Contents

Abstractv-vi
Acknowledgementsvii-viii
Contentsix-xii
List of Figuresxiii-xix
List of Tablesxxi
Abbreviationsxxiii
Nomenclaturexxv-xxvii
Prefacexxix-xxxi
Chapter 1 Introduction1-14
1.1. Piezoelectricity1
1.2. Piezoelectric Effect- Basic Mathematical Formulation5
1.3. Piezoelectric Composites7
1.3.1. Background7
1.3.2. Connectivity Patterns8
1.3.3. Composite Effects11
1.4. Motivation13
1.5 Summary14
Chapter 2 Literature Review15-31
2.1. Analytical Models15
2.2. Numerical Approaches19
2.3. Experimental Characterization24
2.4. Objective of the Present Thesis
Chapter 3 Micromechanics of Piezoelectric Inclusion and Inhomogeneities33-76
3.1. Introduction

	3.2. Governing Equations of Piezoelectricity	35
	3.3. Piezoelectric Inclusion and Inhomogeneities	
	3.3.1. Evaluation of Electroelastic Green's Functions	45
	3.3.2. Electroelastic Eshelby Tensors for Spheroidal Inclusion	49
	3.4. Effective Electroelastic Moduli	54
	3.4.1. Traction-electric displacement prescribed	54
	3.4.2. Elastic displacement-electric field prescribed	58
	3.5. Results and Discussion	60
	3.6. Summary	76
Chap	ter 4 Effective Properties of Short-fiber Piezoelectric Composites	77-105
	4.1. Introduction	77
	4.2. Coupled Electro-Elastic Fields Modeling inside an Inclusion	
	4.3. Calculation of Effective Properties	84
	4.4. Finite Element Modeling	87
	4.4.1. Calculation of Effective Properties through FEM	90
	4.4.2. Boundary Conditions and Parameter Calculations	92
	4.5. Results and Discussion	97
	4.6. Summary	104
Chap	ter 5 Effective Properties of Long-fiber Piezoelectric Composites	107-156
	5.1. Introduction	107
	5.2. Constitutive Relations	110
	5.3. Micromechanics Model	114
	5.3.1. Modified Strength of Materials Method (MSM) Model	114
	5.3.2. Strain Energy Method	122
	5.3.3. Results and Discussion	126

5.4. Numerical Model	136
5.4.1. Finite Element Method (FEM)	136
5.4.2. Periodic Boundary Conditions	137
5.4.3. Calculation of Effective Coefficients through FEM	
5.4.4. Results and Discussion	146
5.5. Summary	154
Chapter 6 Effective Performance Parameters of Piezoelectric Composite	es.157-182
6.1. Introduction	157
6.2. Governing Equation of Piezoelectricity	161
6.3. Modified Strength of Materials (MSM) Model	162
6.4. Analytical Model base on Mori-Tanaka Approach	166
6.5. Performance Parameters of 1-3 Piezocomposite	168
6.5.1. Piezoelectric Charge Coefficient	168
6.5.2. Hydrostatic Electromechanical Coupling Factor	169
6.5.3. Electromechanical Coupling Constant	169
6.5.4. The Acoustic Impedance	170
6.5.5. Stiffened Longitudinal Velocity	170
6.6. Results and Discussion	171
6.7. Summary	181
Chapter 7 Conclusions and Suggestions for Future Work	183-186
7.1. General Conclusions	183
7.2. Suggestions for Future Work	185
References	187-204
Appendix A	205

Appendix B	
Appendix C	
List of Publications	

List of Figures

Figure 1.1 Piezoelectricity: An intermingling of elastic and electric phenomenon1
Figure 1.2 Piezoelectric materials in sensing and actuating applications; (a) P-E hysteresis
plot (top) and S-E plot (bottom); (b) The piezoelectric material before and after
poling; (c) Change in dimension when applied voltage has polarity similar to
that of poling voltage; (d) Change in dimension when the applied voltage has
polarity opposite to that of poling voltage; (e) The voltage generated equivalent
to poling voltage when compressive force is applied in poling direction; (f)
The voltage generated equivalent to poling voltage when tensile force is
applied in poling direction4
Figure 1.3 Connectivity families for diphasic composites. The total number of
connectivity patterns arising out of 10 families depicted is 16 due to
permutations of order involved in families; {0-2}, {0-3}, {1-0}, {1-3}, {2-1},
{2-3}9
Figure 1.4 Schematic diagram showing composites with various connectivity patterns
realized over the past 40 years10
Figure 1.5 Composite effects: (a) sum effect; (b) combination effect;(c) product effect12
Figure 3.1(a) Schematic of an ellipsoidal inclusion in a matrix medium
Figure 3.1(b) Schematic of a spheroidal inclusion in a matrix medium50
Figure 3.2 The distribution of the Green's function G_{11} in space
Figure 3.3 The distribution of the Green's function G_{12} in space
Figure 3.4 The distribution of the Green's function G ₁₃ in space62
Figure 3.5 The distribution of the Green's function G_{14} in space
Figure 3.6 The distribution of the Green's function G_{22} in space

Figure 3.7 The distribution of the Green's function G_{23} in space
Figure 3.8 The distribution of the Green's function G_{24} in space
Figure 3.9 The distribution of the Green's function G_{33} in space
Figure 3.10 The distribution of the Green's function G_{34} in space
Figure 3.11 The distribution of the Green's function G ₄₄ in space66
Figure 3.12 Vanishing Eshelby tensors at infinite aspect ratio
Figure 3.13 Non-vanishing Eshelby tensors at infinite aspect ratio
Figure 3.14 Eshelby tensors involving interaction between elastic and electric fields68
Figure 3.15 The composite normal modulus E_{1111} against fiber volume fraction for
various aspect ratios, α_f 70
Figure 3.16 The composite normal modulus E_{1122} against fiber volume fraction for
various aspect ratios, α_f 70
Figure 3.17 The composite normal modulus E_{1133} against fiber volume fraction for
various aspect ratios, α_f 71
Figure 3.18 The composite normal modulus E_{3333} against fiber volume fraction for
various aspect ratios, α_f 71
Figure 3.19 The composite shear modulus E_{2323} against fiber volume fraction for various
aspect ratios, α_f 72
Figure 3.20 The composite shear modulus E_{1212} against fiber volume fraction for various
aspect ratios, α _f 72
Figure 3.21 The composite piezoelectric constant E_{4311} against fiber volume fraction for
various aspect ratios, α_f
Figure 3.22 The composite piezoelectric constant E_{4333} against fiber volume fraction for
various aspect ratios, α_f 73

Figure 3.23 The composite dielectric constant E_{4141} against fiber volume fraction for
various aspect ratios, α_f 74
Figure 3.24 The composite dielectric constant E_{4343} against fiber volume fraction for
various aspect ratios, α_f 74
Figure 4.1(a) FEA model of an active composite containing spheroid inclusion; (i)
Structure of composite (mesh element view); (ii) RVE of SC fiber
arrangement (inner inclusion view); (iii) RVE of BCC fiber arrangement
(inner inclusion view)91
Figure 4.1(b) The convergence graph for determining ideal mesh size for the FE
Analysis92
Figure 4.2 Representative Volume Element (RVE) depicting von Mises stress distribution
containing spheroid inclusion in SC arrangement (Fiber volume fraction
ranging from 0.1-0.5), (a) 0.1, (b) 0.2, (c) 0.3, (d) 0.4, (e) 0.595
Figure 4.3 Representative Volume Element (RVE) depicting von Mises stress distribution
containing spheroid inclusion in BCC arrangement (Fiber volume fraction
ranging from 0.1-0.5), (a) 0.1, (b) 0.2, (c) 0.3, (d) 0.4, (e) 0.596
Figure 4.4 Comparison of the predicted effective elastic coefficient C ₁₁ of BaTiO3/PZT-
5H composite with respect to fiber volume fraction for the analytical Eshelby
Method and numerical FEM Method97
Figure 4.5 Comparison of the predicted effective elastic coefficient C_{12} of BaTiO3/PZT-
5H composite with respect to fiber volume fraction for the analytical Eshelby
Method and numerical FEM Method98
Figure 4.6 Comparison of the predicted effective elastic coefficient C_{13} of BaTiO3/PZT-
5H composite with respect to fiber volume fraction for the analytical Eshelby
Method and numerical FEM Method

Figure 4.7 Comparison of the predicted effective elastic coefficient C_{33} of BaTiO3/PZT-
5H composite with respect to fiber volume fraction for the analytical Eshelby
Method and numerical FEM Method99
Figure 4.8 Comparison of the predicted effective elastic coefficient C44 of BaTiO3/PZT-
5H composite with respect to fiber volume fraction for the analytical Eshelby
Method and numerical FEM Method
Figure 4.9 Comparison of the predicted effective elastic coefficient C ₆₆ of BaTiO3/PZT-
5H composite with respect to fiber volume fraction for the analytical Eshelby
Method and numerical FEM Method100
Figure 4.10 Comparison of the predicted effective piezoelectric coefficient e ₃₁ of
BaTiO3/PZT-5H composite with respect to fiber volume fraction for the
analytical Eshelby Method and numerical FEM Method101
Figure 4.11 Comparison of the predicted effective piezoelectric coefficient e ₃₃ of
BaTiO3/PZT-5H composite with respect to fiber volume fraction for the
analytical Eshelby Method and numerical FEM Method101
Figure 4.12 Comparison of the predicted effective piezoelectric coefficient e15 of
BaTiO3/PZT-5H composite with respect to fiber volume fraction for the
analytical Eshelby Method and numerical FEM Method102
Figure 4.13 Comparison of the predicted effective dielectric coefficient κ_{11} of
BaTiO3/PZT-5H composite with respect to fiber volume fraction for the
analytical Eshelby Method and numerical FEM Method103
Figure 4.14 Comparison of the predicted effective dielectric coefficient κ_{33} of
BaTiO3/PZT-5H composite with respect to fiber volume fraction for the
analytical Eshelby Method and numerical FEM Method103

Figure 5.1 (a) Schematic of a piezoelectric fiber reinforced composite PFRC (1-3

piezocomposite)116
Figure 5.1 (b) A representative volume element (RVE)116
Figure 5.2 Transverse cross-section of a representative volume element of PFRC (1-3
piezocomposite)117
Figure 5.3 The effective elastic coefficient C_{11} as predicted by the model developed in
the present study (MSM), SM Model and Energy Model with change in fiber
volume fraction127
Figure 5.4 The effective elastic coefficient C_{12} as predicted by the model developed in
the present study (MSM), SM Model and Energy Model with change in fiber
volume fraction128
Figure 5.5 The effective elastic coefficient C_{13} as predicted by the model developed in
the present study (MSM), SM Model and Energy Model with change in fiber
volume fraction128
Figure 5.6 The effective elastic coefficient C_{33} as predicted by the model developed in
the present study (MSM), SM Model and Energy Model with change in fiber
volume fraction130
Figure 5.7 Comparison of predicted parameter R_{31} with change in fiber volume
fractions131
Figure 5.8 Comparison of predicted parameter R_{32} with change in fiber volume
fractions132
Figure 5.9 Comparison of predicted parameter R_{33} with change in fiber volume
fractions132
Figure 5.10 Comparison of predicted effective dielectric constant κ_{33} with change in fiber
volume fractions135
Figure 5.11 The convergence graph for determining ideal mesh size for the FE

analysis139
Figure 5.12(a) RVE of finite element analysis (FEA): Fiber volume fractions (0.1-0.6
with step size of 0.1) taken to evaluate effective properties144
Figure 5.12(b) The distribution of stress/electric field in the RVE when the mechanical
load (in z-direction) and boundary conditions are applied; (i) stress in
direction-1 (x-axis); (ii) stress in direction-2 (y-axis); (iii) stress in
direction-3 (z-axis); (iv) electric field distribution in direction-3 (z-
axis)145
Figure 5.13 The predicted effective elastic coefficient C_{11}^c with change in fiber volume
fraction estimated by strength of materials model, present micromechanics
model and FEM model149
Figure 5.14 The predicted effective elastic coefficient C_{12}^c with change in fiber volume
fraction estimated by strength of materials model, present micromechanics
fraction estimated by strength of materials model, present incromeenances
model and FEM model
model and FEM model149
model and FEM model
model and FEM model
model and FEM model.149Figure 5.15 The predicted effective elastic coefficient C_{13}^c with change in fiber volume fraction estimated through strength of materials model, present micromechanics model and FEM model.150
model and FEM model.149Figure 5.15 The predicted effective elastic coefficient C_{13}^c with change in fiber volume fraction estimated through strength of materials model, present micromechanics model and FEM model.150Figure 5.16 The predicted effective elastic coefficient C_{33}^c with change in fiber volume
model and FEM model
model and FEM model
model and FEM model.149Figure 5.15 The predicted effective elastic coefficient C_{13}^c with change in fiber volume fraction estimated through strength of materials model, present micromechanics model and FEM model.150Figure 5.16 The predicted effective elastic coefficient C_{33}^c with change in fiber volume fraction estimated by strength of materials model, present micromechanics model and FEM model.150Figure 5.17 The predicted effective piezoelectric coefficient e_{31}^c with change in fiber
model and FEM model.149Figure 5.15 The predicted effective elastic coefficient C_{13}^c with change in fiber volume fraction estimated through strength of materials model, present micromechanics model and FEM model.150Figure 5.16 The predicted effective elastic coefficient C_{33}^c with change in fiber volume fraction estimated by strength of materials model, present micromechanics model and FEM model.150Figure 5.17 The predicted effective piezoelectric coefficient e_{31}^c with change in fiber volume fraction estimated by strength of materials model, present150

micromechanics model and FEM model152
Figure 5.19 The predicted effective dielectric constant κ_{33}^c with change in fiber volume
fraction estimated by strength of materials model, present micromechanics
model and FEM model153
Figure 6.1 Schematic of a 1-3 piezoelectric composite163
Figure 6.2 Transverse cross-section of a representative volume element (RVE) of 1-3
piezoelectric composite164
Figure 6.3 Comparison of effective electromechanical coupling constant K_t of 1-3
piezoelectric composite between experimental measurements and present
analysis as a function of fiber volume fraction173
Figure 6.4 Comparison of effective acoustic impedance Z of 1-3 piezoelectric composite
between experimental measurements and present analysis as a function of
fiber volume fraction174
Figure 6.5 Comparison of effective stiffened longitudinal velocity V_{33}^D of 1-3
piezoelectric composite between experimental measurements and present
analysis as a function of fiber volume fraction176
Figure 6.6 Comparison of effective short-circuit stiffness constant C_{33}^D of 1-3
piezoelectric composite between experimental measurements and present
analysis as a function of fiber volume fraction178
Figure 6.7 Comparison of effective short-circuit stiffness constant C_{33}^E of 1-3
piezoelectric composite between experimental measurements and present
analysis as a function of fiber volume fraction179
Figure 6.8 Comparison of effective hydrostatic charge coefficient d_h of 1-3 piezoelectric
composite between experimental measurements and present analysis as a
function of fiber volume fraction

xix

List of Tables

Table 2.1 A summary of the analytical models and numerical models developed to predict
effective coefficients of piezocomposites25
Table 3.1 Electroelastic constants of the constituent materials
Table 4.1 Material properties of fiber and matrix phases
Table 5.1. Material properties of fiber and matrix phases
Table 5.2: Material properties of the fiber and matrix phases for FEM calculations140
Table 5.3 List of boundary conditions applied on RVE and formula for calculation of
effective coefficients142
Table 5.4 Classifications of coefficients in groups according to the boundary conditions
used for FEM analysis146
Table 6.1 Material properties of constituents (fiber and matrix phases)