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1.1 Introduction 

The major pursuit of condensed matter physics is to find out the new phases of matter to 

keep the perpetual progress and developments in electronic devices. According to the band 

theory of solids, conventionally, three types of materials exist; metal, semiconductor and 

insulators. These three can be classified on the basis of bandgap, and a simple picture of band 

diagram can be seen in figure 1.1, where conduction band and valance band is associated 

with the upper and lower energy states, respectively. The size of the energy gap between the 

conduction band and valance band governs the nature of the material, whether it is conductor, 

insulator or semiconductor. In conductors, the conduction band and valance band are 

overlapped. Therefore, the valance electrons can move freely in the conduction band and 

participate in conduction. In insulators, the conduction band and valance band is far away 

from each other (bandgap > 5eV), and this gap prevents electrons from participating in 

conduction. Semiconductors have the intermediate properties of conductors and insulators.   

 

Figure 1.1: Band diagram for metal, semiconductor and insulator 
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The discovery of the Quantum Hall Effect introduces a new state of quantum matter that 

possesses a conducting surface state with the existence of a bulk insulating phase known as 

the Topological Insulator[1], [2]. Topological Insulators have grabbed a lot of interest of the 

science fraternity because it may serve as a platform for fundamental physics phenomena and 

potential technological applications such as quantum computing and spintronics [1]. 3D 

topological Insulators lead the gapless conducting surface states (SS), topologically protected 

by Time Reversal symmetry (TRS)[1], [3]. The existence of the coupling of the spin and 

orbital angular momentum of an electron leads to a band inversion phenomenon in TIs[4], 

[5].  Due to spin-orbit coupling (SOC), the spin-momentum are locked perpendicularly since 

the spin-momentum locking at the surface is protected by TRS, which protects the surface 

states from backscattering by nonmagnetic impurities as well as antisite defects[1], [5]. As a 

result, the electrical conduction at the edge and surface becomes robust against backscattering 

which induces a lot of fascinating properties. TIs serve as a platform to the possibility of 

Majorana fermions which are their antiparticles itself and can be used in quantum computing, 

whereas magnetic TIs may induce the magnetic monopoles and exhibit the quantum 

phenomena in the system[1], [2]. There are other intriguing properties like exciton 

condensation, quantum anomalous Hall effect (QAHE), topological Hall effect (THE), 

topological superconductivity, which are favorable for application in quantum computing and 

spintronics devices[6], [7]. It is theoretically established that the topological surface state 

(TSS) of TIs have a linear energy-momentum relation which leads Aharonov-Bohm 

oscillations, weak antilocalization (WAL) effect and quantum conductance fluctuation in the 

system[8], [9]. All of them are associated with the topological surface state (TSS) as well as 

SOC inserts a band inversion at the gamma point ( G ) near Fermi level (Ef). Due to this, 

magnetotransport properties becomes very interesting. Moreover, the linear dispersion on the 



 

25 

 

spin-polarised surface state leads the relativistic Dirac fermions to become relevant. The 

variety of effects can be explored by doping magnetic or nonmagnetic impurity. For example, 

TRS can be destroyed at the Dirac point (DP) by the magnetically doped TIs and make the 

Fermi level tunable. The tunable Fermi level plays an important role to operate the surface 

transport properties. 2D and 3D topological insulators have been predicted theoretically and 

later experimentally realized. To understand topological insulators, it is essential to 

understand the idea of topology. 

1.2 Topology 

Topology is a mathematical study of the properties that remains invariant through smooth 

deformation, twisting and stretching of objects. However, tearing and gluing are not allowed. 

A property that remains invariant is called topological property. Suppose two geometrical 

constructions undergo smooth deformations and transform into one another, called 

topologically equivalent. The basic example of topology is coffee mug and doughnut. The 

coffee mug goes under a smooth deformation and turns into a doughnut which is shown in 

figure 1.2. 

 

Figure 1.2: Schematic representation of topology showing smooth deformation from cup to 

doughnut. 
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However, an apple can’t be deformed into a doughnut. In mathematics, the Gauss-Bonnet 

theorem connects the curvature (geometry) of the surface to their topology and correlates it 

to the genus of the object; 

1

2𝜋
∮ 𝐾. 𝑑𝐴 = 𝑥                                                          (1.1) 

 

Where χ is quantized and associated with the genus g, according to the relation χ = 2-2g. 

g is related to the no. of holes in an object. Geometries that have equal no. of holes are 

topological equivalent. For instance, a coffee mug has g = 1, like a doughnut, while a sphere 

has g = 0; therefore, the doughnut and sphere are topologically distinct. Thus, the two objects 

having a similar value of genus can be smoothly transformed to each other and have the same 

topological properties. 

 

Figure 1.3: The sphere and the doughnut are topologically non-equivalent and have different 

genus numbers. 

 

By the topology theory, one can classify the phases of matter and, particularly, 

characterize the insulators. An insulator is defined by the bandgap between the conduction 

and valance band. Two insulators can be said topologically equivalent if they can be 

deformed into each other by changing their Hamiltonian adiabatically. 

The main feature to specify the state of the matter regarding topological classification is 

defined by the Berry phase. 
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1.3 Berry Phase and Chern number 

In solids, various phenomena can be understood by the Berry phase. In crystalline solids, 

the wave vector K is periodic in the Brillouin zone (BZ). This geometric phase is associated 

with the Bloch wave function |um(K)>, where K denotes momentum in the BZ. Such Berry 

phase can be defined by the varying Bloch function in the BZ. In general, the Berry phase 

may be expressed by the line integral; 

𝐴𝑚(K)  =  i < 𝑢𝑚|Δk|𝑢𝑚 >                                                   (1.2) 

Where, Am is a vector (in term of Bloch wavefunction). The surface integral of Berry 

curvature is; 

                                                      𝐹𝑚(K)  = ∆𝑘 × 𝐴𝑚(K)                                                         (1.3) 

  The total Berry Flux in BZ may be expressed; 

n =  
1

2𝜋
  ∮

BZ
d2k  𝐹𝑚(K)                                                         (1.4) 

Here n is an integer, known as Chern number. The Chern number is a topological 

invariant provided when the Hamiltonian varies smoothly. According to Hasan and Kane, 

when n = 0, an insulator is trivial and if n = 1, it relates to quantum spin hall insulator [1]. A 

trivial insulator has a gapped edge state, but a nontrivial insulator has a gapless helical edge 

state, unlike the trivial Insulator. 

1.4 Time-Reversal Symmetry (TRS) 

We can understand TIs by the concept of order, which is very common in condensed 

matter physics. Generally, the phases of matter such as solid, liquid can be understood in 

terms of symmetry. Landau theory of phase transition explained that these transitions occur 

due to symmetry breaking. In a crystal, translational symmetry is broken, and rotational 

symmetry is broken during the phase transition of liquid. Other complex phases are 

achievable by symmetry braking, such as ferromagnetic (rotational symmetry breaking) and 
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superconducting (broken gauge symmetry). But, the beauty of the topological insulator is the 

preservation of symmetry, and this is the time-reversal symmetry. The topological SS is 

always protected by time-reversal symmetry (TRS). Due to TRS the edge (2D) and surface 

(3D) state of TIs become robust against nonmagnetic impurity or defects; therefore, no 

backscattering occurs in these states. The absence of backscattering at the SS of TIs is a result 

of spin momentum locking. Electrons can move only in the forward direction due to strong 

spin-orbit coupling (SOC), and no spin state is available for backward direction without 

flipping its direction because the spin direction of electrons is linearly bounded with its 

momentum. This property makes TIs attractive, and we can get dissipationless devices and 

other applications too. 

 

Figure 1.4: Schematic diagram of motion of two electrons having opposite spins with 

preservation of TRS in TSS. 

 

1.5 Background of Topological Insulator 

1.5.1 Hall Effect: 

The base of the topological insulator was put at the time of discovery of the Hall effect. 

Edwin Hall discovered the Hall effect in 1879[10]. When a conducting slab or a metal is 
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placed in an electric field, and the magnetic field is applied in the perpendicular direction of 

the electric field, The charge carriers are experienced Lorentz force as well as the electric 

field force. Due to which equal and opposite charges are accumulated on the opposite faces. 

As a result, Voltage is created across the conductor known as Hall voltage (VH), and this 

phenomenon is known as Hall effect. In figure 1.5, the semantic diagram of the Hall setup 

has been shown. With the help of Hall effect, one can determine the carrier concentration and 

also figure out the type of charge carriers. 

Let us consider, n-type semiconductor in figure 1.5. Therefore the charge carriers are 

electron (e-). The electrons are travelled with the velocity v in the perpendicular direction of 

the magnetic field. As a result, the Lorentz force eVB is generated. Where e, the charge of e- 

and B is the magnetic field in the z-direction. Hence, a negative charge accumulated at the 

downward face of the conductor; therefore, the potential difference is developed between the 

bottom and top surface of the slab. 

Due to the application of electric field (EH), a force (eEH) is applied in the upward 

direction on the e- to maintain the equilibrium; 

𝐸𝐻  =  eVB                                                      (1.5) 

𝐸𝐻  =  VB                                                        (1.6) 

The current density (Jx) in the direction of x can be written as;     

Jx =  neV                                                      (1.7) 
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Figure 1.5: Schematic diagram of Hall effect (https://www.physics-and-radio-

electronics.com/electronic-devices-and-circuits/semiconductor/halleffect.html) 

 

Where n is the carrier concentration, hence; 

𝐸𝐻 = 
BJx

𝑛𝑒
                                                     (1.8) 

The Hall coefficient can be defined as; 

𝐸𝐻 = 𝑅𝐻B𝐽𝑥                                                      (1.9) 

 𝑅𝐻 = 
EH

BJx
 ;                                                  (1.10) 

𝑅𝐻  = 
1

𝑛𝑒
                                                          (1.11) 

In the case of n-type semiconductor; 

𝑅𝐻  = - 
1

𝑛𝑒
                                                         (1.12)   

The negative sign indicates that the electric field is developed in negative y-direction 

therefore, the charge carriers are electrons. 

1.5.2 Effect of the magnetic field in 3D system 

On application of high magnetic field in a 3D system, it is observed that very intriguing 

properties are induced in the system, i.e., Quantization of energy level in the form of Landau 
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Level, oscillations in the electrical resistivity (SdH Oscillations) as well as an oscillation in 

magnetization (deHass-Van Alphen Effect) and many more. The appearance of oscillations 

in the resistivity and magnetization is due to the quantization of energy. If the magnetic field 

is applied along the z-direction (Bz), no force is experienced on the e- in the direction of the 

applied magnetic field. Therefore, the motion of e- (in the z-direction) remains unaffected. 

According to the quantum harmonic oscillator, the e- acts as they are free to move in the z-

direction while quantized in x and y-direction. The energy of such e- can be written as; 

𝐸𝑛 = (n + 
1

2
 ) ħωc + 

ħ2𝐾𝑧
2

𝑚𝑒
∗ , where n = 0,1,2,3……            (1.13) 

Where n is the number of landau level and me is the effective mass of e- Kz is the 

momentum vector of e- in z-direction and ωc represents the frequency of cyclotron and can 

be understood as; 

ωc = 
𝑒𝐵𝑧

𝑚𝑒
∗                                                                  (1.14) 

 

Figure 1.6: Energy band diagram for electrons vs wave vector for different Landau levels in 

3D system [https://www.texaspowerfulsmart.com/quantum-wells/chapter-7-1.html]  

 

 

1.5.3 Effect of the magnetic field in 2D system  
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When a 2D system is subjected to XY plane and the magnetic field is applied in the z-

direction. Hence, the e- experienced the force in the XY plane. Therefore, the energy levels 

are quantized and follow the quantum Harmonic oscillator model. The energy of the system 

can be written as; 

𝐸𝑛 = (n + 
1

2
 ) ħωc, where n=0,1,2,3……                 (1.15) 

Where n is the no. of landau level and me is the effective mass of e- Kz is the momentum 

vector of e- in direction, and ωc represents the frequency of cyclotron and can be understood 

as; 

ωc = 
𝑒𝐵𝑧

𝑚𝑒
∗                                                             (1.16) 

1.5.4 Quantum Hall Effects (QHE) 

The birth of the topological insulator is dedicated to the discovery of QHE. In 1980, Von 

Klitzing first observed the QHE, when a 2D system was placed under a strong magnetic field 

and low temperature, then awarded with the novel prize in 1985[1], [11]. The Hall 

conductance was completely quantized, unlike the classical Hall effect. 

σxy = n 
𝑒2

ℎ
                                                     (1.17) 

Where n is an integer and h is the Planck’s constant and e is the charge of the electron. 

This phenomenon can be explained in terms of the quantization of e- motion in the cyclotron 

orbit. Due to this, the energy levels are also quantized in the landau levels. The energy of 

Landau levels can be expressed as; 

𝐸𝑛 = (n + 
1

2
 ) ħωc                                                                           (1.18) 

And                             ωc = 
𝑒𝐵

𝑚
                                                      (1.19) 
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Where n is taken as integer, B is perpendicular magnetic field, and m is the electronic 

cyclotron mass. The Fermi energy lies in between the two Landau levels, and the system 

behaves like an insulator. The Hall conductivity is completely quantized as expressed in the 

equation (1.17), and the platue like behaviour can be seen in figure 1.7. There are some 

intriguing features of QHE that have been listed here. 

1) High magnetic field is required. 

2) TRS is not preserved. 

3) The value of the quantum hall conductance is highly accurate. 

4) Longitudinal resistivity (equivalent conductivity) vanishes. 

 

Figure 1.7: Quantization of energy levels into discrete Landau levels under the applied 

magnetic field (left) and the variation in longitudinal (ρxx) and transverse resistivity (ρxy) with 

applied magnetic field showing QHE. ( https://en.wikipedia.org/wiki/Quantum_Hall_effect) 

The e-s are moving in a quantized closed circular cyclotron orbit inside the system, initiating 

insulating behaviour. At the edge, the e-s are allowed to move in the skipping orbits. 

Therefore, the charge flow at the edge only in a single direction depending on the magnetic 

field direction. These states belonging to the skipping orbits are known as ‘edge states’. 
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Figure 1.8: Skipping orbits at the edge state and cyclotron orbits in bulk in 2D electron gas 

in the presence of the magnetic field.   

Due to the unidirectional nature of the propagation of charges, the upper and lower 

edges are chiral. At the edge state, backscattering is not occurred due to the inability of the 

charge carriers to reverse their direction of motion. 

1.5.5 Quantum Spin Hall Effect (QSHE) 

The Quantum Spin Hall Effect is the key factor of the 2D topological insulator. After the 

discovery of QHE, a lot of theoretical works suggested a system having the same conducting 

properties but without applying an external magnetic field. The TRS is broken in QHE due 

to the presence of the external magnetic field. The basic difference between QHE and QSHE 

is that no external magnetic field is needed in QSHE. In fact, the required magnetic field is 

offered by the internal SOC. Kane, and mele proposed a model in 2005; with the help of this 

model, the QSHE state can be understood in terms of QHE by taking two copies of QHE with 

opposite spin and magnetic field which results into QSHE[12]. 
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Figure 1.9: Two copies of the quantum Hall effect (QHE) with the opposite magnetic field 

(left) and (right) the amalgamation of these two QHE states makes a quantum spin Hall effect 

(QSHE) without applied magnetic field (Adapted from [12]).  

 

Additionally, in QSHE, upper and lower, both the sections of the sample have right and 

left moving e- with spin up and down, respectively. These spin-polarized edge states remain 

unaffected from scattering by the presence of non-magnetic impurity. The propagating e- does 

not backscatter, rather than that e-s detour around the impurity[13] as seen in figure 1.9. 

Therefore, backscattering is still not allowed in the QSHE if a nonmagnetic impurity or a 

defect is encountered. 

 

Figure 1.10: (Left) QHE with both right moving and left moving edge states. These states 

are robust against backscattering. (Right) QSHE with upper state right moving spin up and 

left moving spin down. Backscattering is suppressed from nonmagnetic impurities (adapted 

from [13]) 
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When a spin up e- is encountered with an impurity, the backscattering is possible by two 

probable ways which is presented in figure 1.11, e- spin rotates in clockwise and 

anticlockwise paths around the impurity and creates π and –π phase difference, respectively 

which leads to a 2π path difference overall. Therefore, these two wave functions destructively 

interfere and lead to dissipationless transport[13]. On introducing a magnetic impurity or 

applying a magnetic field in TI, TRS is no longer preserved. 

 

Figure 1.11: schematic diagram of two opposite scattering paths around an impurity for the 

QSH state. The total path difference between them is 2π, leading to suppression of the 

backscattering for Fermions (adapted from [13]). 

Firstly, Graphene was proposed to have the QSHE, but due to weak SOC of carbon 

stopped this. The heavy elements have strong SOC. Therefore, they are needed to 

experience the 2D TIs because SOC is a relativistic term. Bernevig et al., in 2006[15], 

theoretically predicted that the QSHE might be observed in a HgTe quantum well. A thin 

layer of HgTe (possess strong SOC) is sandwiched between the two layers of CdTe to 

make a 2d quantum well structure. After this prediction, in 2007, Konig et al. 

experimentally observed the quantized conductance of 2e2/h at zero magnetic fields in 

HgTe. Therefore, HgTe quantum well is known as the first 2D TIs[16].  
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Figure 1.12: schematic diagram of insulating state with a bandgap between the 

conduction and valence band[14] (b) bulk is insulating but skipping orbits at the edges 

allows the conduction of electron giving rise to the conduction edge i.e. no band gap[14] 

(c) in QSHE, both type of left and right moving path having opposite spins are allowed 

which is protected by time-reversal symmetry[14]. 

 

1.5.6 Spin-orbit coupling 

When the electron (e-) spin or intrinsic angular momentum of the e- interacts with its 

orbital angular momentum, the SOC arises. In ordinary materials, like semiconductors, 

conduction band and valance band is formed due to e- in s and p orbitals, respectively. 

The conduction band (s-band) shifts upward, and the valance band (p-band) shifts 

downwards[13]. Therefore, these bands never cross each other in ordinary materials. The 

band inversion in TIs is occurred due to the strong spin orbit coupling, which is 

responsible for the unique properties. In some materials, SOC is large, the p-band 

(valance band) shifts upward, and the s-band shifts downward direction. Due to this band 

shifting, the s and p band cross each other, and the normal band structure gets inverted, 

(a) 

(b) 

(c) 
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which is called band inversion[5], [17]. The energy of the p-band (valance band) 

becomes higher than the energy of the s-band due to the band inversion. The point where 

bands are intersecting each other, these states are the conducting states which introduce 

the surface state. At this point, the bandgap is vanished at the surface state and becomes 

the metallic surface state. 

 The spin up and spin down e-s encounter at the TSS in alternate effective fields 

which leads them to transmit in the reverse direction. This phenomenon is known as spin 

momentum locking. This is useful from the application point of view. The spin state 

depends on the applied current at the surface. If the direction of the applied current is 

reversed, the spin state is also reversed. We can implement this property in data storage 

and switching device application. The most intriguing property of spin moment locking 

in TIs is that the e- motion remains unperturbed from backscattering. To understand this 

phenomenon, let us consider a spin up e-, which is propagating in the forward direction, 

and the spin of the electron is locked with its momentum. Backscattering can occur if the 

spin up e- flips in spin-down e-, which is impossible because of the unavailability of the 

opposite spin state. However, backscattering can occur if TRS is broken (in case of 

magnetic impurity). Thus, the spin momentum locking and TRS both preserves the 

robustness of TSS and does not allow the backscattering. However, it is noteworthy that 

the above discussion is only applicable for odd no. of forwarding (or backward) moving 

channels. Though, backscattering can occur if even no. of channels. 

1.5.7 Quantum Anomalous Hall Effect (QAHE) 

In the nonmagnetic materials, the Hall voltage is proportional to the applied magnetic 

field due to Lorentz force, as we have discussed earlier in detail. The slope of the curve 

displays linear field dependence and is governed by the type and charge density of 
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carriers. After the discovery of the ordinary Hall effect (OHE), Hall carried out the same 

experiments for the ferromagnetic materials and observed an unusual large slope at a low 

magnetic field. Later, it was found that such type of unusual behaviour is originated due 

to spontaneous magnetization of the ferromagnetic materials. This additional effect with 

the ordinary hall effect is known as anomalous Hall effect (AHE) and is shown in figure 

1.13. As a ferromagnetic material can show spontaneous magnetization even in the 

absence of magnetic field, the anomalous Hall effect (AHE) can be measured in the 

absence of magnetic field. It is believed that spin-orbit coupling (SOC) plays a major 

role in the presence of anomalous Hall effect (AHE), but the exact reason is still not 

clear. Other reasons such as skew scattering or side jump of carriers (extrinsic 

mechanisms) and intrinsic mechanisms may also be responsible for the AHE[18]. The 

quantum mechanical version of the anomalous Hall effect is known as the quantum 

anomalous Hall effect (QAHE). Soon after the discovery of the quantum anomalous Hall 

effect, it was realized that the theory which is used to explain the QHE might be used in 

the explanation of QAHE in the magnetic materials.  

 

Figure 1.13: The variation of Hall resistivity ρxy with the applied magnetic field B. (a)  

ordinary Hall effect (b) anomalous Hall effect (AHE) (c) measured hysteresis loop from 

quantum anomalous Hall effect (QAHE)(Adapted from[18]). 

 

1.5.8 Shubnikov-de Haas (SdH) Oscillations 
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 When 2D electron gas is subjected to a strong magnetic field at low temperature, 

energy levels are split into discrete energy levels called Landau levels, which we have 

discussed earlier in section (1.5.3). Due to the effect of a strong magnetic field, the 

electrons are localized and move in a cyclotron motion with a frequency ωc = eB/m*, 

where e is the charge of the electron, B is the magnetic field and m* is the effective mass 

of electrons. The energy value of landau levels can be written in equation (1.18) as; 

𝐸𝑛 = (n + 
1

2
 ) ħωc 

 As the value of the magnetic field is increased, the separation between the Landau 

levels is also increased. As a result of a continuous increase in the magnetic field, the 

position of the Landau level varies. Therefore, for a concise time interval, the Fermi level 

lies in the Landau level, and electrons jump from the occupied level (below the Fermi 

energy) to the unoccupied level (above the Fermi energy). In this process, the electrons 

get scattered in that Landau levels, and a prominent peak emerges in the resistivity vs 

magnetic field graph. If the Fermi level stays between the two Landau levels, no 

scattering occurs; as a result, no peak appears in the R vs B graph. Hence the oscillations 

are observed in the resistivity and called Shubnikov-de Hass (SdH) oscillation. If the 

oscillations are observed in magnetization vs magnetic field curve, these oscillations are 

known as de Hass-van Alphen (dHvA) oscillations. Shubnikov-de Hass oscillations are 

observed only for the perpendicular magnetic field in 2D electron gas, while in 3D 

electron gas, SdH oscillations can be observed in any direction. SdH oscillations give 

information about the Berry phase[19]. With the help of SdH oscillations, we can 

determine the effective mass, surface carrier density, dingle temperature, quantum 

mobility as well as Fermi surface can be mapped. 
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 1.5.9 Weak Localization (WL) and Weak Antilocalization (WAL) Effects 

 In experiments, the delocalization of e- was explained by a phenomenon called 

weak antilocalization (WAL). This effect originates from the π Berry phase due to which 

a destructive quantum interference between time-reversed loops formed by scattering 

trajectories. The destructive interference can prevent the backscattering of e-. By 

decreasing temperature, the value of conductivity is increased because decoherence 

mechanisms are reduced at low temperatures. The interference and conductivity both can 

be destroyed by the magnetic field. Therefore, the signature of WAL is a negative 

magnetoconductivity which can be easily observed in many topological insulators. The 

WAL phenomenon is associated with the surface state of the TIs[13], [20]. It can be 

observed only at low magnetic field and low temperature. It is verified that due to spin-

orbit scattering, quantum interference changes from constructive to destructive, while in 

WL effects, e-s are localized due to constructive interference between two time-reversed 

paths of the e- wave function, which suppress their ability of current transport. 

In the experiments, with the help of HLN formula[21], the WAL and WL effect for 

2D system was analyzed. The HLN equation can be expressed as; 

Δσ =  σ(B) −  σ(0) =  
𝛼𝑒2

𝜋ℎ
[𝜓 (

1

2
+

ℎ

8𝜋𝑒𝐵𝑙𝜑
2 ) − 𝑙𝑛 (

ℎ

8𝜋𝑒𝐵𝑙𝜑
2 )]                        (1.19) 

Where lφ represents phase coherence length, ψ is a digamma function and 𝑨 =
𝜶𝒆𝟐

𝝅𝒉
 

represents the number of conduction channel, and α is the prefactor value. 
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Figure 1.14: (a) The two time-reversed scattering loops without spin-momentum locking 

exhibiting weak localization in magnetoconductivity (ΔG (B)). (b) The two time-

reversed scattering loops with spin-momentum locking exhibited weak antilocalization 

in ΔG (B) (Adapted from [13]). 

1.6 Historical Developments of 2D and 3D Topological Insulators 

1.6.1 First 2D topological insulator HgTe 

Theoreticians predicted the existence of the QSH state in HgTe quantum well 

sandwiched between the layers of CdTe. In the year 2006, Bernevig reported this 

heterostructure of HgTe having thickness dHgTe, which is sandwiched between the two 

thin layers of CdTe with equal thickness dCdTe. The thickness of HgTe plays a major role 

in the band structure of this heterostructure[1], [13], [14]. The electronic band structure 

of this heterostructure at the ┌ point has an inverted band structure. The confinement 

energy increases as the value of dHgTe decreases, due to which the energy band shifts. 

When the thickness d attains the critical value, i.e., d = dc, QSHE emerges without any 

external magnetic field. The heterostructure of CdTe/HgTe/CdTe and the band structures 

of HgTe, CdTe is shown in figure 1.15. With the variation of the width ‘d’ of the quantum 

well, the corresponding band structure is shown in figure 1.15. The band inversion at the 
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┌ point has occurred after the critical width dc. 1-D helical edge state comes to light, and 

band inversion takes place at the boundaries of 2-D quantum well. At the critical 

thickness dc (6.3nm), the bandgap vanishes, and the Dirac cone touches each other at a 

point called Dirac point. The experimental verification of the QSHE in HgTe quantum 

wells system has been reported. This fact is also supported by the experimental evidence 

for the spin polarization of the QSH edge state. 

 

Figure 1.15: (a) bulk energy bands for HgTe and CdTe at ┌ point (b) CdTe/HgTe/CdTe 

quantum well in normal regime d < dc and in inverted regime d > dc (Adapted from [13]). 

1.6.2 3D Topological Insulators 
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 After the development of 2D topological insulator, one can evolve the concept of 

3D topological insulator. Moore and Balents[22], Roy[23] and Fu, Kane and Mele[24] 

established the concept of 3D topological insulators. 2D topological systems have 

conducting edges, whereas 3D topological systems have conducting surface state. In 3D 

TIs, the bandstructure of the surface state can be characterized as a 2D state with the 

band dispersion of a single Dirac cone. Strong topological insulators have odd no. of 

Dirac cones. 3D TIs possess four Z2 topological invariants (υ0, υ1, υ2, υ3), where υ0 is 

associated with strong topological invariant and υ1 - υ3 belongs to the weak topological 

invariant. The strong topological insulator υ0 = 1 follows that there must be odd no. of 

Dirac cones present at the surface of topological insulators. The spin-momentum locking 

in the perpendicular direction of the surface state is the most intriguing property of the 

3D topological insulators. The state has momentum K and –K possesses opposite spins, 

i.e., up spins are propagating in +x direction and down spins are moving in –x-direction. 

Therefore, the backscattering does not occur at the surface state of the topological 

insulator and the surface state becomes robust.  

1.6.3 The First 3D Topological Insulator Bi1-xSbx 

 Immediately after the experimental verification of the existence of QSH state in 

2Din HgTe quantum well, in the year 2008, Hsien et. al[25] reported the first 

experimental evidence of the presence of 3D TI state in the material Bi1-xSbx. The 3D 

TIs needed ARPES measurement to study the surface band structure. Zahid Hassan’s 

group experimentally explained the presence of QSH in 3D Bi1-xSbx by using 

ARPES[25]. In 3D materials, understanding the charge transport is very difficult, unlike 

the 2D materials as a reason of bulk effects. This makes it very ambiguous to establish 
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the topological signature at the surface state. ARPES is a perfect technique, can be 

utilized to investigate the surface states which are topologically protected. In ARPES, a 

photon is used to eject the electron from the crystal to find the surface and bulk electronic 

structure by examining the ejected electron momentum. ARPES allows separation of the 

bulk band structure from the surface state because surface states do not disperse 

transverse to the surface[1]. A strong topological insulator exhibits a linear dispersion 

relation. In this, the metallic surface state crosses the Fermi level at an odd no. of points. 

The ARPES spectrum of Bi1-xSbx depicts in the figure. 1.16, where the surface state 

crosses Fermi energy five times. According to Kramer’s theorem, such type of an odd 

number of crossings suggests the topologically protected states in Bi0.9Sb0.1. However, 

in Bi1-xSbx, observing the topological surface state is very complicated in nature[1]. Soon 

after the experimental discovery of Bi1-xSbx, in 2009, Zhang et al.[26] predicted some 

chalcogenide compounds (A2B3) as 3D TI theoretically by using ab initio functional 

theory. The non-trivial surface state and calculated bulk bandgap of Bi2Se3, Sb2Te3 and 

Bi2Te3 have been shown in figure 1.16. The band structure can be easily seen in these 

materials which are experimentally verified by using ARPES. In figure 1.16, the linear 

dispersion at the surface state can be seen in the ARPES spectrum of Bi2Se3, and the 

presence of a Dirac cone in the band structure confirmed it as a TI. 
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Figure 1.16:  The surface band dispersion second-derivative image of Bi0.9Sb0.1 . there 

are five crossing between ┌ and M which confirms topological non-trivial surface state 

(Adapted from [6]). 

1.6.4 New materials Bi2Se3, Bi2Te3 and Sb2Te3  

 Bi2Se3 is the most extensively studied TI till date, however it is not an ideal 

material and has several imperfections due to which it is ambitious to retrieve the 

topological surface state in a transport experiment. 

In figure 1.17, non-trivial state of Bi2Se3, Sb2Te3 and Bi2Te3 can be seen clearly. 

The calculated band gap for Bi2Te3 is 100mev, for Sb2Te3 260mev and 300mev for 

Bi2Se3. Similar to Bi1-xSbx, Bi2Se3, Bi2Te3 and Sb2Te3 also possess the same strong 

topological invariant; hence a lot of studies has been done on these materials. All these 

materials are pure in nature, unlike Bi1-xSbx, which is an alloy. Therefore, these materials 

can be prepared in high purity[6], [27]. Moreover, in these materials, topological surface 

state can be easily seen in the ARPES spectrum, as well as they have a large bandgap (as 

mentioned above) even at room temperature. These properties make them a good 

Topological insulator, due to which they are the most studied TI system. 
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Figure 1.17: Calculated band structure of Sb2Se3, Sb2Te3, Bi2Se3 and Bi2Te3 by ab initio 

density functional theory. Red represents occupied bulk and surface states, and blue 

signifies bulk band gap[6]. 

1.6.5 Crystal structure and Symmetry Properties 

 Bi2Se3, Bi2Te3 and Sb2Te3 are layered materials and belong to the rhombohedral 

crystal structure with R-3m space group. Let us consider Bi2Se3 as an example. Figure 

1.18 shows the crystal structure of Bi2Se3. The structure has five atoms per unit cell 

which is ordered in Se1-Bi1-Se2-Bi1’-Se1’ layered manner along the c-axis and called 

quintuple layers. The layers have covalent bonding, and in the quintuple layer, the weak 

Van Der Waals forces exist. The thickness of one quintuple layer is 1nm. Each layer of 

atoms makes a triangle lattice known as tetradymite-type lattice. The triangle layers are 

ordered A-B-C-A-B-C type of arrangement along the z-axis. In one unit cell, there are 

two Bi atom and three Se atoms in which two equivalent Bi (Bi1 and Bi1’) atoms, two 

equivalent Se atoms (Se1 and Se1’) and one equivalent Se atom (Se2) are present. 

 In these types of crystal structures, four types of symmetries exist. 

1- Threefold rotation R3 along the z-direction: such type of symmetry can be 

created due to the following transformations: 
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 X → xcosθ - ysinθ, x → xsinθ + ycosθ and z = z, where θ = 2π/3 

2- Twofold rotation R2 along the x-direction: in this transformation Bi1-Bi1’, 

Se1-Se1’ and Se2-Se2 have the coordinate transformation x →x, y → -y and z → 

-z. Under this transformation, the layers Bi1(Se1) and Bi1’(Se1’) interchange 

their positions. 

3- Inversion Symmetry: In such type of symmetry Bi1 → Bi1 and Se1 → Se1’; 

Se2 → Se2 takes place and the coordinates changes as x → -x, y → -y and z → -

z. 

The strong SOC drives a band inversion at the ᴦ point in the Brillouin zone. 

figure 1.14 displays the schematic change in the atomic energy levels of Bi2Se3 

and the effect of crystal field splitting and SOC on the energy eigenvalues at the 

ᴦ point as calculated by Zhang et al. [28]. The strong SOC drives a band inversion 

at the ᴦ point in the Brillouin zone. figure 1.19 displays the schematic change in 

the atomic energy levels of Bi2Se3 and the effect of crystal field splitting and SOC 

on the energy eigenvalues at the ᴦ point as calculated by Zhang et al. [28]. The 

outermost configuration of Bi and Se atoms are 6S2 6p3 and 4S2 4p4 respectively. 

Since a unit cell consists two Bi and three Se, and the outermost cell of each 

atoms contain three p orbitals px, py and pz, so there are total fifteen p orbitals in 

a unit cell of Bi2Se3. 
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Figure 1.18: (a) Crystal structure of Bi2Se3, the red box shows single quintuple layer (b) 

shows that three different A, B, and C sites are assigned to triangular lattice in one quintuple 

layer (c) Se and Bi atoms are arranged in a sequence in quintuple layer. (Adapted from [28]) 

In stage I, Bi energy levels are pushed up and Se levels are pushed down because of 

chemical bonding. In stage II, due to crystal field splitting Bi energy level splits in to two 

levels with different parity i.e., one odd, one even denoted as 𝑃1𝑥𝑦𝑧
− , 𝑃1𝑥𝑦𝑧

+ , respectively. In 

contrast, Se energy levels split into three states with different parity i.e., two odd, one even 

denoted as 𝑃0𝑥𝑦𝑧
− , 𝑃2𝑥𝑦𝑧

−  and 𝑃2𝑥𝑦𝑧
+  respectively. In stage III, after taken SOC into 

consideration the energy level which is below the EF moves to upside and the level which is 

above the EF moves downward. Therefore, Strong SOC leads to band inversion in Bi2Se3 

system. 

When a magnetic impurity is doped in a TI then unusual magnetotransport effects are 

noticed in these magnetically doped TIs due to broken of TRS. Various 3d-transition metal 
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elements doped magnetic TIs have been investigated theoretically and experimentally [27], 

[29]. Mn doped Bi2Te3 [30] clearly exhibited the ferromagnetic ordering at 12 K for doping 

concentration up to 9%. On the other hand, Fe and Mn doped Bi2Se3 do not show the 

ferromagnetic ordering, however a small surface state gap opened at the DP as confirmed 

from the ARPES measurement [27]. Therefore, it is necessary to investigate various magnetic 

topological insulators for better understanding and technological applications.  

 

Figure 1.19: Schematic picture of the band inversion of Bi and Se p orbitals in Bi2Se3 at the 

ᴦ point. Stage I represents the effect of chemical bonding, Stage II represents the crystal field 

splitting, Stage III represents the effect of SOC. (Adapted from [28]) 

Moreover, superconductivity can also be induced in TIs by creating either internal 

chemical pressure on doping or by applying external pressure. However, only few topological 

superconductor systems have been discovered so far. Cu-intercalated Bi2Se3 is an example 

of internal chemical pressure induced topological superconductor systems [31]. Whereas, 
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The external pressure induced superconductivity has been observed in pure Bi2Te3 with Tc of 

∼3 K when external pressure applied in between 3 to 6 GPa [32]. 


