Table of Contents

Contents	Page No.
Certificate	ii-iv
Acknowledgment	v-vi
Table of contents	vii-x
List of figures	xi-xvi
List of tables	xvii-xviii
List of symbols	xix-xxiii
Abstract	xxiv-xxvi
1. Introduction	1-8
1.1 Motivation	1
1.2 Mini/microchannel heat sink (MCHS)	2
1.3 Hybrid nanofluids	3
1.4 Contribution of the study	6
1.5 Objectives	6
1.6 Thesis Structure (methodology)	7
2. Literature Review	9-39
2.1 Preparation and characterization of hybrid nanofluids	9
2.2 Thermo-physical properties of hybrid nanofluids	18
2.2.1 Thermal conductivity of the hybrid nanofluids	18
2.2.2 Viscosity of hybrid nanofluids	22
2.2.3 Density and specific heat of hybrid nanofluids	25

	2.2.4 Effect of particle mixing ratio on thermophysical properties	26
2.3	Hydrothermal characteristics of mini/microchannel	28
	2.3.1 Experimental studies using mono/hybrid nanofluids	29
	2.3.2 Numerical studies using mono/hybrid nanofluids	32
2.4	Highlights	37
2.5	Research gaps and scope	38
3.	Preparation and Characterization	41-60
3.1	Preparation of hybrid nanofluids	41
3.2	Characterization of nanoparticles	44
3.3	Characterization of hybrid nanofluids	48
3.4	Thermo-physical properties of hybrid nanofluids	50
	3.4.1 Measurement procedure	51
	3.4.2 Results and discussion	53
3.5	Highlights	59
4.	Experimentation on Minichannel Heat Sink	61-122
4.1	Experimental setup and procedure	61
4.2	Hydrothermal modelling	65
4.3	Uncertainty analysis and validation	70
4.4	Results and discussion	72
	4.4.1 Comparison of various hybrid nanofluids	76
	4.4.2 Effect of nanoparticles concentration	85
	4.4.3 Effect of nanoparticle mixing ratio	90
	4.4.4 Effect of fluid inlet temperature	98

	4.4.5	Effect of heat flux	103
	4.4.6	Effect of channel aspect ratio	107
	4.4.7	Composite particle dispersed hybrid nanofluid	112
4.5	Highlight	S	121
5.	CFD Stud	dy on Rectangular Minichannel Heat Sink	123-144
5.1	Methodol	ogy	123
	5.1.1	Two-phase model (multi-phase mixture model)	123
	5.1.2	Single phase (Homogenous) model	125
	5.1.3	Assumption and boundary conditions	127
5.2	Geometry	and meshing	128
5.3	Numerica	l procedure	129
5.4	Grid inde	pendence test	130
5.5	Validation	n with the experimental result	131
5.6	Results ar	nd discussion	133
	5.6.1	Comparison of different hybrid nanofluids (0.1 vol%)	133
	5.6.2	Al ₂ O ₃ +TiO ₂ hybrid nanofluid (0.1 vol%)	138
5.7	Highlight:	S	144
6.	CFD Stud	dy on Modified Minichannel Heat Sink	145-164
6.1	Methodol	ogy	145
6.2	Geometry	and meshing	145
6.3	Numerica	1 procedure	148
6.4	Grid inde	pendence test and validation	149
6.5	Results ar	nd discussions	149

6.6 Effect of pitch of ribs	163
6.7 Highlights	163
7. Conclusions and Scope for Future Work	165-167
7.1 Conclusions	165
7.2 Future scope	166
References	169-187
Appendix A	189-192
Appendix B	193-195
List of Publications	

List of Figures

Fig. No.	Title	Page No.
Fig. 1.1	Various base fluids, nanoparticles and additives used in nanofluid	5
	preparation	
Fig. 2.1	Different mechanism responsible for enhancement in thermal	19
	conductivity	
Fig. 3.1	Hybrid nanofluid synthesis methods (a) single-step method (b)	42
	two-step method	
Fig. 3.2	Flow chart for the two-step method in the present investigation	43
Fig. 3.3	SEM image of (a) Al ₂ O ₃ nanoparticles (b) Al ₂ O ₃ -TiO ₂	45
	nanoparticles mixture and (c) Al ₂ O ₃ -MWCNT nanoparticles	
	mixture	
Fig. 3.4	XRD of rGO-ZnO composite	46
Fig. 3.5	SEM image of rGO-ZnO nanocomposite in increasing	47
	magnification	
Fig. 3.6	Photographs of different mono/hybrid nanofluids of 0.01 vol% at	49
	different times	
Fig. 3.7	Photograph of (a) Digital weighing balance (b) Brookfield DV1	52
	digital viscometer and (c) Hot disk thermal constants analyzer	
	apparatus	
Fig. 4.1	Layout of experimental work	63
Fig. 4.2	Photograph of experimental setup (1. Constant temperature bath,	63
	2. Flowmeter, 3. Test module, 4. Heater, 5. Wattmeter, 6. Variac,	
	7. Pressure transducer, 8. NI DAQ module, 9. Computer monitor,	
	10. Power supply)	
Fig. 4.3	Minichannel heat sink with schematics	64
Fig. 4.4	Validation of experimental Nusselt number with available	72
	correlations	

Fig. 4.5	Validation of experimental friction factor with available	73
	correlations	
Fig. 4.6	Variation of heat transfer coefficient with flow rate	76
Fig. 4.7	Nusselt number with Reynolds number for different working	77
	fluids	
Fig. 4.8	Changing in thermal effectiveness with flow rate for different working fluids	78
Fig. 4.0		79
Fig. 4.9	Changing in pressure drop with flow rate for different working	19
T1 440	fluids	0.0
Fig. 4.10	Changing of friction factor with Reynolds number for working	80
	fluids	
Fig. 4.11	Comparison factor (Heat transfer coefficient to pressure drop ratio,	81
	$h/\Delta p$) at different flow rates	
Fig. 4.12	FOM with flow rate for different hybrid nanofluids	82
Fig. 4.13	PEC with flow rate number for different working fluids	83
Fig. 4.14	COP with flow rate for different working fluids	84
Fig. 4.15	Changing in total entropy generation rate with flow rate for	85
	different working fluids	
Fig. 4.16	Effect of volume concentration on (a) heat transfer coefficient and	86
	(b) Nusselt number	
Fig. 4.17	Effect of volume concentration on (a) pressure drop and (b)	87
S	friction factor	
Fig. 4.18	Effect of volume concentration on (a) thermal effectiveness and	87
	(b) comparison factor	
Fig. 4.19	Effect of volume concentration on (a) figure of merit and (b)	88
	performance evaluation criteria	
Fig. 4.20	Effect of volume concentration on (a) coefficient of performance	89
	and (b) total entropy generation rate	
Fig. 4.21	Nanoparticle mixing ratio effect on heat transfer coefficient	91
Fig 4 22	Nanoparticle mixing ratio effect on Nusselt number	91

Fig. 4.23	Nanoparticle mixing ratio effect on pressure drop	92
Fig. 4.24	Nanoparticle mixing ratio effect on friction factor	93
Fig. 4.25	Nanoparticle mixing ratio effect on thermal effectiveness	94
Fig. 4.26	Nanoparticle mixing ratio effect on comparison factor	95
Fig. 4.27	Nanoparticle mixing ratio effect on figure of merit	96
Fig. 4.28	Nanoparticle mixing ratio effect on performance evaluation	97
	criteria	
Fig. 4.29	Nanoparticle mixing ratio effect on coefficient of performance	97
Fig. 4.30	Nanoparticle mixing ratio effect on total entropy generation rate	98
Fig. 4.31	Variation of (a) heat transfer coefficient and (b) Nusselt number	100
	with fluid inlet temperature	
Fig. 4.32	Variation of (a) pressure drop and (b) friction factor with fluid	100
	inlet temperature	
Fig. 4.33	Variation of (a) thermal effectiveness and (b) comparison factor	101
	with fluid inlet temperature	
Fig. 4.34	Variation of (a) figure of merit and (b) performance evaluation	102
	criteria with fluid inlet temperature	
Fig. 4.35	Variation of (a) coefficent of performance and (b) total entropy	102
	generation rate with fluid inlet temperature	
Fig. 4.36	Changing of (a) heat transfer coefficient and (b) Nusselt number	104
	with heat flux	
Fig. 4.37	Changing of (a) pressure drop and (b) friction factor with heat flux	104
Fig. 4.38	Changing of (a) thermal effectiveness and (b) comparison factor	105
	with heat flux	
Fig. 4.39	Changing of (a) figure of merit and (b) performance evaluation	106
	criteria heat with flux	
Fig. 4.40	Changing of (a) coefficent of performance and (b) total entropy	106
	generation rate with heat flux	
Fig. 4.41	Effect of channel aspect ratio on (a) heat transfer coefficient and	108
	(b) Nusselt number	
Fig. 4.42	Effect of channel aspect ratio on (a) pressure drop and (b) friction	108

	factor	
Fig. 4.43	Effect of channel aspect ratio on (a) thermal effectiveness and (b)	109
	comparison factor	
Fig. 4.44	Effect of channel aspect ratio on (a) figure of merit and (b)	110
	performance evaluation criteria	
Fig. 4.45	Effect of channel aspect ratio on (a) coefficient of performance	111
	and (b) total entropy generation rate	
Fig. 4.46	Effect of channel aspect ratio and heat flux on heat transfer	113
	coefficient	
Fig. 4.47	Effect of channel aspect ratio and heat flux on Nusselt number	113
Fig. 4.48	Effect of channel aspect ratio and heat flux on pressure drop	114
Fig. 4.49	Effect of channel aspect ratio and heat flux on friction factor	115
Fig. 4.50	Effect of channel aspect ratio and heat flux on thermal	116
	effectiveness	
Fig. 4.51	Effect of channel aspect ratio and heat flux on comparison factor	117
Fig. 4.52	Effect of channel aspect ratio and heat flux on figure of merit	118
Fig. 4.53	Effect of channel aspect ratio and heat flux on performance	119
	evaluation criteria	
Fig. 4.54	Effect of channel aspect ratio and heat flux on coefficient of	119
	performance	
Fig. 4.55	Effect of channel aspect ratio and heat flux on total entropy	120
	generation rate	
Fig. 5.1	Schematic of minichannel heat sink with computational domain	128
Fig. 5.2	Meshing of computational domain with boundary conditions	129
Fig. 5.3	Comparison of numerical result with the experimental result	132
	(Nusselt number vs. Reynolds number)	
Fig. 5.4	Comparison of numerical result with the experimental result	132
	(Friction factor vs. Reynolds number)	
Fig. 5.5	Heat transfer coefficient with flow rate for different working fluids	134
Fig. 5.6	Nusselt number with Reynolds number for different working	135
	fluids	

Fig. 5.7	Pressure drop with flow rate for different working fluids	136
Fig. 5.8	Friction factor with Reynolds number for different working fluids	137
Fig. 5.9	Temperature profile of different working fluids along the length of	137
	the channel	
Fig. 5.10	Temperature profile of different working fluids at channel outlet	138
Fig. 5.11	Variation of heat transfer coefficient with flow rate	139
Fig. 5.12	Variation of Nusselt number with Reynolds Number	140
Fig. 5.13	Variation of Pressure drop with the flow rate	141
Fig. 5.14	Variation of friction factor with Reynolds Number	142
Fig. 5.15	Velocity profile of water and 0.1 vol% nanofluid along the length	142
	of the channel	
Fig. 5.16	Temperature profile of water and different hybrid nanofluids at the	143
	channel outlet	
Fig. 6.1	Schematic of minichannel heat sink	146
Fig. 6.2	Configuration of channel (a) Plane channel (b) semi-circular ribs	146
	(c) rectangular ribs (d) triangular ribs and (e) trapezoidal ribs	
Fig. 6.3	Computational domain with boundary conditions and ribs	148
	positions in 2D (width is not showing here)	
Fig. 6.4	Changing of heat transfer coefficient with flow rate	151
Fig. 6.5	Changing of Nusselt number with Reynolds number	152
Fig. 6.6	Effect of hybrid nanofluid over water on Nusselt number	153
Fig. 6.7	Changing of pressure drop with the flow rate	154
Fig. 6.8	Changing of friction factor with Reynolds number	155
Fig. 6.9	Effect of hybrid nanofluid over water on friction factor	156
Fig. 6.10	Comparison factor $(h/\Delta p)$ with flow rate	156
Fig. 6.11	Performance evaluation criteria with flow rate	157
Fig. 6.12	Changing of thermal performance factor with flow rate	158
Fig. 6.13	Velocity streamline on the y-z plane for all channels (with and	159
	without ribs) with Al ₂ O ₃ +Cu/DI water hybrid nanofluid at Re=	
	268.13 and x/Lx=0.5	
Fig. 6.14	Velocity contour and vectors on the v-z plane for all channels	160

	(with and without ribs) with Al ₂ O ₃ +Cu/DI water hybrid nanofluid	
	at Re= 268.13 and x/Lx=0.5	
Fig. 6.15	Temperature contour on the y-z plane for all channels (with and	161
	without ribs) with DI water at Re= 277.08 and x/Lx=0.5	
Fig. 6.16	Temperature contour on the y-z plane for all channels (with and	162
	without ribs) with Al ₂ O ₃ +Cu/DI water hybrid nanofluid at Re=	
	268.13 and x/Lx=0.5	

List of Tables

Table No.	Title	Page No.
Table 1.1	Channel classification based on hydraulic diameter	3
Table 2.1	Summary on the preparation of different hybrid nanofluids	10
Table 2.2	Literature review for particles mixing ratio in hybrid nanofluids	27
Table 2.3	Experimental studies on mini/microchannel using hybrid	32
	nanofluids	
Table 2.4	Numerical literature survey on mini/microchannel using hybrid	36
	nanofluids	
Table 3.1	Different nanoparticles and PCM with their size, properties and	53
	isoelectric point	
Table 3.2	Thermo-physical properties of different hybrid nanofluids (50/50	54
	vol/vol) at total concentration of 0.01 vol% at ambient temperature	
Table 3.3	Thermo-physical properties of different hybrid nanofluids (50/50	55
	vol/vol) at total concentration of 0.1 vol% at ambient temperature	
Table 3.4	Thermo-physical properties of Alumina-MWCNT hybrid	57
	nanofluid (0.01 vol%) for different proportion at ambient	
	temperature	
Table 3.5	Thermo-physical properties of Alumina-Titania hybrid nanofluid	57
	(0.1 vol%) for different proportion at ambient temperature	
Table 4.1	Variables with their range and mean value	69
Table 4.2	The uncertainties during the measurements of the experimental	70
	parameters	
Table 4.3	Different parameters at mean conditions ($T_{in}=30^{\circ}C$, $\phi=0.01vol\%$,	74
	\dot{V} =0.3 lpm, mixing ratio=2.5:2.5, heat flux=50 W/cm ² , aspect	
	ratio=3.75)	
Table 5.1	Effect of grid size on the heat transfer coefficient and pressure	130
	drop	
Table 6.1	Types of the ribbed channel with their enlargement factor	148

Table 6.2 Comparison of different ribs and working fluids based on various parameters at a flow rate of 0.3 lpm

xviii

150