with a guard band. By applying
thresholding in the observation region, paths are identified, and
the channel coefficients are estimated by element-by-element
division. The same method was also extended to the MIMO
and the multiuser cases [8]. In [9], the authors adopted a
sparse signal recovery approach using the sparse Bayesian
learning (SBL) algorithm. In this method, the embedded pilot
structure does not contain a guard band; instead, it has multiple
QAM pilot symbols. Reference [10] also follows a similar
pilot-aided technique for channel estimation of OTFS-MIMO.
Channel estimation techniques for massive MIMO-OTFS
are developed in [11]–[13], where a 3D channel model of
delay-Doppler-angle is considered. For channel estimation,
3D-structured Newtonised Orthogonal Matching Pursuit
(NOMP), OMP, and SBL algorithms are used in [11], [12],
and [13], respectively. The channel estimation for OTFS-OMA
is carried out in [14] using a sparse signal recovery approach
based on subspace pursuit (SP) and OMP. An embedded QAM
pilot symbol with a guard band is used for OTFS-OMA
channel estimation in [2]. In the context of the SCMA channel
estimation, the reference [15] considered both pilot-aided and
data-aided approaches and analyzed the trade-off between the
spectral efficiency and pilot overheads. Active user detection
followed by channel estimation for SCMA was investigated
in [16], [17]. The method in [18] considered sparse pilot
vectors with the non-zero pilot symbols placed according to
the pattern of the corresponding codebook of a user.

If the existing OTFS-OMA channel estimation techniques
are extended to OTFS-SCMA, we face either of the two
following major issues in uplink. First, we must rely on a
dedicated OTFS frame to train pilot symbols, resulting in
higher complexity. Secondly, a significantly large pilot and
guard band overhead are required if we insert the pilots in
the same frame, along with the data symbols, followed by
a subsequent channel estimation based on thresholding. This
loss in resources is proportional to the number of transmitting
antennas or users. To deal with these issues, we propose a
channel estimation technique where the pilot symbols are non-
orthogonal, embedded in the data frame itself, and follow a
sparse structure. Additionally, we formulate the problem as
a CSC model to reduce the complexity of the sparse signal
recovery algorithm.

C. Contributions

This paper proposes a channel estimation method for
OTFS-SCMA based on convolutional sparse coding (CSC).
This method is found to provide impressive bit-error-rate
(BER) performance with minimal overhead and complexity.
The special features and the main contributions of the pro-
posed method are summarized below:

• The work presented in this paper is the first attempt
to perform channel estimation for OTFS in any NOMA

environment, let alone an SCMA system. Although OTFS
was studied in the context of power-domain NOMA
in [4], [5], [19], no channel estimation techniques were
proposed.

• The proposed pilot structure is non-orthogonal and data-
embedded and thus offers low pilot and guard band
overhead, which is the same as a single user. This aspect
of the technique means all users’ pilot vectors and guard
bands share the same resources, and the data symbols
are also transmitted in the same frame. While in [8]
and [2], the overhead needed for channel estimation is
proportional to the number of users.

• In addition, the proposed pilot vectors have a sparse
structure. They follow the same sparse and resource
sharing pattern in accordance with the factor matrix of
the underlying SCMA system. The sparsity reduces the
interference among the pilot vectors of multiple users,
owing to the lower degree of the factor nodes [6].

• The input-output relation for OTFS-SCMA in uplink is
developed to formulate the CE as a CSC problem. This
formulation significantly reduces the dimensionality of
the problem facilitating the use of low-complexity SP-
based recovery algorithms.

• For solving the CSC-based channel estimation problem,
SP is considered. For the successful operation of SP,
the knowledge of sparsity is a prerequisite. To meet this
requirement, we convert the unknown sparsity of paths
to a known sparsity of the number of users by exploring
the properties of the standard propagation channel models
and the CSC model.

• The initialization of the estimates needed for SP is done
sequentially for each user in a greedy manner, resulting in
fast convergence of the algorithm. While in [20] and [14],
no prior information is considered to obtain the initial
estimates.

• Instead of using the random Gaussian sequences, the
pilot vectors are designed to minimize the dictionary’s
mutual coherence. For this optimization, differential evo-
lution [21] is considered.

D. Outline

Section II describes the preliminaries of OTFS and SCMA.
This section also presents various features of OTFS-SCMA
and the concept of CSC. The proposed channel estimation
technique and its analysis are presented in Section III, high-
lighting the embedded pilot-aided structure and the CSC
modeling. The CSC-based sparse signal recovery algorithm
for channel estimation is presented in Section IV. Section V
presents the simulation results and their analysis. Finally, the
paper is concluded in Section VI.

Notations: Boldface upper-case, boldface lower-case, and
lower-case letters denote the matrices, the vectors and the
scalars respectively. For an m× n matrix A, vec(A) denotes
the mn × 1 column vector which is obtained by vertical
concatenation of the n columns of A. IN denotes the identity
matrix of size N × N . The all zero matrix of size n × m
is denoted by 0n×m. For a matrix A, AT , AH , and A†
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represent the transpose, the Hermitian transpose, and the
pseudo-inverse of A respectively. For any real number x, �x�
is the smallest integer that is not smaller than x. For any
integers k and N , the notation [k]N refers to (k mod N ). �
denotes circular convolution and � denotes Hadamard product.
A = |A| denotes the cardinality of the modulation alphabet
A. C denotes the set of complex numbers. The notation
CN

(
0, σ2

)
denotes a zero-mean complex Gaussian random

number with variance σ2. Tx and Rx denote transmitter and
receiver, respectively.

II. PRELIMINARIES

A. OTFS

We discuss the basic operations involved in OTFS without
delving into the conceptual details. OTFS modulation
considers an N × M DD grid (N Doppler bins, M delay
bins) for the input data and the corresponding output data. The
delay and the Doppler bins are considered in the horizontal
and the vertical directions of the DD grid respectively.
As the input and the output data are perceived in the DD
domain rather than the conventional TF domain, OTFS
modulation includes an additional pre-processing block of
inverse symplectic finite Fourier transform (ISFFT) and a
post-processing block of SFFT. This version of OTFS makes
it compatible with the existing OFDM system. At first, the
OTFS modulator converts the input data x[k, l] in the DD
domain to the symbols X [n, m] in the TF domain using ISFFT
operation: X [n, m] = 1

MN

∑N−1
k=0

∑M−1
l=0 x[k, l]ej2π( nk

N −ml
M ).

The TF data is converted to time-domain signal
s(t) by applying Heisenberg transform: s(t) =∑N−1

n=0

∑M−1
m=0 X [n, m]ej2πm�f(t−nT )gtx(t − nT ) where

gtx(t) is the transmit basis pulse. The signal s(t) is transmitted
through a wireless communication channel whose DD-domain
response is h(τ, ν). Hence the received signal in time domain
is given by r(t) =

∫∫
h(τ, ν)ej2πν(t−τ)s(t − τ) dτdν + z(t),

where z(t) is the additive white Gaussian noise
(AWGN). At the receiver, by applying Wigner transform,
the time-domain signal is converted to TF domain:
Y [n, m] =

∫
e−j2πν(t−τ)g∗rx(t − τ)r(t) dt |τ=nT, ν=m�f ,

where grx(t) is the receive basis pulse. Finally, SFFT
converts the TF signal back to the DD-domain:
y[k, l] =

∑N−1
n=0

∑M−1
m=0 Y [n, m]e−j2π( nk

N −ml
M ).

The benefit of DD-domain processing is fully realized if the
pulses gtx(t) and grx(t) satisfy the so-called bi-orthogonality
property [22], under which case they are called ideal pulses.
For ideal pulse-shaping, the input-output relation in the DD
domain is given by

y[k, l] =
P∑

i=1

hix[[k − ki]N , [l − li]M ] + z[k, l] (1)

where, k = 0, 1, . . . , N − 1, l = 0, 1, . . . , M − 1; P is the
total number of paths; hi = h′

ie
−j2πνiτi , h′

i ∼ CN (0, 1
P ), ki,

and li denote the complex channel gain, integer Doppler, and
integer delay tap, respectively of the ith path; and z[k, l] is
the complex AWGN. The input-output relation in (1) can be
compactly expressed as y = Hx + z, where H ∈ CNM×NM ;
x, y, and z are the NM × 1 input, output, and noise vectors

formed by vec(·) of the corresponding N×M grids. Note that
H follows a sparse and circulant-block structure [23].

B. SCMA

SCMA is a code-domain NOMA technique in which
the available K orthogonal resources (time-slot/frequency-
band/code) are shared among J users (J > K) [24], [25].
This structure is denoted by (J, K) SCMA system with an
overloading factor of λ = J

K > 100%. Each user has a
specific codebook having A codeword vectors of length K .
The codebooks are designed in such a way that each of
the K resources is shared by df users and each codeword
has only dv non-zero components. As an example, consider
a (J = 6, K = 4) SCMA system with λ = 150%. The set
of codebooks can be represented by {C1,C2, . . . ,C6}. For
A = 4, the codebook for the jth user is given by Cj =
[cj1|cj2|cj3|cj4] where cji ∈ C4×1, i = 1, . . . , 4. If the input
data of the jth user is i, the corresponding codeword vector
cji is selected. In this way, 6 codeword vectors are identified
and they are simultaneously transmitted over the 4 available
resources. Due to the sparse structure of the SCMA codewords,
message passing algorithm (MPA) can be successfully used for
the data detection [26], [27].

C. OTFS-SCMA

OTFS-SCMA is a code-domain NOMA approach for OTFS
recently proposed in [6]. The key features of OTFS-SCMA are
described in the following.

1) Codeword Allocation Schemes: The significant differ-
ence of OTFS-SCMA from the other related works is that
it uses SCMA vector codewords as data symbols instead of
QAM symbols. In [6], three schemes of SCMA codeword
allocation are presented. In Scheme-1, the codewords are
placed along the Doppler axis as K × 1 vectors and hence
[N ]K = 0. Scheme-2 allocates the codewords as 1 × K
vectors along the delay axis with [M ]K = 0. Also, a third
scheme, Scheme-3 is analyzed where the non-zero components
of the codewords are swapped in a particular fashion after
allocating the codewords as per Scheme-1 or Scheme-2. Note
that, in all the three schemes, the overall overloading factor
of OTFS-SCMA is the same as that of the underlying basic
(J, K) SCMA system, i.e., λ = J/K .

2) Downlink and Uplink: In the downlink scenario, the
codewords from J SCMA encoders are superimposed first,
followed by an OTFS modulator. The input-output relationship
of the jth user is given by

yj = Hjxsum + zj (2)

where xsum is the superimposed input and Hj is the channel
matrix for the jth user. For a particular user, the received data
is first passed through an OTFS detector (LMMSE detector
using Hj ) to resolve the DD interference. The output of the
OTFS detector is a noisy version of xsum. Finally, an SCMA
detector (MPA for AWGN channel) acts upon the noisy
xsum to detect the user’s data by removing the multi-user
interference.
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Fig. 1. Block diagram of OTFS-SCMA in uplink.

Fig. 1 depicts an uplink scenario of OTFS-SCMA. The
input-output relation is governed by

y =
J∑

j=1

Hjxj + z = Hx + z (3)

where H = [H1, . . . ,HJ ] ∈ CNM×JNM and x =[
xT

1 , . . . ,xT
J

]T ∈ CJNM×1. Observe that H has the com-
bined effect of both OTFS and SCMA. It is not possible to
segregate the DD interaction and the multi-user fusion. Thus
the sequential OTFS and SCMA detection is not feasible in
uplink. A combined detector for OTFS-SCMA is proposed
in [6] using MPA, which resolves the DD and the multi-user
interference in single stage.

3) Channel Estimation in Downlink: The downlink scenario
explained above indicates that the multipath channel values
are required only for the OTFS detector. For the SCMA
detector, only the effect of the AWGN channel remains.
Hence, the embedded QAM-pilot-based channel estimation
technique with a guard band from [8] is successfully extended
to OTFS-SCMA in downlink. The results presented in [6]
demonstrate that a single QAM pilot is sufficient for the
channel estimation with a pilot power of 35 dB so that the
BER performance closely follows that of the perfect CSI case.
This strategy is not applicable for OTFS-SCMA in uplink due
to the very high guard band overhead. Hence, in this paper,
we propose an efficient channel estimation technique suitable
for uplink scenarios of OTFS-SCMA.

4) Diversity and BER Analysis: The diversity analysis in [6]
shows that OTFS-SCMA can achieve a significantly higher
asymptotic diversity order than OTFS-OMA. The use of vector
codewords instead of the conventional QAM symbols paves
the way for the diversity gain of OTFS-SCMA. Theorem 1
presented in [6] shows the diversity orders of Scheme-1 and
Scheme-2 for both uplink and downlink. While the diversity
gain of Scheme-1 depends on the number of distinct mod-
K Doppler taps, for Scheme-2, it is related to the number of
distinct mod-K delay taps. Note that Scheme-1 and Scheme-2
perform equally for high values of N and M . Scheme-3 can
achieve a higher diversity order by interleaving the non-zero
components of the SCMA codewords based on the channel
information at the transmitter. The simulation results obtained

for the practical EVA channel model [28] and different over-
loading factors agree with the diversity analysis, which shows
that OTFS-SCMA can perform remarkably better than other
multi-user OTFS schemes.

D. Convolutional Sparse Coding

Convolutional sparse coding (CSC) is a structured coding
technique that has found applications in many signal process-
ing problems. CSC was initially applied to one-dimensional
signals [29] and then extended to two-dimensional ones [30].
In CSC, a signal y ∈ C

U×1 is represented as the sum of v
convolutions:

min
xi

f(xi) s.t
v∑

i=1

di � xi = y (4)

where f(·) is usually �1-norm, {di}v
i=1 ∈ Cu×1 are support

filters (p � U ), and {xi}v
i=1 ∈ CU×1 are vectors of

varying sparsity. The CSC problem of (4) can be compactly
represented as [31], [32]

min
x̃

f(x̃) s.t D̃x̃ = y (5)

where D̃ =
[
D̃1 D̃2 . . . D̃v

]
, D̃i ∈ CU×U is the circulant

matrix formed by di and its U−1 circularly shifted vectors and
x̃ =

[
xT

1 xT
2 . . . xT

v

]T
. The sparsity of the signal x̃ makes it

possible to use sparse signal recovery algorithms.
Recently, less complex CSC algorithms are developed based

on working locally; thinking globally [33]. Under this local
paradigm, the global dictionary is broken down into smaller
local dictionaries DL of dimension p × v, where DL =
[d1 d2 . . . dv]. Through a simple permutation of its columns,
D̃ can be represented as the concatenation of circularly shifted
versions of DL. Fig. 2 depicts the process of converting the
global problem into a local one.

The CSC problem from (5) can now be written as

min
αi

f(αi) s.t
U∑

i=1

RT
i DLαi = y (6)

where αi is the local v × 1 sparse vector and Ri =[
0p×(i−1) Ip 0p×(U−i−p+1)

]
is a p × U matrix to extract a

p × 1 patch from y. The CSC applications discussed in [34]
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Fig. 2. Dictionary structure of convolutional sparse coding.

and [35] establish that the sparse signal recovery algorithms
based on convex relaxation (e.g. gradient descent) and greedy
approach (e.g. matching pursuit, OMP, stage-wise OMP) are
efficient when working with local dictionary also. The use of
local dictionary helps to consider the global CSC of y in terms
of independent CSC problems of smaller vectors of length p.
It is interesting to note that the input-output relation for the
proposed method with the DD grid containing embedded pilot
vectors can be modeled similarly to (4), and its simplified
form in Fig. 2. This observation motivated us to develop a
channel estimation technique for OTFS-SCMA using the CSC
approach, which is explained thoroughly in the next section.

III. FORMULATION OF CHANNEL ESTIMATION

AS A CSC PROBLEM

This section comprehensively describes the CSC-based
channel estimation for OTFS-SCMA, which is organized as
follows. In Section III-A, we present the arrangement of the
data and the pilot vectors in the transmit DD grid and analyze
the corresponding received grid. Section III-B formulates the
channel estimation task as a CSC problem, based on the data
and the pilot arrangement.

We initially develop the channel estimation technique for the
ideal pulse-shaping in which the input-output relation follows
a simple 2D circular convolution as shown in (1). Later, the
proposed method is extended to the rectangular pulse-shaping
case.

A. Pilot and Data Arrangement in Delay-Doppler Grid

Although the proposed method applies to any codeword
allocation schemes, for simplicity, we consider Scheme-1 to
describe the channel estimation technique. For a given channel,
lτ and kν denote the maximum integer delay and integer
Doppler tap, respectively. For maximum delay τmax and
maximum Doppler νmax, we must have τmax < lτ

M�f and
νmax < kν

NT where �f is the sub-carrier bandwidth, and T is
the symbol duration satisfying �f = 1/T . Let Xu ∈ CN×M

denote the uth user’s input symbol matrix which is placed on
the respective N × M Tx DD grid. If xu,l ∈ CN×1 denotes
the column vector for delay tap l, the input symbol matrix
can be written as Xu = [xu,0 xu,1 . . . xu,M−1]. The element
in the location [k, l] of Xu is denoted by xu [k, l] with k =
0, 1, . . . , N − 1 and l = 0, 1, . . . , M − 1. We consider column

vectors of specific length for pilots. Suppose the pilot vector of
the uth user is denoted by pu =

[
pu,0 pu,1 . . . pu,Lp−1

]T
and

is placed at the delay index l̄ such that l̄ + lτ = M −1 where,
lτ is the maximum integer delay tap. Thus a just adequate
guard band from the data part is maintained to minimize
the overhead. The total number of data symbols that can be
transmitted over the DD grid is Ndata = N

K (l̄ − lτ ). The
nth SCMA codeword transmitted by the uth user is given
by cu

n =
[
cu
n,0 cu

n,1 . . . cu
n,K−1

]T
, n = 1, 2, . . . , Ndata. The

symbols in the Tx grid of the uth user can be described as

xu[k, l] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cu
n,i 0 ≤ l < l̄ − lτ , k = [(n − 1)K + i]N ,

pu,i l = l̄ k = i < Lp

0 l = l̄ k > Lp − 1
0 otherwise.

(7)

Example 1: Consider an OTFS-SCMA system with M = 5,
N = 8, J = 6, K = 4, dv = 2, lτ = kν = 1, and Lp = 4.
The codewords follow the sparsity pattern as per the following
factor matrix:

F =

⎡
⎢⎢⎣
1 0 1 0 1 0
0 1 1 0 0 1
1 0 0 1 0 1
0 1 0 1 1 0

⎤
⎥⎥⎦ . (8)

The pilot vector is placed at the delay tap l̄ = 3. This example
will be revisited multiple times to illustrate various concepts
and procedures.

Fig. 3(a) shows the embedded arrangement of the data and
the pilot vectors over the Tx DD grid for Example 1. The
codewords and the pilot vectors follow the sparsity pattern
as per (8). The Tx grids for only User 1 and User 6 are
shown. The received symbols Y ∈ C

N×M is the collection
of M columns as [y0 y1 . . .yM−1]. As a result of the
sufficient guard band, there are two non-overlapping regions:
(1) data detection region Yd ∈ CN×l̄ formed by the columns
y0,y1, · · · ,yl̄−1 and (2) pilot observation region Yp ∈
CN×(lτ+1) formed by the columns yl̄,yl̄+1, · · · ,yl̄+lτ . For
Example 1, the Rx grid with multi-user and DD interference
is shown in Fig. 3(b).

B. CSC Model for Channel Estimation

The received delay-Doppler frame with pilot and data
embedded in a single frame is shown in Fig. 4. Also,

Authorized licensed use limited to: Indian Institute Of Technology (Banaras Hindu University) Varanasi. Downloaded on December 09,2022 at 06:57:29 UTC from IEEE Xplore.  Restrictions apply. 



5246 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 8, AUGUST 2022

Fig. 3. Pilot-data arrangement1 in DD domain for Example 1 (For convenience, pilot vectors of length 4 are shown. The selection of the length of pilot
vectors is discussed in Section IV-B.1).

an overview of the proposed method is presented. The channel
estimation task can be carried out by considering it as a CSC
problem. For that, the input-output relation of OTFS-SCMA is
analyzed for the single-user case first and then for the multi-
user one.
• Single user case: Ignoring the AWGN at the BS, the

input-output relation for the uth user from (1) can be written
as

yu[k, l] =
P∑

i=1

hu[i]x[[k − ki]N , [l − li]M ] (9)

where P is the number of paths and hu[i] is the channel
coefficient of the ith path having the delay and Doppler tap
li and ki respectively, for the user. Note that P , hu[i], and
[ki, li] are unknown in the channel estimation problem. Hence,
we have to express (9) in terms of all the possible values of
[ki, li], given by

yu[k, l] =
N−1∑
k′=0

M−1∑
l′=0

hu[k′, l′]xu [[k − k′]N , [l − l′]M ] (10)

where hu[k′, l′] denotes the channel coefficient of the uth user
for the path having delay tap l′ and Doppler tap k′. Out of all
the (k′, l′) pairs, there will be P pairs for which hu[k′, l′] 
= 0,
such that hu[i] = hu[k′, l′] for (ki, li) = (k′, l′). Let yu,l =
[yu[0, l] yu[1, l] . . . yu[N − 1, l]]T denote the contribution of
the pilot vector of the uth user, received at the delay index
l. Also, let hu,l = [hu[0, l] hu[1, l] . . . hu[N − 1, l]]T denote
the channel coefficients of the uth user for all possible Doppler
taps at the delay tap l. Then, for any specific delay tap l, the
input-output relation in (10) can be written in the vector form
as

yu,l =
M−1∑
l′=0

xu,[l−l′]M � hu,l′ for l = 0, 1, . . . , M − 1

(11)

1DD grid is shown for N = 8, M = 5 and lτ = 1, kν = 1. The empty
grids denote the guard band. The 0’s in the K × 1 vectors are part of the
data/pilot symbols.

where, l denotes the delay index of the received DD grid and
l′ denotes the delay tap in the channel. Observe from Fig. 4(b)
that for the purpose of channel estimation, we have to consider
only the pilot observation region Yp. Hence we can apply the
following limits for l′ and l in (11):

• l̄ ≤ l ≤ M − 1, pilot observation region Yp as shown in
Fig. 4(b).

• 0 ≤ l′ ≤ lτ , since hu,l′ = 0 for l′ > lτ where, lτ is the
maximum delay tap.

Considering the above two ranges, (11) can be simplified as:

yu,l =
lτ∑

l′=0

xu,[l−l′]M � hu,l′ for l = l̄, l̄ + 1, . . . , M − 1.

(12)

For l = l̄, the relation in (12) can be written as

yu,l̄ =
lτ∑

l′=0

xu,[l̄−l′]M � hu,l′

= xu,[l̄]M � hu,0 + xu,[l̄−1]M

�hu,1 + . . . + xu,[l̄−lτ ]M � hu,lτ . (13)

From (7) and also from Fig. 3(a), we have
xu,[l̄]M = xu,l̄ = [pu,0 pu,1 . . . pu,Lp−1 01×(N−Lp)]T ,
denoted by pu. In addition, we can see that each of
xu,[l̄−1]M , xu,[l̄−2]M , . . . xu,[l̄−lτ ]M belongs to the guard
band, which are 0N×1 only. Hence, (13) is further simplified
as

yu,l̄ = xu,l̄ � hu,0

=

⎡
⎢⎢⎢⎣

pu,0 0 · · · 0 · · · pu,1

pu,1 pu,0 · · · pu,Lp−1 · · · pu,2

...
...

. . .
...

. . .
...

0 0 · · · 0 · · · pu,0

⎤
⎥⎥⎥⎦

N×N

×

⎡
⎢⎢⎢⎣

hu[0, 0]
hu[1, 0]

...
hu[N − 1, 0]

⎤
⎥⎥⎥⎦
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Fig. 4. Overview of the proposed channel estimation method for ΓN,M ,
N = 8, M = 5, J = 6, K = 4, lτ = 1, and Lp = 4.

=
[
p(0)

u p(1)
u . . . p(N−1)

u

]
hu,0

= Puhu,0 (14)

where, p(k)
u is the transpose of the kth forward circular shift

of [pT
u 01×(N−Lp)], corresponding to the Doppler tap k.

Similarly, considering (12) for all values of l and repeating the
analysis as in (13)-(14), we have lτ +1 independent equations
as

yu,l = Puhu,l−l̄ for l = l̄, l̄ + 1, . . . , M − 1. (15)

Remark 1: For the pilot and data arrangement in
Section III-A, (15) is applicable to all users as sufficient guard

band is reserved considering lτ and kν as the maximum delay
and Doppler taps of the channels of all users.
• Multi user case: Now, we extend (15) to the OTFS-SCMA

uplink with J users. The pilot symbols in the observation
region of Fig. 4(b) is the superposition of the pilot symbols
received from all J users. Hence, the received pilot observation
signal at the delay index l is given by

yl = y1,l + y2,l + · · · + yJ,l

= P1h1,l−l̄ + P2h2,l−l̄ + . . . + PJhJ,l−l̄ (16)

= [P1 P2 . . .PJ ]

⎡
⎢⎢⎢⎣

h1,l−l̄

h2,l−l̄
...

hJ,l−l̄

⎤
⎥⎥⎥⎦=

J∑
u=1

(
N−1∑
k′=0

p(k′)
u hu[k′, l − l̄]

)

=
N−1∑
k′=0

(
J∑

u=1

p(k′)
u hu

[
k′, l − l̄

])

for l = l̄, l̄ + 1, . . . , M − 1. (17)

Expressing (17) in terms of one summation, we get

yl =
N−1∑
k′=0

Pk′
hk′

l−l̄ for l = l̄, l̄ + 1, . . . , M − 1 (18)

where Pk′
=

[
p(k′)

1 p(k′)
2 . . . p(k′)

J

]
and hk′

l−l̄
=[

h1

[
k′, l − l̄

]
, h2

[
k′, l − l̄

]
, . . . , hJ

[
k′, l − l̄

]]T
. Hence,

(18) can be expressed in the matrix form as

yl = Phl−l̄ for l = l̄, l̄ + 1, . . . , M − 1 (19)

where P ∈ CN×JN and hl−l̄ ∈ CJN×1 are given by

P =
[
P0 P1 . . . PN−1

]
and

hl−l̄ =
[
(h0

l−l̄)
T (h1

l−l̄)
T . . . (hN−1

l−l̄
)T
]T

, respectively.

Since the maximum Doppler tap is kν , we have
hl−l̄ =

[
(h0

l−l̄
)T . . . (hkν

l−l̄
)T (01×J(N−2kν−1))(h

N−kν

l−l̄
)T . . .

(hN−1
l−l̄

)T
]T

. Note that we have put 0s in hl−l̄ by
taking into account both positive and negative Doppler
values.

The local dictionary associated with P is given by PL =
[p1 p2 · · · pJ ]. Fig. 5 shows the structures of the global
dictionary P and the local dictionary PL for Example 1.
Clearly (19) can be considered as a CSC problem similar to
that of (5) and (6). The channel estimation is now formulated
as

min
hl−l̄

f(hl−l̄) s.t Phl−l̄ = yl or

min
hk

l−l̄

f(hk
l−l̄

) s.t
∑

k∈K RT
k PLhk

l−l̄
= yl

⎫⎬
⎭ (20)

where l = l̄, l̄ + 1, . . . , M − 1,
K = {0, . . . , kν , N − kν , . . . , N − 1}, and Rk is the same
patch extraction matrix as in (6).
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Fig. 5. Structure of global dictionary P and local dictionary PL for Example 1.

IV. ALGORITHM FOR CHANNEL

ESTIMATION BASED ON CSC

In this section, we propose an efficient sparse signal recov-
ery algorithm for the CSC-based approach of channel estima-
tion problem given in (20). We explore the features of sparse
pilot vector design to ensure fast convergence and improved
performance. Algorithm 1 shows the steps for the CSC-based
channel estimation technique.

A. Low Complexity and Fast Convergence Sparse Signal
Recovery Algorithm

The sparse signal recovery algorithms based on greedy
approach are extensively used for channel estimation prob-
lems. Algorithm 1 is designed based on SP with a mod-
ified method for obtaining the initial estimates to achieve
faster convergence. The steps of Algorithm 1 are discussed
next, highlighting the factors crucial for effective channel
estimation.

1) Obtaining the Global Dictionary Using the Local Dic-
tionary: From (20), it is observed that the sensing matrix
P remains the same for all the delay taps and is used as
the global dictionary throughout Algorithm 1. Hence we
initially form P, which is simply the block circulant version
of the local dictionary input PL as depicted in Fig. 2 for
Example 1.

2) Shrinking the Global Dictionary: Although P is formed
considering the complete Doppler taps from 0 to N − 1,
the search range can be limited to the maximum spread of
the integer Doppler taps 2kν of the channel. We shrink the
dimension of P from JN to J(2kν + 1) columns (line 2 of
Algorithm 1). This shrinkage in the dimension of the sensing
matrix reduces the complexity of the sparse signal recovery
algorithm.

3) Thresholding of Pilot Observation Region: The pilot
observation region accommodates the maximum delay tap lτ
of the channel but not every delay tap starting sequentially
from 0 to lτ is present. Only a few dominant delay taps
will be present in the channel. If Mdom is the number of
dominant delay taps in the channel, then in (20), we need to
apply sparse signal recovery algorithm only to Mdom equations
(Mdom � M ). A thresholding of ||yl||2 > T can easily find
out these Mdom equations, since all other yl have only the noise

Algorithm 1 SP algorithm with modified initial estimate
input : Yp: pilot observation region; PL: dictionary of

pilots; J : total number of users; kν : maximum
integer Doppler tap; T : Threshold for dominant
path detection;

Obtain P using the input PL

Limit the search range of Doppler to the maximum
spread of Doppler taps of channel;
foreach delay tap l in the pilot observation region do

Thresholding: Check whether l is a dominant delay
path based on ||yl||2 > T . If l is not a dominant path
then skip the following part and go to line 3 for the
next delay tap l + 1 ;
Channel estimation:
if ||yl||2 > T then

Initialization: iteration i = 0;
Initial estimates: Estimate the dominant Doppler
tap per user and the residue ;
repeat

i = i + 1;
Find the J columns of P with high correlation
with the residue as in (A1);
Update the current temporary list S̃(i) of
selected columns by adding these J columns to
the previous list S(i−1) as in (A2) ;
Find the pseudoinverse solution for the 2J
selected columns of P as in (A3);
Find S(i) and refine the channel estimates
finding the J selected columns of significant
coefficients as in (A4) and (A5);
Update the residue using the refined channel
estimates as in (22) of (A6);

until stopping criteria, as in (23);

output: Channel estimates of all users: ĥl−l̄ for
l = l̄, l̄ + 1, . . . , M − 1.

component (σp). We select T = cσp, where σp =
√

N
SNRp

,

SNRp = E(|pu,i|2)
σ2 and the factor c is decided based on the

observations from simulations. For the simulation parameters
used, we fix c = 2.
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4) Obtaining the Initial Estimates Sequentially: Instead of
selecting the initial J elements from the overall set of JN
elements, we can strategically choose the initial values based
on a group-by-group greedy approach. There are J groups
of N channel coefficients corresponding to J users and N
Doppler taps of every user at a fixed delay tap. We select
the dominant Doppler tap per user in the initial estimate and
execute the remaining iterations. Hence, we can ensure that
one path per user is present in the initial estimate making the
convergence faster (line 8 of Algorithm 1).
Initialization for i = 0: For each jth user, form Pj collecting
all the columns corresponding to that user from P. From
each Pj , we find the column that has the highest correlation
with yl and, considering all users, form P

(S(0))
. The initial

J estimates are h
(S(0))

= P†
(S(0))

yl. Repeat the following

iterations until the stopping criteria are satisfied.

(A1): Obtain the J elements which are highly correlated
to the residue of the previous iteration, i.e., the
J maximum correlation coefficients in the vector
|PHr(i−1)|, and collect these J column indices in
s(i).

(A2): Form the list of 2J elements by including the new
J elements of the current iteration to the list of the
previous iteration: S̃(i) = S(i−1) ∪ s(i).

(A3): Find the nearest solution for 2J elements using the
psuedoinverse method:

h
(S̃(i))

= P†
(S̃(i))

yl. (21)

(A4): Find the J maximum values in the vector

∣∣∣∣h(S̃(i))

∣∣∣∣
and put those J indices in the selected list S(i) of J
indices. Collect the columns of P corresponding to
S(i) in P

(S(i))
.

(A5): Refine the J channel estimates as: he = P†
(S(i))

yl.

(A6): Using the J estimated coefficients, update the
residue for the next iteration:

r(i) = yl − P
(S(i))

he. (22)

5) Stopping Criteria: The algorithm is considered to con-
verge to the optimal solution when the norm of the residue
is minimal ( [20], Section III). For SP algorithms, in each
iteration, the J estimated coefficients are updated with J
more elements. The final J estimates are determined from the
updated list of 2J elements having the highest correlation.
Once the residual norm reaches the minimum, a further
update of the J new elements results in divergence from the
minimum. Hence, if the residual norm starts increasing for the
next iteration, the optimal solution is attained, i.e., the iteration
stops when

||r(i)||2 > ||r(i−1)||2. (23)

The estimated channel coefficients ĥl−l̄ of the current delay
tap are set to the refined estimate he of the previous iteration
i − 1.

The features of Algorithm 1 that result in fast convergence
are highlighted next.

• Sparse pilot vector and sequential initial estimates: The
pilot vector of each user follows the same sparse structure
of the user’s codewords. SCMA codebook is designed
such that only df users share a resource. The similar
sparse structure for the pilot vectors favors the sparse
signal recovery since those columns of P will be highly
correlated with yl. Also, it ensures that all the dv non-
zero components of all pilot vectors are available for
channel estimation. The sparseness of the pilot vectors of
the multiple users provides minimal interference amongst
them. In addition, the sequential selection of the initial
estimates offers uniform treatment to all users without
prioritizing any user.

• Dealing with unknown sparsity: The knowledge of spar-
sity is a prerequisite for SP algorithm. The dictionary
P ∈ CN×JN is used to recover the channel coefficients
at the all Doppler taps of all users for a single delay tap
as shown in (20). If the sparse signal recovery algorithm
is used directly, then we need to estimate Peff coefficients,
where Peff is unknown. By estimating the Doppler taps
of all delay taps independently, the sparse signal recovery
in (20) aims to recover J components from the available
JN components of P. The unknown sparsity of Peff is
converted to a known sparsity of the number of users, J .

B. Pilot Pattern Design

1) Length of Pilot Vector: Sparse signals can be success-
fully recovered if the dictionary elements follow specific crite-
ria [36]. For a sparse signal recovery problem with the sparsity
of s/V , the number U of observations must satisfy U >
s log V . In addition, for CSC-based sparse signal recovery,
the global sparsity s must be approximately (sL/(2p− 1))V ,
where sL is the local sparsity, and p is the length of the local
dictionary vector [33]. For the SP algorithm to recover 2s
estimates in each iteration, we should have rank(P †) ≥ 2s.
To attain the maximum spectral efficiency, we need to consider
the minimum pilot vector length that can guarantee successful
sparse signal recovery. Considering these conditions and the
requirements for OTFS-SCMA, we state a condition for the
length of the pilot vector in the following lemma.

Lemma 1: For successful channel estimation using the pro-
posed method, the length Lp of pilot vector must satisfy the
following condition:

Lp ≥ max {2J, �cJ log(J(2kν + 1))� − 2kν , kν + 1} (24)

with [Lp]K = 0

where c is a constant satisfying 1 < c ≤ 2.
Proof: The proof is given in APPENDIX A.

2) Pilot Vector Sequence: The design of the pilot sequence
plays a crucial role in successful channel estimation. For
compressive-sensing-based techniques, the primary factor of
concern is the cross-correlation among the columns of sensing
matrix (dictionary) P. In that regard, one important figure
of merit is the mutual coherence of P which is defined as
μ(P) = maxi�=j |pH

(i)p(j)| for any two columns p(i) and
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p(j); and ||p(i)||2 = 1, ∀ i. As μ(P) becomes smaller,
the probability of successful sparse signal recovery increases.
Hence, we consider the following optimization problem to
design P:

min μ(P) = min max
i�=j

|pH
(i)p(j)|

s.t. ||p(i)||2 = 1, 1 ≤ i, j ≤ JN (25)

To carry out the optimization in (25), we consider the method
of differential evolution [21]. Differential evolution is a robust
evolutionary algorithm to solve arbitrary optimization prob-
lems with real-valued parameters. The problem (25) involves
complex variables which are converted to the equivalent real
ones of twice lengths to apply differential evolution. Specific to
the CSC model, there exists a lower bound for μ(P) depending
on the local dictionary’s dimensions [33]. Considering the
local dictionary PL shown in Fig. 5, we have PL ∈ CLp×J

and the condition is obtained as
√

J−1
J(2Lp−1)−1 ≤ μ(P) < 1.

We consider the particular case of J = 6 and Lp = 20 to
verify the effectiveness of the proposed dictionary learning
method based on the mutual coherence condition. The resultant
dictionary optimized by differential evolution is referred to
as ‘Learned pilot’ and it has μ(P) ≈ 0.36. Note that for
this case, we have 0.15 ≤ μ(P) < 1 which shows that
‘Learned pilot’ yields a mutual coherence value close to
its lower limit. Additionally, we analyze the following pilot
sequences: (1) ‘Gaussian pilot’ where the pilot symbols are
i.i.d. complex Gaussian, (2) ‘Zadoff-Chu pilot’ where pu[i] =
exp

(
−j πri2

Lp

)
for the uth user with r being the order of the

sequence and for each user, it is selected as a distinct prime
number with 1 ≤ r < Lp and 0 ≤ i < Lp, and (3) ‘SCMA
cw pilot’ where we consider SCMA codewords as the pilot
vectors.

Fig. 6 shows the histogram of the cross-correlation of the
columns of P for the corresponding pilot vectors. Observe that
the mutual coherence values for ‘Learned pilot’, ‘Gaussian
pilot’, ‘Zadoff-Chu pilot’, and ‘SCMA cw pilot’ are 0.36,
0.5, 0.78, and 0.86 respectively. Moreover, the spread of
the cross-correlation of the columns of P is limited to a
small range for ‘Learned pilot’, compared to those of the
other pilot sequences. For ‘SCMA cw pilot’, the spread
of cross-correlation to higher values is even more. This
analysis justifies the use of optimized dictionary for channel
estimation.

C. Rectangular Pulse Shaping

So far, ideal pulse shaping has been assumed for the pro-
posed channel estimation technique. When rectangular pulses
replace the ideal ones, the changes are reflected only through
an additional multiplicative phase factor with the channel
coefficients [22], as shown below:

yu[k, l]

=
N−1∑
k′=0

M−1∑
l′=0

β(k′,l′)[k, l]hu[k′, l′]xu [[k − k′]N , [l−l′]M ] (26)

Fig. 6. Histogram of cross-correlation of columns of P.

where

β(k′,l′)[k, l]=

{
(N−1

N )ej2π k′
N ( l−l′

M )e−j2π(
[k−k′]N

N ) 0 ≤ l < l′

ej2π k′
N ( l−l′

M ) l′≤ l < M

(27)

Observe that neither the sparsity nor the circulant block
property is affected by the rectangular pulses. Therefore,
the method proposed for ideal pulse shaping can be easily
extended to rectangular pulse shaping by considering the phase
factor matrix Υl ∈ CN×NM defined as

Υl[n, m] = β(k′,l′)[k, l], for n = k, m = Nl′ + k′. (28)

Now (26) can be written in vector form as

yu,l =(Pu � Υl)hu,l−l̄, for 0 ≤ l − l̄ ≤ lτ , l = l̄ + l − l̄.

(29)

Note that Υl depends only on N and M and is independent of
a user’s channel conditions. Therefore, the proposed method
can be directly applied in the case of rectangular pulse,
by replacing Pu by (Pu � Υl) for all users in (15).

D. Complexity Analysis

The independent delay tap processing and the reduced
search range in the Doppler domain result in remarkable
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TABLE I

COMPLEXITY ANALYSIS OF ALGORITHM 1

dimension reduction for all matrix operations of Algorithm 1.
The complexity is analyzed with reference to the general
SP algorithm, given in Section IV.C of [20]. For the sparse
signal recovery problem with a sensing matrix of dimension
U × V and sparsity of s, the SP algorithm’s complexity
is O(U(V + s2)) per iteration. The number of iterations
needed for convergence is O(log s). Here we have U =
N, V = J(2kν + 1), and s = J . In TABLE I, Mdom �
M , which is the number of dominant delay taps in the
channel.

Remark 2: Channel estimation based on the sparse sig-
nal recovery algorithms using one complete OTFS frame of
full-length pilot vector has a sensing matrix of dimension
NM × JNM . This non-embedded scheme results in higher
complexity than Algorithm 1, in terms of the number of
complex multiplications.

E. Cramer-Rao Lower Bound

The Cramer-Rao lower bound (CRLB) for the estimates
of the channel coefficients is presented here. We consider
the pilot symbols’ arrangement as discussed in Section III-A.
Writing (19) in matrix form, we get⎡

⎢⎢⎢⎣
yl̄

yl̄+1
...

yM−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

P 0 · · · 0
0 P · · · 0
... · · · . . .

...
0 0 · · · P

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

h0

h1

...
hM−1−l̄

⎤
⎥⎥⎥⎦ (30)

Writing (30) compactly, we get

yp = Pdiagh (31)

where yp = vec (Yp) ∈ C
N(M−l̄)×1 contains the received

symbols in the pilot observation region, Pdiag = diag (P) ∈
C

N(M−l̄)×JN(M−l̄), and h ∈ C
JN(M−l̄) contains the channel

coefficients of all users. As the number of multi paths of each
user is P , h contains JP non-zero elements. Suppose the
location of these non-zeros are c1, c2, . . . , cJP . For deriving
the CRLB, we assume that these locations are known. Let
the eth non-zero element of h be denoted by θe (cth

e element
of h). The parameter vector is given by θ = [θ1, θ2, . . . , θJP ]T

which are to be estimated. Let pdiag [n, c] denote the element
in the nth row and the cth column of Pdiag and yp

n denote the
nth element of yp. Then considering the AWGN at the BS,
(31) can be alternatively written as

yp
n = sn + wn, n = 1, 2, . . . , N(M − l̄)

where wn ∼ CN
(
0, σ2

)
and sn is given by

sn =
JP∑
e=1

pdiag [n, ce] θe. (32)

For rectangular pulses, we have

sn =
JP∑
e=1

pdiag [n, ce] γ [n, ce] θe (33)

where γ [n, ce] is given by β(k′,l′)[k, l], for n = Nl+k+1 and
ce = J(Nl′ + k′) + 1. As per CRLB, the variance of any
unbiased estimator θ̂i is lower bounded as [37]

var
(
θ̂i

)
≥
[
I−1 (θ)

]
ii

(34)

where I (θ) is the JP ×JP Fisher information matrix whose
element in the ith row and the jth column is given by

[I (θ)]ij =
1
σ2

N(M−l̄)∑
n=1

{
∂sn

∂θi

∂s∗n
∂θj

+
∂s∗n
∂θi

∂sn

∂θj

}
. (35)

From (32) and (33), it can be easily found that

∂sn

∂θi
=

{
pdiag [n, ci] for ideal pulse

pdiag [n, ci] γ [n, ci] for rectangular pulse
(36)

Similarly ∂s∗
n

∂θi
can be found out. From (35), the Fisher

information matrix can be found out and then by using (34),
CRLB for the estimates of the channel coefficients can
be obtained. Finally, for the normalized mean square
error (NMSE) analysis, we consider the average normalized

CRLB:

{
JP∑
i=1

[
I−1 (θ)

]
ii

}
/ ‖θ‖2

2.

V. RESULTS AND DISCUSSIONS

This section presents the simulation results for the pro-
posed method of channel estimation and analyzes them. The
OTFS-SCMA scheme uses an N × M DD grid of different
dimensions and a basic (J = 6, K = 4) SCMA system with
150% overloading factor. Scheme-1 is considered where the
K × 1 codewords are placed along the Doppler axis. The
codebook design follows the technique described in [38]. The
channel conditions of all users are assumed such that only
a single Doppler value is associated with a delay path [22].
Integer delay and Doppler taps are assumed in simulations.
Note that the proposed method applies to the fractional cases
also, albeit with an increase in complexity. For the data
detection in uplink, we use the powerful single-stage MPA [6].
The average pilot and data SNRs are denoted by SNRp =
E(|pu,i|2)

σ2 and SNRd =
E(|cu

n,i|2)
σ2 respectively, where σ2 is the

variance of AWGN. The simulation observations are presented
in terms of various performance indicators like BER, spectral
efficiency, NMSE, and complexity analysis. The proposed pilot
symbols are ‘Learned pilot’ as discussed in Section IV-B.2.
We extend the methods of OTFS-OMA in [8] and [14] to
OTFS-SCMA for the comparison purpose and are referred
to as ‘QAM-pilot’ and ‘MSP’ (modified subspace pursuit),
respectively. We assume that all users transmit at the same
power.2

2An exciting future research direction is to design an optimal power
allocation strategy by considering resource management, codebook design,
and user grouping.
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Fig. 7. OTFS-SCMA uplink channel estimation using proposed method
(Γ32,32 ; J = 6, K = 4; P = 2).

A. BER Analysis

For an initial investigation, we consider a DD grid with
N = M = 32. The number of multi-paths is P = 2. The
sub-carrier spacing is �f = 15 KHz. The delay values are
taken as τi = (0, 1.04, 2.08, 3.12, 4.16, 5.20, 6.25, 7.29)μs and
the maximum delay tap lτ = 4 [39]. For each delay tap
li, the Doppler shift is generated using Jakes’ formula νi =
νmaxcosθi, for θi ∼ U (−π, π). The maximum Doppler shift is
given by νmax = fcvu

(3×108) , where vu is the user’s speed in m/s.
Moreover, we take kν = �νmaxNT �. We have kν = 1 and
kν = 4 for vu = 120 Kmph and 500 Kmph, respectively.
As per Lemma 1, we take Lp = 12 and Lp = 20 for the
respective velocities.

Fig. 7(a) shows the BER for three different SNRp values
of 30, 35, and 40 dB. As expected, when SNRp increases,
the BER also improves. At SNRp = 40 dB, the BER nearly
approaches to that of the perfect CE. The BER performance
for different user velocities at SNRp = 40 dB are presented
in Fig. 7(b). Observe that the user velocity has no significant
impact on the channel estimation performance. Since the guard
band is allocated considering the maximum Doppler spread
among all the users, the pilot-data interference is avoided for
any user velocity.

Fig. 8. BER of proposed and conventional methods.

In Fig. 8, we compare the BER performance of the proposed
method to those of ‘QAM-pilot’ and ‘MSP’. The results are
presented for SNRp = 40 dB. Observe that the proposed
method gives a slightly better BER over ‘QAM-pilot’. The
technique of ‘QAM-pilot’ [8] uses a single QAM-pilot symbol
and a thresholding-based method for detecting the paths and
estimating the channel coefficients one at a time in a scalar
form. On the other hand, the proposed scheme is devised based
on a sparse signal recovery algorithm with non-orthogonal
pilot vectors, where the channel coefficients at a particular
delay tap are estimated as a vector. In contrast to ‘MSP’ [14],
which is based on sparse signal recovery, we use sparse
pilot vectors which are non-orthogonal and embedded in the
data frame, rather than reserving a frame dedicated for the
orthogonal pilot vectors. The comparison in Fig. 8 shows that
the proposed method of channel estimation gives an improved
BER performance over ‘MSP’.

The sparse signal recovery of ‘MSP’ considers the chan-
nel coefficients of all users as a single vector. Since JP
coefficients have to be estimated in each iteration, the path
missed for one user will result in an additional path detected
for another user to maintain the sparsity. Two users will
be disturbed by a single path detection error, affecting the
BER performance. The initial estimate is taken sequentially
in the proposed method, considering one path per user.
Estimating the channel coefficients at each delay path is
considered an independent sparse signal recovery problem.
Hence, all users and delay paths are given equal preference in
channel estimation, reducing the probability of error in path
detection.

B. Guard-Band Overhead and Spectral Efficiency Analysis

Low guard band overhead is a desirable feature for any
channel estimation technique. Since the proposed method
uses an embedded pilot-aided structure, we compare its
overhead with that of ‘QAM-pilot’ [8] as displayed in
TABLE II. The overheads is presented for different user
speeds considering the EVA propagation model given in
TABLE III.

Observe from TABLE II that the guard band overhead for
the proposed method is independent of the number J of users.
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TABLE II

GUARD BAND OVERHEAD FOR UPLINK

TABLE III

OTFS PARAMETERS FOR EVA CHANNEL MODEL

Moreover, the overhead for the proposed method is less than
that of ‘QAM-pilot’ [8]. The contrast in the overheads of the
two methods increases as the user speed increases. In the case
of full guard band, the proposed method offers distinctively
lower overhead than ‘QAM-pilot’.

The reduction in guard band overhead can also be inter-
preted in terms of spectral efficiency (SE). We analyze the
effective SE (SEeff) of the proposed OTFS-SCMA uplink chan-
nel estimation following [15]. Since MPA is a non-linear detec-
tor, instead of directly using SINR for the spectral efficiency,
SEeff is formulated as the number of bits that can be correctly
decoded and is expressed as SEeff = (1−BER)S. The nominal

SE is given as S = Number of data bits transmitted(Nb)
Number of resources(NRE)

. Note that in

the ideal case (BER=0), we have SEeff = S. For an uncoded
SCMA system, we have S =

(
J
K

)
log2(|A|). Extending this

concept to the channel estimation of uncoded OTFS-SCMA
uplink system, for QAM modulation (log2(|A|) = 2), we get

S =
2Nd

NM
; where Nd = (NM − Ng)

J

K
(37)

where Ng is the number of REs reserved for channel estima-
tion. Hence the effective SE for the OTFS-SCMA uplink case
becomes

SEeff = (1 − BER)
2(NM − Ng)

NM

J

K
. (38)

Here, Ng depends on the channel estimation technique
adopted, whose generalized expression is given as the footer
of TABLE II. For perfect CSI, we have Ng = 0, which
gives the upper bound on SEeff. Fig. 9 presents SEeff for the
proposed method and the existing methods. The parameters
used in Fig. 9 are the same as those of the BER comparison
in Fig. 8. Based on (38), for an overloading factor of 150%
and |A| = 4, we have SEeff ≈ 3 bits/s/Hz. Observe from
Fig. 9 that the proposed channel estimation technique gives
SEeff ≈ 2.75 bits/s/Hz at SNRp = 40 dB. The non-orthogonal

Fig. 9. Effective spectral efficiency in uplink.

pilot pattern improves SEeff by almost 1 bits/s/Hz compared to
the orthogonal ‘QAM-pilot’ technique [8]. The method ‘MSP’
in [14] has a dedicated pilot frame for channel estimation
alone, and a guard band is not required. Hence, the overhead
is always 50% irrespective of the channel conditions. Corre-
spondingly, SEeff ≈ 1.5 bits/s/Hz at SNRp = 40 dB. Note that
for a practical EVA channel model, the proposed method gives
even higher SEeff advantage as observed from the guard band
overhead presented in TABLE II.

C. Pilot Analysis

1) Length Analysis: For the proposed method to be suc-
cessful, the pilot vectors must have a minimum length Lp

satisfying the condition given in Lemma 1. We consider
M = 512, N = 128, SNRd = 20 dB, SNRp = 40 dB, and
EVA model parameters of TABLE III for the analysis of the
pilot vector’s length. Fig. 10 shows the probability of success,
defined as the ratio of the number of trials that resulted in
successful sparse signal recovery to the total number of trials
for different lengths of pilot vectors. Observe that the choice of
Lp influences the successful sparse signal recovery. Depending
on the Doppler spread of the channel, the lower bound of
Lp also decreases. However, a minimum of Lp = 12 is
to be maintained irrespective of the channel conditions. The
channel estimation error can be analyzed by calculating the

NMSE, which is given by 10 log10

(
E(||h−ĥ||22)

E(||h||22)
)

dB. We plot
the NMSE values against the pilot lengths in Fig. 11. For
the successful channel estimation, even at a maximum user
velocity of 500 Kmph, we can select Lp = 20. Further,
in Fig. 11, we consider a user velocity of 500 Kmph and
other parameters as given in the figure. It is evident that to
achieve a tolerable NMSE, a minimum pilot vector length of
20 is necessary. For Lp ≥ 20, the NMSE remains almost
constant while the guard band overhead increases by around
2.5%. Lemma 1 presents the minimum length Lp of the pilot
vector needed for successful sparse signal recovery. Once it is
maintained, we attain the minimum NMSE. Further increase
in Lp will not give any advantage to sparse signal recovery.
Also, from the CRLB curve, it is clear that for Lp ≥ 20,
the proposed method performs close to the lower bound
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Fig. 10. Probability of success for different user velocities.

Fig. 11. Optimal pilot vector length of proposed method.

specified by CRLB. The simulation results shown in Fig. 10
and Fig. 11 substantiate Lemma 1 and its proof given in
APPENDIX A.

2) Pattern Analysis: In Fig. 12, we analyze the NMSE
for the pilot-data arrangement shown in Fig. 3, using dif-
ferent types of pilot vectors as discussed in Section IV-B.2.
Considering kν = 16 � 128, we take Lp = 20 as per
Lemma 1. The differences in NMSE for these various pilot
vectors follow the mutual coherence analysis presented in
Section IV-B.2. The proposed ‘Learned pilot’ provides a
lower NMSE than ‘Gaussian-pilot’, as observed in Fig. 12.
‘Zadoff-Chu pilot’ gives a poor performance compared to
‘Learned pilot’ and ‘Gaussian-pilot’. The NMSE values for
‘SCMA cw pilot’ are significantly higher than those of other
sequences. The ‘Random-SP init’ curve shows NMSE results
when the initialization (line 8 of Algorithm 1) is done
randomly. By taking the initial estimates sequentially, we can
reduce the estimation error. Also, the NMSE performance
using non-sparse i.i.d Gaussian random vectors is shown
by the ‘Non-sparse Gaussian’ curve. The slight performance
improvement of the sparse pilot vector over the non-sparse
one is attributed to minimal multi-user interference in the pilot
region.

Fig. 12. NMSE for various pilot vectors.

Fig. 13. NMSE of channel estimation in uplink.

D. NMSE Comparison With Existing Methods

In Fig. 13, we compare the NMSE of different channel
estimation techniques. Considering the parameters as given
in the figure, we have kν � 16 and hence Lp = 12 as
per Lemma 1. Observe the significant difference between the
NMSE values for the sparse signal recovery-based techniques
and ‘QAM-pilot’. The proposed method and ‘MSP’ are better
than ‘QAM-pilot’ in terms of NMSE since they are based on
estimation of h as a vector. Moreover, the proposed method
gives a slightly better NMSE than ‘MSP’. This improvement
may be attributed to the CSC model acting independently
on each delay tap and the sequential initial estimate method
giving equal preference to all users. For ‘QAM-pilot’ of [8],
an error floor occurs at higher SNRp. The error floor issue
arises as this method detects a path by thresholding the
components scalar-wise and then evaluating the corresponding
channel coefficient rather than estimating h as a vector. The
CRLB derived in Section IV-E is also shown in Fig. 13.

E. Complexity Analysis

Fig. 14 highlights the complexity of the proposed CSC
modeling in terms of the number of complex multiplications.
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Fig. 14. Complexity analysis of proposed method.

Fig. 15. Average iterations for convergence of Algorithm 1.

The legend ‘OMP’ refers to the direct OMP method discussed
in [14]. Observe from TABLE I and Fig. 14 that the proposed
method is superior in two aspects of complexity: (i) For a
given DD grid of dimension N and M , the proposed method’s
complexity depends only on the maximum Doppler kν of the
channel. It is observed that up to kν + 1 ≈ N

2 , the proposed
method offers a noticeable complexity reduction; (ii) The
complexity of the proposed method is completely independent
of the delay dimension M , since each delay path is processed
independently. On the other hand, the conventional sparse
signal recovery methods always have a constant maximum
complexity independent of the Doppler conditions of the
channel. Fig. 15 presents the analysis of the average number
of iterations required for the convergence of Algorithm 1 for
different values of the number P of multipaths. Observe that
the number of iterations required is independent of P . The
legends ‘Prop-ideal’ and ‘Prop-sim’ show the average number
of iterations required for the proposed method as per TABLE I
and the simulations respectively. These two curves exhibit high
correlation and remain at the same level as P increases. On the
other hand, for ‘OMP’ and ‘MSP’ algorithms, the number of
iterations increases with P .

VI. CONCLUSION

In this paper, we presented a channel estimation technique
for OTFS-SCMA based on CSC. The proposed method consid-
ers sparse vectors of optimum length as pilots, which follow
the same sparsity pattern of the SCMA data codewords of
all users. The sparse pilot vectors are designed such that the
mutual coherence of the corresponding dictionary is mini-
mized. The non-orthogonal arrangement of the pilot vectors
ensures that the guard band overhead is minimal and does not
escalate with the number of users. Moreover, the proposed
CSC model converts the overall problem to the channel
estimation at each delay tap. This reduction of the dimension-
ality, in turn, lowers the complexity of the sparse recovery
algorithm significantly. Finally, impressive BER performances
and spectral efficiency are obtained, maintaining a reduced
guard band overhead and complexity. These results corroborate
the proposed method’s suitability for a high Doppler uplink
scenario.

APPENDIX A
PROOF OF LEMMA 1

Consider the channel estimation problem defined in (19):

yl = Phl−l̄ for l = l̄, l̄ + 1, . . . , M − 1 (39)

where hl−l̄ is the sparse signal to be recovered. The minimum
value of Lp is derived considering the following points:

1) For Algorithm 1, the maximum possible number of
columns in P(S̃(i)) is 2J . For any matrix A, we have
A† = (AHA)−1AH and A†y results in a solution
having the number of non-zero elements as rank(A†).
Since P†

(S̃(i))
yl (line 13 of Algorithm 1) has to recover

2J elements in each iteration the following condition
must be satisfied:

rank(P†
(S̃(i))

) ≥ 2J ⇒ Lp ≥ 2J. (40)

2) Successful sparse signal recovery is guaranteed if a
minimum number of observations are available, as dis-
cussed in [36] and [40]. In general, for a signal having
sparsity of (s/V ), for successful recovery, the number
U of observations must satisfy U ≥ �cs log V � with
1 < c ≤ 2. Specific to (39), U is limited by the
Doppler spread of the channel. Assuming the presence
of maximum Doppler paths in the channel, we have
U = Lp+2kν and for successful recovery, the following
condition must be satisfied:

Lp ≥ �cJ log(J(2kν + 1))� − 2kν . (41)

For the EVA parameters of TABLE III (kν = 16) with
the minimum Lp = 12 given by (40), we have from (41):
c = Lp+2kν

J log(J(2kν+1)) ≈ 1.4. Thus Lp = 12 satisfies the
condition in (41). However, if the maximum Doppler
paths are present in the channel, then a higher value
of Lp is desirable as observed in the simulation results
shown in Fig. 10.

3) For the CSC problem, the global sparsity s and the local
sparsity sL are related as s ≈ (sL/(2p− 1))V , where p
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is the length of a dictionary vector and V is the length of
the sparse signal to be recovered [33]. Specific to (39),
we have a fixed sparsity s = J , pilot vector length Lp

corresponds to p, and V is J(2kν + 1). Considering
the uniform distribution of the Doppler taps, we take
sL = 1. The sparsity relation can be expressed as

J ≈ 1
2Lp − 1

J(2kν + 1) ⇒ Lp ≈ kν + 1. (42)

For EVA parameters, we get Lp ≈ 17.
4) Since the pilot vectors follow the same sparsity struc-

ture of the codewords with length K , we must have
[Lp]K = 0.

To minimize the guard band overhead, Lp is chosen as the
nearest integer satisfying the above conditions:

Lp ≥ max {2J, �cJ log(J(2kν + 1))� − 2kν , kν + 1} (43)

with [Lp]K = 0 and 1 < c ≤ 2

REFERENCES

[1] R. Hadani and A. Monk, “OTFS: A new generation of modulation
addressing the challenges of 5G,” 2018, arXiv:1802.02623.

[2] G. D. Surabhi, R. M. Augustine, and A. Chockalingam, “Multiple
access in the delay-Doppler domain using OTFS modulation,” 2019,
arXiv:1902.03415.

[3] V. Khammammetti and S. K. Mohammed, “OTFS-based multiple-access
in high Doppler and delay spread wireless channels,” IEEE Wireless
Commun. Lett., vol. 8, no. 2, pp. 528–531, Apr. 2019.

[4] Z. Ding, R. Schober, P. Fan, and H. V. Poor, “OTFS-NOMA:
An efficient approach for exploiting heterogenous user mobility
profiles,” IEEE Trans. Commun., vol. 67, no. 11, pp. 7950–7965,
Nov. 2019.

[5] A. Chatterjee, V. Rangamgari, S. Tiwari, and S. S. Das, “Non orthogonal
multiple access with orthogonal time frequency space signal transmis-
sion,” 2020, arXiv:2003.06387.

[6] K. Deka, A. Thomas, and S. Sharma, “OTFS-SCMA: A code-domain
NOMA approach for orthogonal time frequency space modulation,”
IEEE Trans. Commun., vol. 69, no. 8, pp. 5043–5058, Aug. 2021.

[7] R. Hadani and S. Rakib, “OTFS methods of data channel characteriza-
tion and uses thereof,” U.S. Patent 9 444 514 B2, Sep. 13, 2016.

[8] P. Raviteja, K. T. Phan, and Y. Hong, “Embedded pilot-aided channel
estimation for OTFS in Delay–Doppler channels,” IEEE Trans. Veh.
Technol., vol. 68, no. 5, pp. 4906–4917, May 2019.

[9] L. Zhao, W.-J. Gao, and W. Guo, “Sparse Bayesian learning of delay-
Doppler channel for OTFS system,” IEEE Commun. Lett., vol. 24,
no. 12, pp. 2766–2769, Dec. 2020.

[10] M. K. Ramachandran and A. Chockalingam, “MIMO-OTFS in high-
Doppler fading channels: Signal detection and channel estimation,”
in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2018,
pp. 206–212.

[11] M. Li, S. Zhang, F. Gao, P. Fan, and O. A. Dobre, “A new path division
multiple access for the massive MIMO-OTFS networks,” IEEE J. Sel.
Areas Commun., vol. 39, no. 4, pp. 903–918, Apr. 2021.

[12] W. Shen, L. Dai, J. An, P. Fan, and R. W. Heath, Jr., “Chan-
nel estimation for orthogonal time frequency space (OTFS) massive
MIMO,” IEEE Trans. Signal Process., vol. 67, no. 16, pp. 4204–4217,
Aug. 2019.

[13] Y. Liu, S. Zhang, F. Gao, J. Ma, and X. Wang, “Uplink-aided high
mobility downlink channel estimation over massive MIMO-OTFS sys-
tem,” IEEE J. Sel. Areas Commun., vol. 38, no. 9, pp. 1994–2009,
Sep. 2020.

[14] O. K. Rasheed, G. D. Surabhi, and A. Chockalingam, “Sparse delay-
Doppler channel estimation in rapidly time-varying channels for multi-
user OTFS on the uplink,” in Proc. IEEE 91st Veh. Technol. Conf.
(VTC-Spring), May 2020, pp. 4–8.

[15] A. B. Sergienko and V. P. Klimentyev, “Spectral efficiency of uplink
SCMA system with CSI estimation,” in Proc. 20th Conf. Open Innov.
Assoc. (FRUCT), Apr. 2017, pp. 391–397.

[16] A. Bayesteh, E. Yi, H. Nikopour, and H. Baligh, “Blind detection
of SCMA for uplink grant-free multiple-access,” in Proc. 11th Int.
Symp. Wireless Commun. Syst. (ISWCS), Barcelona, Spain, Aug. 2014,
pp. 853–857.

[17] Y. Wang, S. Zhou, L. Xiao, X. Zhang, and J. Lian, “Sparse Bayesian
learning based user detection and channel estimation for SCMA uplink
systems,” in Proc. Int. Conf. Wireless Commun. Signal Process. (WCSP),
Oct. 2015, pp. 1–5.

[18] E. Heo, N. Kim, and H. Park, “Sparse structure-based channel estimation
for uplink SCMA system,” IEEE Trans. Veh. Technol., vol. 66, no. 9,
pp. 8037–8046, Sep. 2017.

[19] Y. Ge, Q. Deng, P. C. Ching, and Z. Ding, “OTFS signaling for
uplink NOMA of heterogeneous mobility users,” IEEE Trans. Commun.,
vol. 69, no. 5, pp. 3147–3161, May 2021.

[20] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sens-
ing signal reconstruction,” IEEE Trans. Inf. Theory, vol. 55, no. 5,
pp. 2230–2249, May 2009.

[21] K. Price, R. M. Storm, and J. Lampinen, Differential Evolution. Berlin,
Germany: Springer, 2005.

[22] P. Raviteja, K. T. Phan, Y. Hong, and E. Viterbo, “Interference cancella-
tion and iterative detection for orthogonal time frequency space modu-
lation,” IEEE Trans. Wireless Commun., vol. 17, no. 10, pp. 6501–6515,
Oct. 2018.

[23] P. Raviteja, Y. Hong, E. Viterbo, and E. Biglieri, “Practical pulse-shaping
waveforms for reduced-cyclic-prefix OTFS,” IEEE Trans. Veh. Tech.,
vol. 68, no. 1, pp. 957–961, Jan. 2019.

[24] H. Nikopour and H. Baligh, “Sparse code multiple access,” in Proc.
IEEE 24th Annu. Int. Symp. Pers., Indoor, Mobile Radio Commun.
(PIMRC), Sep. 2013, pp. 332–336.

[25] M. Taherzadeh, H. Nikopour, A. Bayesteh, and H. Baligh, “SCMA
codebook design,” in Proc. IEEE 80th Veh. Technol. Conf. (VTC-Fall),
Sep. 2014, pp. 1–5.

[26] F. Wei and W. Chen, “Low complexity iterative receiver design for
sparse code multiple access,” IEEE Trans. Commun., vol. 65, no. 2,
pp. 621–634, Feb. 2017.

[27] C. Zhang, Y. Luo, and Y. Chen, “A low-complexity SCMA detector
based on discretization,” IEEE Trans. Wireless Commun., vol. 17, no. 4,
pp. 2333–2345, Apr. 2018.

[28] 3GPP. (2010). Evolved Universal Terrestrial Radio Access (E-UTRA);
Base Station (BS) Radio Transmission and Reception (Release
9). [Online]. Available: https://www.3gpp.org/ftp/Specs/archive/36_
series/36.104/

[29] M. Lewicki and T. Sejnowski, “Coding time-varying signals using
sparse, shift-invariant representations,” in Proc. NIPS. Cambridge, MA,
USA: MIT Press, 1998, pp. 730–736.

[30] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvo-
lutional networks,” in Proc. IEEE CVPR, San Francisco, CA, USA,
Jun. 2010, pp. 2528–2535.

[31] H. Bristow, A. Eriksson, and S. Lucey, “Fast convolutional sparse
coding,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2013,
pp. 391–398.

[32] B. Wohlberg, “Efficient convolutional sparse coding,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2014,
pp. 7173–7177.

[33] V. Papyan, J. Sulam, and M. Elad, “Working locally thinking
globally: Theoretical guarantees for convolutional sparse coding,”
IEEE Trans. Signal Process., vol. 65, no. 21, pp. 5687–5701,
Nov. 2017.

[34] E. Zisselman, J. Sulam, and M. Elad, “A local block coordinate descent
algorithm for the CSC model,” in Proc. IEEE CVPR, Long Beach, CA,
USA, Jun. 2019, pp. 8200–8209.

[35] E. Plaut and R. Giryes, “A greedy approach to �0,∞-based convolutional
sparse coding,” SIAM J. Imag. Sci., vol. 12, no. 1, pp. 186–210,
Jan. 2019.

[36] Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Appli-
cations. Cambridge, U.K.: Cambridge Univ. Press, 2012.

[37] S. Kay, Fundamentals of Statistical Processing: Estimation Theory,
vol. 1. London, U.K.: Pearson, 1993.

[38] K. Deka, M. Priyadarsini, S. Sharma, and B. Beferull-Lozano,
“Design of SCMA codebooks using differential evolution,” in Proc.
IEEE Int. Conf. Commun. Workshops (ICC Workshops), Jun. 2020,
pp. 1–7.

[39] G. D. Surabhi and A. Chockalingam, “Low-complexity linear equal-
ization for OTFS modulation,” IEEE Commun. Lett., vol. 24, no. 2,
pp. 330–334, Feb. 2020.

[40] E. C. Marques, N. Maciel, L. Naviner, H. Cai, and J. Yang, “A review of
sparse recovery algorithms,” IEEE Access, vol. 7, pp. 1300–1322, 2019.

Authorized licensed use limited to: Indian Institute Of Technology (Banaras Hindu University) Varanasi. Downloaded on December 09,2022 at 06:57:29 UTC from IEEE Xplore.  Restrictions apply. 



THOMAS et al.: CONVOLUTIONAL SPARSE CODING BASED CHANNEL ESTIMATION FOR OTFS-SCMA IN UPLINK 5257

Anna Thomas (Student Member, IEEE) received
the B.Tech. degree from the Amal Jyothi Col-
lege of Engineering, Kottayam, India, in 2008,
and the M.Tech. degree in signal processing
from the Rajagiri School of Engineering, Cochin,
India, in 2014. She is currently pursuing the
Ph.D. degree with the School of Electrical Sci-
ences, Indian Institute of Technology Goa, India.
From 2008 to 2011, she worked as a Software
Engineer with QBurst Technologies, Thiruvanantha-
puram, India. From 2014 to 2018, she worked as an

Assistant Professor with Kannur University and Kerala Technological Uni-
versity, Thiruvananthapuram. Her research interests include signal processing
for future wireless communications, in the area of orthogonal time frequency
space modulation, sparse code multiple access; and coding and information
theory applications for the same.

Kuntal Deka received the Ph.D. degree from the
Indian Institute of Technology Guwahati, India,
in 2016. From 2015 to 2018, he was an Assis-
tant Professor with the Indian Institute of Informa-
tion Technology Guwahati and from 2018 to 2021,
he was an Assistant Professor with the School of
Electrical Sciences, Indian Institute of Technology
Goa, India. He is currently working as an Assistant
Professor at the Department of EEE, Indian Institute
of Technology Guwahati. His research interests lie
in the areas of error correcting codes, modulation,

and multiple access techniques for modern wireless communication systems.

Patchava Raviteja received the M.E. degree in
telecommunications from the Indian Institute of
Science, Bengaluru, India, in 2014, and the Ph.D.
degree from Monash University, Melbourne, Aus-
tralia, in 2019. From 2014 to 2015, he worked at
Qualcomm India Private Ltd., Bengaluru, on WLAN
systems design. From 2019 to 2020, he was a
Post-Doctoral Research Fellow with Monash Univer-
sity. He is currently working as a Senior Engineer at
Qualcomm, Inc., San Diego, CA, USA. His current
research interest includes new waveform designs for

next generation wireless systems. He was a recipient of Prof. S. V. C. Aiya
Medal from the Indian Institute of Science in 2014. He also received the Best
Student Paper Award for his publication at the SPAWC 2018 Conference,
Greece.

Sanjeev Sharma (Senior Member, IEEE) is cur-
rently working as an Assistant Professor at the
Electronics Engineering Department, Indian Institute
of Technology (IIT) (BHU) Varanasi, India. He has
published around 40 journals and conferences in
wireless communications. His research interests lie
in signal processing for wireless communications
and networking, mathematical modeling, simulation,
design, and analysis of wireless systems.

Authorized licensed use limited to: Indian Institute Of Technology (Banaras Hindu University) Varanasi. Downloaded on December 09,2022 at 06:57:29 UTC from IEEE Xplore.  Restrictions apply. 


