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Three-dimensional (3D) topological insulators are a new state of quantum matter 

characterized by nontrivial bulk band topology. The nontrivial state originates from band 

inversion. In the Brillouin zone, there are some time-reversal invariant points at which band 

inversion occurs due to spin-orbit coupling. Topological insulators have insulating bulk and 

conducting surface states with a Dirac-cone-like dispersion. In 3D topological insulator 

surface state possess an odd number of massless Dirac cone. The Dirac crossing point is 

protected against small perturbations by time-reversal symmetry, which leads to a variety of 

effects. The gapless surface state of TI gives novel phenomena such as the Quantum spin hall 

effect, a large value of Magneto-resistance, and another interesting quantum phenomenon 

such as weak antilocalization (WAL). Such exotic properties of TIs make them the future of 

next-generation spintronic devices.  

 The surface state of a topological insulator remains unaffected from nonmagnetic 

dopants or defects but can be modified by breaking time-reversal symmetry (TRS). On 

introducing magnetism in a topological insulator, Time reversal symmetry can be broken, 

which leads to the new path of magnetic monopoles, quantum anomalous Hall effect, and 

novel magnetoelectric quantum states. The possibility of topological superconductivity, 

Majorana fermions, and exciton condensation in TIs are fascinating. The Dirac cone-like 

dispersion of topological surface state (TSS) in Bi2Te3, Bi2Se3, and Sb2Te3 have been studied 

using Angle-resolved photoemission spectroscopy (ARPES). Quantum magnetotransport 

phenomena such as WAL, Shubnikov-de Hass (SdH) oscillations, Aharonov-Bhom 

oscillations are associated with the surface states. However, it is very difficult to differentiate 

between the bulk and surface state. Besides the TSS, the bulk states in Bi2Se3 are of great 
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interest as their spin splitting is found to be twice the cyclotron energy observed in quantum 

oscillation. 

 The present thesis is focused on the magnetotransport, ARPES, the thermoelectric 

study of pure and doped Bi2Se3, Bi2Te3 and Sb2Te3 TIs. This thesis contains the study of Bi2-

xMx(SeS)3 indicates that surface magnetic ordering may or may not break the time-reversal 

symmetry (TRS). In contrast, bulk magnetic ordering breaks the TRS suggesting the 

potentiality of these materials for spintronic application. The angle resolved photo-emission 

spectroscopy (ARPES) study and magneto-transport properties of Bi2CuxTe3-x have been 

investigated. In Bi1.5Sb0.5Te1.3Se1.7 system, Both the positive magnetoresistance (p-MR) and 

negative magnetoresistance (n-MR) under perpendicular magnetic field as well as a change-

over from Weak Anti Localization (WAL) to Weak Localization (WL) are observed. For a 

systematic discussion, this thesis has been organized into six chapters.  

In Chapter 1, physical properties of TIs, like TRS, spin momentum locking, absence of 

backscattering, topological Hall effect and historical developments of TIs and WSMs are 

discussed. The chapter also deals with other issues like the concept of Berry phase, 

Shubnikov-de Haas (SdH) Oscillations, WAL effect, the role of broken symmetry etc. A brief 

bibliographic survey is covered in the chapter. 

In Chapter 2, the synthesis processes that have been used to grow TIs and WSMs single 

crystal samples and different experimental tools which have been adapted for the 

characterization of single-crystal samples are addressed in detail. The cryogenic techniques 

incorporated for transport and magnetic properties measurement, such as physical property 

measurement system (PPMS) and magnetic properties measurement system (MPMS) are 
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discussed. The basic principle of photoemission spectroscopy, such as angle-resolved 

photoemission spectroscopy (ARPES) is also considered in this chapter. 

In chapter 3, The Hall effect, angle-resolved photoemission spectroscopy (ARPES) and 

magnetization of Bi2-xMx(SeS)3 (with M=Fe, Mn) have been investigated. In Fe doped 

Bi2(SeS)3, the presence of both the electron-mediated RKKY coupling and carrier-

independent van Vleck magnetism have been demonstrated. On the other hand, in Mn-doped 

sample, hole-mediated RKKY coupling is observed. The result from the DFT calculation also 

supports this experimental interpretation. Furthermore, both ARPES and magnetic studies 

indicate that surface magnetic ordering may or may not break the time-reversal symmetry 

(TRS), whereas bulk magnetic ordering breaks the TRS. This observation suggests the 

usefulness of TI-based devices for spintronics. 

In Chapter 4, the ARPES and magneto-transport properties of Bi2CuxTe3-x single crystals 

have been investigated. ARPES study indicates the clear existence of surface states in the as-

prepared samples. The band gap for x=0.03 is ~5 meV, and that for the x=0.15 sample, the 

value is ~16 meV. The presence of Cu introduces magnetic ordering in Bi2Te3which is clear 

from magnetic measurement. The occurrence of anomalous Hall effect is not due to the 

magnetic ordering but due to the 2D transport as is clear from SdH oscillation and from 

ARPES result. 

In Chapter 5, the Single-phase and single-crystalline nature of the samples were 

established from XRD and Laue’s diffraction patterns.  The insulating character has been 

confirmed from resistivity analysis which is a consequence of the reduction in anti-site 

defects with sulphur doping. Furthermore, both p-MR and n-MR have been found on account 

of crossover from WAL to WL. From the ARPES measurement, it has been observed that on 
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increasing the doping concentration of sulphur, the gap is closed at the DP and DP lifts 

upwards. Overall, the role of sulphur doping is becoming very interesting. 

In Chapter 6, the electron-phonon interaction plays a vital role in the transport properties 

of Fe and S doped Bi2Se3. After doping magnetic elements, the surface state still exists and 

provides unsaturated linear Magneto-resistance from which we calculated SdH oscillation. 

Resistivity, Thermoelectric study and Raman study of these samples supports the role of 

electron-phonon interaction in the transport properties. 

Chapter 7, this chapter contains the summary of the present thesis with a brief glimpse 

of future studies. 


