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Chapter 1

Introduction

1.1. Piezoelectricity

The phenomenon of piezoelectricity was discovered by Jacques and Pierre Curie 

brothers in 1880 [1]. Piezoelectric materials are the class of dielectric materials that can 

be polarized due to an applied electric field, also by application of a mechanical stress. 

Thus, piezoelectricity is said to be an interaction between electrical and mechanical 

systems (Figure 1.1). 

       

Figure 1.1 Piezoelectricity: An intermingling of elastic and electric phenomenon.

Further, piezoelectric materials can be subdivided into two categories, i.e., polar 

and non-polar piezoelectric materials. Polar piezoelectric materials are those that possess 
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a net dipole moment and non-polar piezoelectric materials are those that possess a null 

total moment. In non-polar piezoelectric materials, the dipole moments of discrete 

domains are aligned in different directions which when summed over the entire region 

give zero net dipole moment. 

The development of an electric charge upon the application of a mechanical stress 

is termed as direct piezoelectric effect and represented mathematically as [2] 

  (1.1) 

where  is generated fixed charge density (charge per unit area),  are the piezoelectric 

coupling coefficient components, and  are the applied mechanical stress components. 

Similarly, the development of a mechanical strain upon the application of an electric field 

is termed as indirect piezoelectric effect and represented mathematically as 

  (1.2) 

where  are the strain tensor and  are the electric field vector. In both cases, the 

piezoelectric coupling coefficients  remains numerically identical. 

The direct and converse piezoelectric effect is strongly linked to the crystal 

symmetry. Piezoelectricity phenomenon is limited to 20 of the 32 crystal classes known 

as point groups. There is a unique common feature among crystals which exhibit 

piezoelectricity, i.e., the absence of a centre of symmetry within the crystal. This absence 

of symmetry leads to a displacement between anions and cations when exposed to change 

in the dimension due to application of external stress. This results in polarization, i.e., the 

one-way direction of the charge vector. Most of the important piezoelectric materials are 

also ferroelectric. Ferroelectric materials are a class of materials which have the ability to 

transform to high symmetry non-piezoelectric phase at higher temperatures. The critical 
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transformation temperature is known as the Curie temperature. The Curie temperature is 

the measure of absolute maximum use temperature for any piezoelectric material, above 

which it loses its piezoelectric characteristics.  

In polycrystalline piezoelectric materials the crystal axes of the grains are randomly 

oriented, hence they exhibit net zero polarization. Piezoelectric polycrystalline ceramics 

were first discovered in the 1940s, followed by development of the poling process. In the 

poling process, the randomly oriented crystal axes are suitably aligned by applying a 

strong electric field at an elevated temperature. These two discoveries led to the synthesis 

of materials having better and more stable piezoelectric properties. Introduced in the year 

1954, lead zirconate titanate (PZT) has become the most widely used piezoceramic till 

date. Due to anisotropy, the electromechanical properties of piezoelectric materials show 

a huge direction dependence for electrical-mechanical excitations. Hence, a systematic 

tabulation of their directional properties becomes of utmost importance; for using such 

materials in various sensing or actuating applications. A well accepted practice is to 

assign numerals to the axes: 1 corresponds to x-axis; 2 corresponds to y-axis and 3 

corresponds to z-axis. The direction of the poling field is identified as one of the axes in 

operation; usually it is taken as 3. A poling field is applied in such a way that the material 

exhibits piezoelectric responses in either one direction or combination of two or three 

directions. 
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Figure 1.2 Piezoelectric materials in sensing and actuating applications; (a) P-E 

hysteresis plot (top) and S-E plot (bottom); (b) The piezoelectric material before and 

after poling; (c) Change in dimension when applied voltage has polarity similar to that 

of poling voltage; (d) Change in dimension when the applied voltage has polarity 

opposite to that of poling voltage; (e) The voltage generated equivalent to poling 

voltage when compressive force is applied in poling direction; (f) The voltage 

generated equivalent to poling voltage when tensile force is applied in poling direction. 

Reference: [3] 

 

The poling process permanently changes the dimensions of a piezoelectric material. 

As illustrated in Fig. 1.2 (b), it is evident that the dimension between poling electrodes 

increases while the dimension parallel to the electrode decreases. After the completion of 

the poling process, any voltage lower than poling voltage is capable of changing the 

dimensions of the piezoelectric materials so long as the voltage is applied. An applied 

voltage with the same polarity as the poling voltage causes some additional expansion 

along the poling axis and contraction perpendicular to the poling axis as illustrated in Fig. 
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1.2 (c). One can also observe this phenomenon from P-E and S-E plots of Fig 1.2 (a). 

When subjected to a poling field, E, the polarization and mechanical strain curves follow 

the path shown by (i)-(ii) on P-E and S-E plots, respectively. After the removal of the 

poling field, the behaviour curves follow the path (ii)-(iii) and it can be noticed from the 

figure that the piezoelectric material retains some remanent polarization,  . Because of 

that remnant polarization the material experiences a permanent strain or change in change 

in dimensions. The poling process shifts the working point from (i) to (iii) now from an 

operational point of view. It implies that whenever a voltage of the same polarity as of 

poling is applied along the poling axis; the P-E and S-E plots will follow the curve (iii)-

(ii) and hence a positive strain will be developed. Similarly, when a voltage with the 

polarity opposite to that of poling is applied along the poling axis; the P-E and S-E plots 

will follow the path (iii)-(iv), resulting in a negative strain. However, in both the cases, 

the piezoelectric material returns to its original poled dimensions (working point (iii)) 

when the applied voltage is removed from the electrodes. 

1.2. Piezoelectric Effect- Basic Mathematical Formulation 

This section presents an overview of the basic mathematical relations that describes 

the direct and converse effects exhibited by a piezoelectric material. The linear theory of 

piezoelectricity [3] suggests that the piezoelectric materials exhibit a linear profile at a 

low level of applied external electrical fields and mechanical stresses. For the range of 

mechanical stresses and electric fields used in this work, the piezoelectric materials 

exhibit linearity. The mathematical relations that describe the coupling between stress , 

strain , electric field  and dielectric constant  are given as [4] 

  (1.3) 
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  (1.4) 

where the dielectric displacement,  is represented by the sum . Here,  and 

 are the permittivity tensor and elastic compliance tensor, and  is the dielectric 

constant of free space. Superscripts  and  added to  and  indicates that these 

constants are measured under conditions of constant stress and constant electric field, 

respectively. 

Alternatively, these constitutive relations can also be expressed as follows: 

  (1.5) 

  (1.6) 

where the piezoelectric constants  are related to the piezoelectric constants  and 

the elastic stiffness constants  by the following expression: . An 

alternation notation of abbreviated subscripts that reduces the three subscripts of the 

piezoelectric constants and the four subscripts of the elastic constants into two subscripts 

is known as Voigt notations . The relationship of full subscripts with abbreviated 

subscripts for piezoelectric and elastic constants are outlined in the IEEE standard on 

Piezoelectricity [4]. 

Further, the strain and electric field given in Eqns. (1.3) and (1.4) are derived from the 

mechanical displacement and electric potential and represented as 

   (1.7) 

  . (1.8) 

Eqns. (1.3) to (1.6) must be supplemented with Eqns. (1.9) and (1.10) to account 

for conditions of elastic equilibrium and the electrostatic equilibrium in the absence of 

body forces and free electric charge. These equations are expressed as 
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  (1.9) 

  . (1.10) 

The letter suffix used with each term is with respect to Einstein summation 

convention [5]. According to the convention, when a letter suffix occurs twice in the same 

term, summation with respect to that suffix is to be automatically understood. In Eqn. 

(1.5), i, j are free suffixes and k, l are called dummy suffixes. The free suffix must be the 

same in all terms on both sides of the equations; while the dummy suffixes must occur as 

pairs in each term. In the present thesis, the range of values of all letter suffixes is 1, 2, 3 

unless some other range is specified (for example, see Appendix A). 

Piezoelectric materials have a wide range of applications in hydro, electro-acoustic, 

electro-optics, communications and measurement techniques. They are also used for 

control purposes in lightweight smart structures. These materials have huge potential for 

other advanced engineering applications, e.g., space explorations, remote control of 

spacecraft etc. 

1.3. Piezoelectric Composites 

1.3.1. Background 

Many piezoelectric composite materials have been developed over the past two 

decades with effective properties tailored for specific applications. Piezocomposites are 

fabricated by combining two or more distinct constituents. These materials can take the 

advantages of each of the constituents to provide superior electromechanical coupling 

characteristics when compared with their monolithic counterparts. Piezocomposites have 

been developed in multiple forms that include polymer filled secondary-phase 

piezoelectric inclusions in a solid piezoelectric ceramic matrix and secondary-phase 

piezoelectric ceramic inclusions embedded in a polymer matrix. These secondary-phase 
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piezoelectric inclusions could be of varied geometries, i.e., continuous fibers, short fibers, 

dispersed particles, or voids. Piezocomposites were originally developed for underwater 

hydrophone applications in the low-frequency range, but later been extended to many 

other applications, e.g., underwater acoustic and medical ultrasonic imaging applications, 

aerospace etc. Hence, piezoelectric composites constitute an important branch of the 

recent emerging technologies of modern engineering materials.  

Structural composite materials are formulated to optimize mechanical properties 

while piezoelectric composite materials are designed to maximize their coupled field 

behaviour. Hence, the determining factor for designing a piezoelectric composite, 

whether as an actuator or a sensor, is to ensure the maximum efficiency in 

electromechanical energy conversion [6]. Like any composite material, the properties and 

behaviour of piezoelectric composites are highly dependent on the properties of the 

constituent phases as well as local arrangements of these different phases. However, the 

material exhibits anisotropy due to introduction of inclusions or voids into the base media 

and makes analysis complicated. Therefore, it is necessary to examine the electroelastic 

responses of such piezocomposites from a micromechanics point of view so that the 

influence of material parameters on the overall properties can be understood thoroughly. 

1.3.2. Connectivity Patterns 

The arrangement of the different phases comprising a composite plays an important 

role in determining those field patterns that dictate electromechanical properties of a 

composite. The concept of connectivity that was first developed by Newnham et. al. [7-

8]. It is a convenient tool to describe the continuity of each individual phase in three 

dimensional spaces. For a two-phase system, i.e., diphasic system, 10 such connectivity 

patterns exist. Each phase could be continuous in 0, 1, 2, or 3 dimensions as illustrated in 
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Fig. 1.3. The widely accepted nomenclature to describe connectivity of such composites 

is given by closed bracketed numerals, e.g., (0-0), (0-1), (0-2), (0-3), (1-1), (1-2), (2,2), 

(1-3), (2-3), and (3-3). In the above notation, the first digit within parenthesis refers to the 

number of dimensions in which the first phase (generally piezoelectrically active) is 

continuous; and the second digit refers to the number of dimensions in which the second 

phase (often piezoelectrically inactive) is continuous. Based on these connectivity 

patterns, an array of piezoelectric composites has been developed as shown in Fig. 1.4.  

       

Figure 1.3 Connectivity families for diphasic composites. The total number of 

connectivity patterns arising out of 10 families depicted is 16 due to permutations of 

order involved in families; {0-2}, {0-3}, {1-0}, {1-3}, {2-1}, {2-3}. Reference: [9] 
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Figure 1.4 Schematic diagram showing composites with various connectivity patterns 

realized over the past 40 years. Reference: [9] 

 

During the course of time, few modifications to the list also occurred. Pilgrim et. 

al. [10] suggested six additional connectivity patterns, raising the total number of 

connectivity patterns to 16 for a diphasic composite. The additional connectivity patterns 

arise out of the convention that two composites of the same phases and connectivity could 

differ when their connectivity order is interchanged. To further elaborate this, a composite 

formed from piezoelectric rods embedded in polymer matrix shows a different 

piezoelectric response than a composite formed from piezoelectric monolith with polymer 

filled channels. The former composite would be classified as (1-3), while the latter would 

be classified as (3-1). With the consideration of additional connectivity patterns, the 

extended nomenclature list becomes; (0-0), (1-0), (0,1), (0-2), (2-0), (0-3), (3-0), (1-1), 

(1-2), (2-1), (1-3), (3-1), (2-2), (1-3), (3-2), (3-3). It should be worth noting that these 6 

additional connectivity patterns 10 connectivity 
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pattern families.  In these representations, a given family is denoted by curly brackets, for 

instance, {3-0}. This suggests that the family includes the patterns (0-3) as well as (3-0) 

nomenclature only renders connectivity patterns in the connectivity families, allowing the 

observer to include all the permutations involved. 

1.3.3 Composite Effects 

Composite effects can be broadly classified into three categories, i.e., the sum 

effect, the combination effect and the product effect, as depicted in Fig. 1.5. Suppose for 

a diaphasic system, a composite function converts an input parameter X to an output 

parameter Y. Y1 and Y2 are the two distinct values for outputs from Phase 1 and 2, 

respectively, responding to the same input X. Y* is the value of output of the composite 

and could be any value intermediate in between individual phase output values, i.e., Y1 

and Y2. 
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Figure 1.5 Composite effects: (a) sum effect; (b) combination effect; (c) product effect. 

Reference: [11] 

 

Figure 1.5 (a) illustrates the variation of Y* with change in volume fraction of Phase 

2 for a case Y1>Y2. This variation plot may exhibit a concave or a convex shape, but its 
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average value will lie within the bounds of Y1 and Y2. And, this characteristic is termed 

 

In certain cases, the average value of output Y* of a composite seems to exceed the 

bounds of individual phase output values, Y1 and Y2. This enhancement of output refers 

to an effect that is characterized by the ratio Y/Z, and hence depends on parameters Y and 

Z. Now, if Y and Z both follow the concave and convex type sum effects, respectively, at 

a time, the combination value Y/Z will attain a maximum at some intermediate ratio of 

individual phases. This characteristic is well illustrated in Fig. 1.5 (b), and is named as a 

  

Fig 1.5 (c) represents  Phase 1 shows an 

output Y as a response to an input X and subsequently Phase 2 shows an output Z as a 

response to an input Y. An output Z is expected as a response to an input X for the 

composite. Hence with these operations, a totally new function is generated for the 

composite structure. This characteristic is  

1.4. Motivation 

The previous sections discuss the phenomenon of piezoelectricity, the mathematical 

formulation of piezoelectric responses, background of piezoelectric composites, 

connectivity patterns and combination effects. From the above discussion, it can be 

concluded that the material properties of constituents, connectivity pattern and the 

geometry of the inclusion (or inhomogeneity) plays a significant role in determining the 

effective properties of the piezocomposites.  

The main motivation to carry out this research work is to study the coupled field 

problems of the piezoelectric composites by developing a rigorous mathematical 

framework that is capable of solving various inclusion (and/or inhomogeneity) problems 
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related to such composites. The overall properties of the piezocomposites depend on 

interaction between its constitutive phases and the geometry of the reinforcement. 

Different shapes of inclusions induce different internal strain and electric fields, and then 

these induced fields result in the different effective piezoelectric tensors. Also, the 

effective dielectric (or elastic) response may be affected by the elastic (or dielectric) 

properties of the composites through the piezoelectric properties, which induce the 

interactions of the local strain and electric fields. The interaction between these coupled 

fields is one of the key determinants of the overall properties of the piezocomposites. 

With mathematical (analytical and/or numerical) formulation of the inclusion and 

inhomogeneity problems, substantial progress can be made towards understanding the 

complicated micro-structural level fields and interaction among them. Also, this would 

help to develop a more generalized formula for determining the effective properties of 

the piezoelectric composite. 

1.5 Summary 

In the first section of this chapter, the phenomenon of piezoelectricity and its origin 

were discussed; the next section presented the mathematical formulation of piezoelectric 

responses (direct and converse effects). In the third section, the background of 

piezoelectric composites had been discussed at great length. It was followed by the sub-

sections on the connectivity patterns of the fiber and matrix materials and combination 

effects arises out of such combination of fiber and matrix phases. In the fourth section, 

the main motivation behind carrying out the present research had been discussed in detail. 

 

 


