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Chapter 4 

Effective Properties of Short-fiber Piezoelectric Composites 

4.1 Introduction 

Recently, piezoelectric materials have gained a huge attention in the field of smart 

materials due to their sensing and actuating capabilities. These materials have an excellent 

property of converting energy from a mechanical to an electrical domain and vice-versa. 

This property of reciprocity in the energy conversions makes them a wonderful class of 

materials to have many advanced applications, e.g., structural health monitoring, 

vibration and noise control, ultrasonic imaging, aeroelastic control, underwater 

applications and numerous such applications. However, bulk use of monolithic materials 

has several drawbacks hence composite materials of tailored properties could be 

fabricated to attain better technological solutions to many such limitations. 

In order to design such composites many analytical models have been presented in 

the literature. Most of these techniques that have been developed to predict the effective 

ellipsoidal inclusion model embedded in an infinite medium. The self-consistent scheme, 

differential scheme, Mori-Tanaka approximation, dilute scheme, the asymptotic 

homogenization method [23,27,28,31,32] are few such analytical techniques. All of these 

techniques are based on assumptions of constant stress and strains in the inclusion under 

uniform load and a far field of electrical load and traction is applied on the boundary. 

Hence, local field fluctuations are not effectively captured in these studies. The local field 

fluctuations can be better modelled in finite element method by deducing whole 

macroscopic composite into smaller units viz. unit cell approach. These representative 
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volume elements (RVE) are chosen by repeating these units in three dimensional 

structures to give the bulk of material. Any study regarding effective property on such 

RVE will yield results for the bulk material when a volume averaging of results are done.  

Based on the FEM based approach many studies have been carried out to evaluate the 

effective properties of piezoelectric composites, such studies primarily contain the 

problems associated with composites having long fibers either as circular cylinder or 

square column embedded in the matrix phases [121 123]. 

However, studies regarding piezoelectric composite containing short fibers are rare 

and negligible in literature. Bohm and Segurado [124,125] have calculated the effective 

coefficients of piezoelectric composites containing randomly distributed spherical 

particles using random sequential adsorption (RSA) algorithm. In [126,127], Hine et. al. 

have conducted the experiments to evaluate the effective properties of randomly 

distributed short fiber composites and the results have been compared with numerical 

results. Kari et. al. [128] have studied the influence of the size of spherical filler particles 

and of the RVE on the effective material properties of piezoelectric particulate composite 

with FEM approach. A numerical model based on fixed grid finite elements has been 

developed by Bao et. al. [129] to present an approximation of effective moduli of 

particulate composite. The model effectively helps avoid the difficulty of domain 

discretization caused by the inclusion with the conventional FEM approach. In [129], Bao 

et. al. have evaluated the effective properties of piezoelectric particulate composites 

numerically with a FEM based model. The finite element model developed in this work 

is based on the generalization of simplified strain gradient and distortion gradient 

elasticity theories. The model effectively predicts the strong positive side effects for the 

composites with smaller inclusions as compared with material length scale parameters. 

But, because of the limited amount of the work which deals with predicting effective 
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coefficients of piezoelectric particulate composites we have been motivated to work in 

this direction. 

In this chapter an attempt is made to generate higher volume fraction RVE models 

with different size and packing arrangements of piezoelectric inclusion in matrix medium. 

The effective electro-elastic properties are estimated using numerical homogenization 

techniques (using FEM approach) and periodic boundary conditions. The solution of 

properties of short fiber composite containing spheroidal inclusion (fiber). The numerical 

results have been derived through finite element analysis based on the unit cell approach 

of two possible fiber arrangements, i.e., simple cubic (SC) and body centred cubic (BCC). 

A comparative study has been presented for both these methods, i.e., analytical method 

finite element approach. 

4.2 Coupled Electro-Elastic Fields Modeling inside an Inclusion 

In an infinite medium D, the domain of a piezoelectric inclusion can be 

mathematically given as 

 
 

(4.1) 

where ,  and are the lengths of the semi axes of the ellipsoid.  The surface area of 

the inclusion is denoted by I  ,and the entire domain by D. First considering inclusion 

has the same electroelastic moduli as that of matrix, but is allowed to undergo a uniform 

stress-free strain , and electric displacement-free electric field, represented by 

. To calculate the stress, strain, electric displacement, and electric field, a 

generalization of the imaginary cutting, straining, and welding operations used by [23] 

are utilized. 
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Adopting a shorthand notation introduced by [119], electroeleastic constants can be 

expressed on equal footing in the following as 

  (4.2) 

Assuming the same shorthand format, the combined coupled electroeleastic field can be 

unified into a single equation 

  (4.3) 

where 

  (4.4a) 

and 

  . (4.4b) 

In the above equations  is elastic stress,  electric displacement vector,  elastic 

strain,  electric field. Lowercase Latin subscripts range from 1 to 3, while uppercase 

subscripts range from 1 to 4.  

  (4.5) 

where  is elastic displacement, and  is electric potential. 

Equilibrium Conditions: 

Since eigenfields are present for inclusion only and absent in rest of the domain the 

stress and electric displacement can be expressed by the linear piezoelectric constitutive 

equation 
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  (4.6) 

In the absence of any external excitation the electroelastic equilibrium condition is 

expressed as 

  (4.7) 

Substitution of Eqn. (4.7) into Eqn. (4.6) leads to 

  (4.8) 

It can be clearly noticed from Eqn. (4.8) that  behaves like a body force and 

electric charge in the piezoelectric material. The solution to the fundamental Eqn. (4.8) 

will give . 

The linear theory of elasticity allows for the superposition of solutions. Applying, 

Fourier series form the solution to Eqn. (4.8) can be derived as 

  (4.9) 

Putting Eqn. (4.9) in Eqn. (4.8) and solving for  we get 

 

          

(4.10) 

or, 

  (4.11) 

where 

  (4.12) 



82 
 

direction at point  

when a unit body force in the  direction is applied at point  in the infinitely extended 

material. 

In Eqn. (4.12)  and  being the cofactors and the determinant of the 

matrix   , respectively. It is noted that  owing to 

symmetry of the electroelastic constants . 

Eqn. (4.10) can be reduced in simple form assuming eigenfields  are uniformly 

distributed in the ellipsoidal inclusion and using these transformations 

   

   

   

                            

                   (4.13) 

With the above transformations, the induced elastic displacement and electric potential 

within the inclusion becomes 

  (4.14) 

Equation (4.14) is similar to that of  [27] for the elastic inclusion problem. Combining 

Eqns. (4.4a-b) and (4.14), the induced strain and electric fields due to the uniform 

eigenfields in the inclusion are given by 
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  (4.15) 

where 

  (4.16) 

are referred to as Eshelby tensors for anisotropic piezoelectric materials. 

The corresponding stress  and electric displacement  inside the inclusion due 

to a uniform eigenfield in  can be derived from the constitutive equation for a 

piezoelectric material given by [31] 

 (4.17a) 

 (4.17b) 

Both the piezoelectric matrix and the inclusion are considered to be transversely isotropic 

(6mm symmetry) and for simplicity, the crystalline direction of the matrix is assumed to 

be coincident with the principal axis of the inclusion. Adopting Voigt two-index notation, 

elastic, piezoelectric and dielectric constants  transfers to a  matrix as follows: 

 (4.18) 

In this case Eqns. 4.17(a)-(b) and 4.18 takes the form 
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  (4.19a) 

  (4.19b) 

where 

  ,  

   

   

  (4.20) 

4.3 Calculation of Effective Properties 

For a sufficiently large two-phase composite D consists of randomly oriented 

1  N) with electro-elastic constants  and 

the volume fraction f. The surrounding matrix is denoted by D- -elastic 

constants . Here  for a piezoelectric material when one subscript 

is 4. To determine the effective elastic, piezoelectric, dielectric constants of the 

composite, the Mori-Tanaka mean-field theory is employed.  

Considering this theory, piezoelectric composite be subjected to the far-field 

traction, electric displacement  on the boundary with outward unit normal vector  

and in the absence of the inhomogeneities , the strain and electric field  distributes 

uniformly. Now, the presence of a random inhomogeneity  creates disturbance in local 

fields of both matrix and the kth inhomogeneity. Since the volume average of the 

disturbance portion of the stress, electric displacement vanishes it can be written as 
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  (4.21) 

and in addition, 

  (4.22) 

The average disturbed stress, electric displacement in the matrix and the kth 

inhomogeneity can respectively be written as  

  (4.23) 

   (4.24) 

where  are the average strain, electric fields in the matrix,  the average 

disturbance of the otherwise uniform strain, electric fields in  Since all the 

inhomogeneities are of the same shape with the same material properties, the average 

value over  is identical with that over , namely . 

When the piezoelectric composite is subjected to the uniform far-field mechanical 

load, electric displacement , the following effect due to this excitation can be 

mathematically expressed as 

  (4.25) 

Since the applied electromechanical load is uniform through the inhomogeneity 

 in  has been used in the above equation.  

Considering the equivalent inclusion method [23], Eqn. (4.25) can be written as 

 
 

(4.26) 

In above equation disturbed field  can be related to the fictitious eigenfield  by 
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  (4.27) 

The average disturbance of stress, electric displacement in the inhomogeneity can be 

written by substituting Eqn. (4.26) into Eqn. (4.25) as  

 
                

 , 
(4.28) 

Combining Eqns. (4.22), (4.24), and (4.28) leads to 

  (4.29) 

Substitution of Eq. (4.27) into Eqns. (4.23) and (4.27), respectively, then yields  

       (4.30) 

  . (4.31) 

The equivalent eigenstrain, eigenelectric field  are solved by substituting Eqn. (4.28) 

into the equivalent Eqn. (4.26). Thus, we have  

  (4.32) 

where  

  (4.33) 

The weighted average of that over each phase will give overall strain, electric fields, 

, written below 

  (4.34) 

where V denoted the volume of the entire composite. Substituting Eqns. (4.27) and (4.29) 

into the equation above yields 

  (4.35) 
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Following the equivalent eigen fields  shown by Eqn. (4.32), the overall strain, 

electric field  can be written as 

  (4.36) 

where  is the effective electroelastic compliance of the composite. Mathematically 

expressed as 

  (4.37) 

Following the same procedure, the effective electroelastic moduli   can be derived 

as 

  (4.38) 

where  

 . (4.39) 

It can be shown that the effective electroelastic stiffness  given by Eqn. (4.39) and 

compliance    given by Eqn. (4.38) are reciprocal to each other, namely 

. 

4.4 Finite Element Modeling 

The linear constitutive behaviour of piezoelectric material can be mathematically 

expressed as 

  (4.40a) 

  (4.40b) 



88 
 

where , , ,  in above equation represents the stress, strain, electric field and 

electric displacement tensors respectively and  ,  ,  represents elastic constants, 

dielectric constants, piezoelectric constant tensor respectively for the materials. 

The problem in this chapter has been dealt with assuming that the piezoelectric 

materials are poled along x3 direction (x1, x2 as isotropic plane). So, in matrix form the 

above equation can be written with 10 independent coefficients as 

 

 

(4.41) 

The overall behaviour of the piezoelectric composite can be predicted by determining 

effective elastic constants , effective piezoelectric constants  and effective 

dielectric constants .  denotes the spatial average value for directional stresses 

and strains. These overall effective properties depend primarily upon material properties 

of fiber and matrix phases and fiber orientation and geometries. Since the fiber geometries 
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can vary from being ellipsoidal, cylindrical to spherical (in case of composites containing 

short fibers), in present study spheroidal shape fiber of two possible arrangements of 

packing, i.e., simple cubic (SC) and body-centred cubic (BCC) has been used for analysis.  

All material properties of constituent phases, i.e., fiber and matrix are given in Table 4.1. 

Table 4.1 Material properties of fiber and matrix phases 

Material Prop. BaTiO3 (Fiber) PZT-5H (Matrix) 

 166 GPa 126 GPa 

 77 GPa 55 GPa 

 78 GPa 53 GPa 

 162 GPa 117 GPa 

 43 GPa 35.3 GPa 

 -4.4 (C/m2) -6.5 (C/m2) 

 18.6 (C/m2) 23.3 (C/m2) 

 11.6 (C/m2) 17.0 (C/m2) 

 11.2×10-9 (C2/Nm2) 15.1×10-9 (C2/Nm2) 

 12.6×10-9 (C2/Nm2) 13.0×10-9 (C2/Nm2) 

 

All finite element calculations are made with the finite element package ANSYS 

18.0. In analytical as well as in numerical modelling, we assume that the fibers and the 

constituent are ideally bonded for simplification, and that the fibers are straight and 

parallel to the x3-axis. The piezoelectric fibers are uniformly poled along the x3-direction. 

Both fiber and matrix are modelled with 20 nodes solid 226, in which strain as well as 

additional electric potential degree of freedom are used. Firstly, the problem is modelled 
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as a unit cell (RVE) containing major features of the underlying microstructure. Both the 

mechanical and physical properties of the constituent material are always considered in 

micro scale. A finite element mesh is generated from the ANSYS pre-processor and then 

constraints or boundary conditions are applied to the RVE. The convergence study shows 

that the meshes have to be fine (approx. 12330 elements) for 0-3 or short-fiber 

composites. Figure 4.1(b) shows the convergence plot for the selection of mesh size. For 

the calculation of effective coefficients, we consider a piezoelectric fiber embedded in a 

piezoelectric matrix. The material parameters of matrix and fiber are listed in Table 4.1, 

which are chosen for present study. To find the effective coefficients, special load cases 

with different boundary conditions must be conducted. For a particular load case, only 

one component value in the strain or electric field vector in Eqn. (4.40b) is non-zero and 

all others become zero. Then from one row in Eqn. (4.40b), the corresponding coefficient 

can be calculated via the calculated average values in the stress or electrical displacement 

vector. Five different volume fractions in the range from 0.1 to 0.5 with the step of 0.1 

are calculated in every load case and the representative shapes with two different fiber 

arrangements; simple cubic (SC) and body centred cubic (BCC) are shown in Figure 4.2 

and 4.3. Since the fiber volume fraction has an influence on the results, the size of the 

unit cell is chosen with unit length in all directions. 

4.4.1. Calculation of Effective Properties through FEM 

This study has been limited to quasi-static analysis of periodic structures with 

perfectly bonded fibers, aligned and poled along the axis 3. Figure 4.1(a) illustrates this 

point in case of a 0-3 composite with a SC and BCC distribution of spheroids. The 

dimensions of the unit cell are chosen in consonance with the ratio of distance between 

inclusion centres to satisfy the fibers aspect ratio. Aspect ratio  has been chosen as 1 for 

both methods, i.e., Eshelby Method and FEM. Due to symmetry, the whole macroscopic 
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structure is disintegrated into smaller units that contain sufficient information about both 

fiber and matrix materials known as representative volume elements (RVE). Average 

results of the properties studied on such RVE provides the overall effective properties at 

macroscopic level. 

 

                                             (i) 

 

        (ii)             (iii) 

Figure 4.1(a) FEA model of an active composite containing spheroid inclusion; (i) 

Structure of composite (mesh element view); (ii) RVE of SC fiber arrangement (inner 

inclusion view); (iii) RVE of BCC fiber arrangement (inner inclusion view). 
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Figure 4.1(b) The convergence graph for determining ideal mesh size for the FE analysis 

4.4.2 Boundary Conditions and Parameter Calculations 

Constitutive relation given by Eqn. (4.31) suggests that in order to calculate 

effective elastic coefficients , , and , all strains and electric field 

component of the matrix form must be zero except for a non-zero strain produced at 

surface  for calculating first three coefficients and at surface  for calculating 

the last one. In order to constrain all other surfaces to remain plane under loading 

following boundary conditions are imposed. 

  (4.42) 

where ,  and  are the displacements along ,  and  directions respectively. Also, 

the shear stresses on  and  planes are set to zero so that these three directions will 

remain principal directions of stresses.  In order to stop charge transfer between opposite 



93 
 

surfaces, the potential degree of freedom is set to zero. From the first and third row of the 

constitutive Eqn. (4.41) effective coefficients can be obtained.  

When  and , then following matrix 

relation shown in Eqn. (4.41) 

  ,            ,             , (4.43) 

And, when  and ,  

 . (4.44) 

In order to calculate  and  and in-plane shear strain   must have a non-zero 

value in strain vector in Eqn. (4.41) and out-of-plane shear strain  must have a non-

zero value. Normal strains on all six faces remain zero and a zero electric field is applied 

to all surfaces. Now, the fourth and sixth row of constitutive relation will give effective 

coefficients  and . Numerically, this can be shown as  

When  , and  or  then, 

  (4.45) 

And, when  , and , 

  (4.46) 

 and  are average elemental values of stresses and strains in  

directions. 

Similarly, other effective coefficients could also be calculated by altering boundary 

conditions. The effective piezoelectric constants ,  and the effective dielectric 
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constant  are calculated by setting a non-zero electric potential at . The electric 

potential at all other surfaces will remain zero. Normal strains at all faces will also be 

constrained. Now, according to the constitutive Eqn. (4.41), the ninth row gives the 

following solution. 

When , and , 

 ,              and        (4.47) 

 and are average elemental values of electric field and dielectric constants in z-

direction. Other remaining coefficients  and  can be calculated from the seventh 

row of the matrix relation shown by constitutive Eqn. (4.41) and altering few boundary 

conditions. For calculating effective piezoelectric constant , a non-zero value is given 

to in-plane shear  and rest other strains and electric field vectors are set as zero. While, 

the effective dielectric constant  is obtained by putting a non-zero electric potential 

at  surface, rest other strains and electric field remains zero. 

When  , and , 

  (4.48) 

And, when , and , then, 

  (4.49) 

 and are average elemental values of electric field and dielectric constants in x-

direction. All the average elemental values can be obtained from ANSYS Post Processing. 

Figure 4.2 and 4.3 shows a representation of fields within an RVE in an FE analysis for 

SC and BCC fiber arrangements, respectively. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

                                          (e) 

 

Figure 4.2 Representative Volume Element (RVE) depicting von Mises stress 

distribution containing spheroid inclusion in SC arrangement (Fiber volume fraction 

ranging from 0.1-0.5), (a) 0.1, (b) 0.2, (c) 0.3, (d) 0.4, (e) 0.5. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

                                 (e) 

 

Figure 4.3 Representative Volume Element (RVE) depicting von Mises stress 

distribution containing spheroid inclusion in BCC arrangement (Fiber volume fraction 

ranging from 0.1-0.5), (a) 0.1, (b) 0.2, (c) 0.3, (d) 0.4, (e) 0.5. 
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4.5 Results and Discussion 

The finite element method is applied to calculate properties of piezoelectric 

particulate composite fiber spheroid in shape. All eleven effective coefficients have been 

calculated for five discrete fiber volume fractions and the results show in general a good 

coincidence between calculations, via. Eshelby Tensor method and Finite Element 

Method. Considering the piezoelectric composite as active-active fiber matrix composite 

in this paper, the predictions of the effective elastic, piezoelectric and dielectric 

coefficients are compared to the results of the analytical results obtained by Eshelby 

Method. Figure 4.4-4.9 show the comparison of elastic coefficients, while Figure 4.10-

4.14 show the comparison for piezoelectric and dielectric coefficients. 

 

Figure 4.4 Comparison of the predicted effective elastic coefficient C11 of 

BaTiO3/PZT-5H composite with respect to fiber volume fraction. 
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Figure 4.5 Comparison of the predicted effective elastic coefficient C12 of 

BaTiO3/PZT-5H composite with respect to fiber volume fraction. 

 

Figure 4.6 Comparison of the predicted effective elastic coefficient C13 of 

BaTiO3/PZT-5H composite with respect to fiber volume fraction. 
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Figure 4.7 Comparison of the predicted effective elastic coefficient C33 of 

BaTiO3/PZT-5H composite with respect to fiber volume fraction. 

 

Figure 4.8 Comparison of the predicted effective elastic coefficient C44 of 

BaTiO3/PZT-5H composite with respect to fiber volume fraction. 
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Figure 4.9 Comparison of the predicted effective elastic coefficient C66 of 

BaTiO3/PZT-5H composite with respect to fiber volume fraction.  

 

These figures show that the coefficients , , , and  calculated by FEM 

are in a very good agreement with those obtained by Eshelby Method in all ranges of 

volume fractions. Quantitatively, the behaviour of the coefficients , , and  

is same, although for the greater value of the volume fraction (  or higher), the 

curves are not so close. The deviation in results at higher fiber volume fraction (  

or higher) between FEM results and Eshelby Method may be attributed to the fact that 

the SC and BCC arrangements of fibers does not strictly fulfil the assumptions of 

transverse isotropy in the Eshelby Method results. 
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Figure 4.10 Comparison of the predicted effective piezoelectric coefficient e31 of 

BaTiO3/PZT-5H composite with respect to fiber volume fraction. 

 

Figure 4.11 Comparison of the predicted effective piezoelectric coefficient e33 of 

BaTiO3/PZT-5H composite with respect to fiber volume fraction. 
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Figure 4.12 Comparison of the predicted effective piezoelectric coefficient e15 of 

BaTiO3/PZT-5H composite with respect to fiber volume fraction for the analytical 

Eshelby Method and numerical FEM Method. 

 

The results of FEM BCC arrangement of fibers are closer to the results of Eshelby 

Method, that is because of better capture of interaction between elastic and electric fields 

of multiple inclusions. The behaviour of coefficients ,  and  obtained from FEM 

is most divergent in all throughout the range of fiber volume fraction. This must be 

attributed to the fact that in FEM these results have been obtained by putting in-plane and 

out-

approximated based on far-field approach at finite concentrations of inclusions, i.e., Mori-

Tanaka mean field theory.  



103 
 

 

Figure 4.13 11 of 

BaTiO3/PZT-5H composite with respect to fiber volume fraction. 

 

Figure 4.14 33 of 

BaTiO3/PZT-5H composite with respect to fiber volume fraction. 

 



104 
 

 

Moreover, it is observed that finite element method results in case where boundary 

condition is set as longitudinal plane stress, shows a large degree of agreement with 

Eshelby Method results throughout the given range of fiber volume fraction while when 

shear stresses are set as a boundary condition the finite element method result shows a 

larger diversion from the result obtained by Eshelby Method. FEA only provides a best 

approximation to the possible solution but the Eshelby model is based on the exact 

solutions of electroelastic Eshelby tensors. Moreover, doing FEA over discrete fibre 

volume fractions (0.1-0.6 with a step of 0.1) involves repeated procedures that proves to 

be time consuming and uneconomical. The Eshelby model provides the exact results and 

by using these results the properties can be characterized for the whole range of fiber 

volume fractions (0.0-1.0). 

4.6 Summary 

A numerical approach is adopted to evaluate the effective coefficients of 

piezoelectric particulate composite through the Eshelby Method. Later, a finite element 

approach is adopted using FE package ANSYS 18.0 to evaluate effective coefficients 

with two different inclusion arrangements: simple cubic (SC) and body centred cubic 

(BCC). The results have been compared graphically for all individual coefficients with 

both these methods. Compared with the results, the technique in the present paper 

provides reliable results, indicating that this technique can be easily extended for 

determining homogenized material data for more complex composites. The obtained 

results also suggest that the effect of shear stress as boundary condition and inclusion-

inclusion interaction is better captured in FEM than Eshelby Method. This study also 

provides an insight that strength of materials SM methods for approximation of effective 

properties only holds good in case of long fiber composite. In the short fiber case, its 
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prediction of properties is 

properties of particulate composite.  

Though this study carries a geometric shape of fiber as spherical particulate and 

two arrangements of particles as SC and BCC in finite element modelling, study based 

on other shapes and configuration can also be carried out to obtain more generalized 

results. Since rule of mixture is a reliable form of study especially in case of long 

continuous fiber problem but this predicts a very poor approximation of effective 

properties in case of randomly oriented discontinuous fiber therefore in such scenario 

Eshelby model map the problem quite effectively and prediction of properties using 

averaging method given by Mori- Tanaka gives a close approximation of effective 

properties. The results of finite element study also suggest the same as much of the 

coefficients shows quite similar behaviour for the range of fiber volume fraction of the 

study. 

 

 

 

 

 

 

 

 

 


