Table of Contents

		Page
		Number
List of Figures		i-vi
List of Tables		vii
List of Acronyms/Abbreviations		viii-xi
Preface		xii-xiv
Chapter 1	Introduction and Literature Survey	1-50
	1.1 g-C ₃ N ₄ : brief historical background and synthesis	2-9
	process	
	1.2 Structural, Optical and Morphological features	
	1.2.1 Structural features of bulk g-C ₃ N ₄	10-12
	1.2.2 Optical features of g-C ₃ N ₄ and band gap	13
	1.2.3 Morphological features of g-C ₃ N ₄ and	14-15
	Dimensionality	
	1.3 Carbon composites and g-C ₃ N ₄ as substitute of	16
	N doped carbon	
	1.4 Potential application area of g-C ₃ N ₄ and its	17-18
	Composites	
	1.4.1 Limitation of bulk g-C ₃ N ₄ for practical	
	application	19
	1.4.2 Functionalization of g-C ₃ N ₄ :	
	heterostructures/heterojunction	20
	1.4.3 Renewable energy and role of g-C ₃ N ₄ as an	
	electrocatalyst	21
	1.4.3.1 Hydrogen (H ₂) as an energy carrier	22
	1.4.3.2 g- C_3N_4 and its composites as HER	
	electrocatalyst	23-24
	1.4.3.3 Figures of Merit for electrocatalyst	
	1.4.3.3 (a) Onset potential and over	
	potential	
	1.4.3.3 (b) Exchange current density (j_0)	
	1.4.3.3 (c) Tatel equation and Tatel slope	25.22
	1.4.3.3 (d) Gibbs free energy of adsorption	25-32
	and Volcano plot	
	1.4.3.3 (e) Stability	
	1.4.3.3 (I) Faradic efficiency $(T_{2}F)$	
	1.4.3.3 (g) Turnover frequency (TOF)	
	1.4.3.4 Mechanism Of HEK	
	1.4.3.5 OEX and its incentanism 1436 Over a Deduction Description (ODD)	22
	1.4.4 Carbon nitride as the next generation of	55
	carbon-based superconnectors	31 36
	144(a) Role of different bonding state of	34-30
	nitrogen in catalytic activity	51

	1.4.4 (b) Electrolyte selection in energy	38
	conversion and energy storage	
	1.4.5 g-C ₃ N ₄ as photocatalyst materials	
	1.4.5.1 g-C ₃ N ₄ for photocatalytic organic dye	
	degradation	39-42
	1.4.5.1 (a) Z-scheme photocatalysis	
	1.4.5.1 (b) Semiconductor heterojunctions: types	
	1.4.5.1 (c) Ternary photocatalytic heterostructures	
	1.4.5.2 g-C ₃ N ₄ as sensing material	
	1.4.5.2 (a) Fluorescent sensing by CNQDs	43-47
	1.4.5.2 (b) Lifetime of fluorescent material	
	1.4.5.2 (c) Fluorescent quantum yield (QY)	
	1.4.5.2 (d) Limit of detection (LOD)	
	1.4.6 g-CN as catalyst support	47
	1.5 Scope of the work and objective of the thesis	48-50
Chapter 2	Characterization Techniques	51-73
	2.1 Structural Characterization	
	2.1.1 X-ray diffraction	53
	2.1.2 Raman Spectroscopy	54
	2.1.3 Fourier transform infrared spectroscopy	55-56
	2.1.4 UV visible spectroscopy	57-58
	2.1.5 Fluorescence spectroscopy	59
	2.2 Morphological Characterization	
	2.2.1 Scanning electron microscopy (SEM) and	59-60
	Field-emission scanning electron	
	microscopy (FE-SEM)	
	2.2.1 (a) Secondary electron detector (SE2)	61
	2.2.1 (b) Secondary electron In-lens detector	
	2.2.1 (c) Backscattered electron detector (AsB)	
	2.2.1 (d) Backscattered electron In-lens	
	detector (EsB)	
	2.2.1 (e) An X-Ray dispersive energy detector	
	2.2.2 Transmission electron microscopy (TEM)	62-63
	and high-resolution TEM (HR-TEM)	
	2.3 Elemental analysis	
	2.3.1 X-ray photoelectron spectroscopy (XPS)	64
	2.3.2 Energy dispersive x-ray analysis (EDX)	65
	2.4 Surface area analysis: Brunauer–Emmett–Teller	66-67
	(BET) Theory	
	2.5 Electrochemical workstation: CHI7044 and	
	electrochemical methods	
	2.5.1 Working electrode	
	2.5.2 Reference electrode	68-73
	2.5.3 Counter (Auxiliary) electrode	
	2.5.4 Cyclic voltammetry and linear sweep	
	voltammetry	
	2.5.5 Amperometry, chronoamperometry and	

	chronopotentiometry	
	2.5.6 Faradic and capacitive current	
Chapter 3	Ternary Nanocomposite of red P, reduced Graphene Oxide	74-100
	and graphitic Carbon Nitride (red P-rGO-g-C ₃ N ₄) as Metal-	
	Free Electro-catalysts for Hydrogen Evolution Reaction	
	3.1 Introduction	75-77
	3.2 Experimental Section	
	3.2.1 Materials	
	3.2.2 Synthesis of g-C ₃ N ₄	
	3.2.3 Synthesis of Graphene Oxide (GO)	
	3.2.4 Synthesis of red P-rGO-g-C ₃ N ₄ composite	78-81
	3.2.5 Preparation of composite ink and electrode	
	modification	
	3.2.6 Instrumentations	
	3.3 Results and discussion	
	3.3.1 Structural characterization of prepared ternary	
	nanocomposites	
	3.3.2 Morphological Analysis	82-99
	3.3.3 Elemental Analysis	
	3.3.4 Surface Area Analysis	
	3.3.5 Electrocatalytic HER study	
	3.4 Concluding remarks	100
Chapter 4	Iron-Iron carbide (Fe/Fe ₃ C) encapsulated in S, N co-doped	101-122
	graphitic carbon as robust HER electrocatalyst	
	4.1 Introduction	102-103
	4.2 Experimental Section	
	4.2.1 Materials	104-106
	4.2.2 Synthesis of S, N co-doped iron/iron carbide	
	4.2.3 Instrumentations	
	4.3 Results and discussion	
	4.5.1 Structural and morphological Study of as-	107 120
	13.2 Elemental Analysis	107-120
	4.3.2 Elemental Analysis	
	4.3.4 Electrochemical measurements	
	4.4 Conclusions	121-122
Chapter 5	Facile Synthesis of Doped $C_x N_y$ ODs as Photoluminescent	123-145
F	Matrix for Direct Detection of Hydroguinone	
	5.1 Introduction	124-125
	5.2 Experimental Section	
	5.2.1 Materials	126-129
	5.2.2 Synthesis of O-and S-doped C _x N _y QDs	
	5.2.3 Instrumentations	
	5.3 Results and Discussion	
	5.3.1 Morphological and structural characterization	130-143
	5.3.2 Elemental Analysis in the as-prepared $C_x N_y QD$	
	5.3.3 Optimization of PL activity	

	5.3.3.1 Excitation dependent PL intensity of QDs	
	5.3.3.2 pH dependence of PL intensity of QDs	
	5.3.3.3 Control experiment	
	5.3.4 H_2Q detection by PL quenching	
	5.3.4.1 H_2O detection	
	5.3.4.2 Selectivity of O- and S- doped $C_x N_y$ ODs	
	and real sample analysis	
	5.3.4.3 Possible detection mechanism	
	5.4 Conclusion	144-145
Chapter 6	Comparative study of enhanced photodegradation of azo	
	dye by ternary nanocomposite Ag ₂ O/SnO ₂ @g-C ₃ N ₄ under	146-183
	natural and artificial light sources	
	6.1 Introduction	147-149
	6.2 Experimental Section	
	6.2.1 Materials	
	6.2.2 Synthesis of pure $g-C_3N_4$	
	6.2.3 Synthesis of binary Ag ₂ O@g-C ₃ N ₄ and	150-153
	$SnO_2@g-C_3N_4$ nanocomposites	
	6.2.4 Synthesis of Ag ₂ O/SnO ₂ @g-C ₃ N ₄	
	nanocomposite	
	6.2.5 Characterization tools	
	6.3 Results and discussion	
	6.3.1 Structural analysis	
	6.3.2 Elemental analysis of ternary composites	
	6.3.3 Optical analysis	
	6.3.4 Morphological analysis	
	6.3.5 Photocatalytic degradation study under different	154-182
	light sources	
	6.3.6 Scavenger test and stability of the ternary	
	nanocomposite	
	6.3.7 Degradation study of real samples discharged in	
	industrial effluent	
	6.3.8 Mechanism of dye degradation	
	6.4 Conclusion	183
Chapter 7	Conclusions	
	7.1 Summary	184-187
	7.2 Spaces for future work	
Appendix-A		188-198
Appendix-B	Morphology control synthesis of g-C ₃ N ₄ and doping with	199-212
	alkali metal ions for greater charge storage	
	B.1 Introduction	199-201
	B.2 Experimental Section	
	B.2.1 Materials	
	B.2.2 Synthesis of porous $g-C_3N_4$ (pCN)	202-204
	B.2.3 Synthesis of Alkali Metals Doped Porous g-C ₃ N ₄	
	B.2.4 Characterization Tools	

	B.3 Results and discussion	
	B.3.1 Characterization of porous g-C ₃ N ₄ (p-CN) and	205-211
	alkali metals doped porous g-C ₃ N ₄	
	B.3.2 Electrochemical measurements	
	B.4 Conclusions	212
References		213-237
List of Publications		238-239
List of Conferences/Workshop/Symposium Attended		240-241

List of Figures

Figure No.	Figure Caption	Page Number
Figure 1.1	Heptazine (tri-s-triazine) and Melon (C ₆ N ₉ H ₃)n.	2
Figure 1.2	Triazine and tri-s-triazine (heptazine) based g-C ₃ N ₄ . The	3
	circled part shows the repeating unit of the respective structures.	
Figure 1.3	Various Precursors for the synthesis of $g-C_3N_4$ and reaction	4
Eigung 1 4	Two different reaction pathways for the synthesis of trigging.	5
Figure 1.4	based graphitic carbon nitride and tri-s-triazine based	5
Figure 1.5	Proposed Tautomeric forms of melam	6
Figure 1.6	Calculated energy diagram for the synthesis of carbon	7
riguie 1.0	nitride	,
Figure 1.7	The top-down and bottom-up synthesis strategies for carbon nitride nano sheets (CNNSs).	9
Figure 1.8	Same weight amount of $g-C_3N_4$ prepared from two different	11
Figure 1.0	VPD pottern of the polymeric carbon nitride, revealing a	12
Figure 1.9	graphitic structure with 3.26 Å of an interplanar stacking distance of aromatic units and the distance from one nitride	12
Figure 1.10	Ultraviolet–visible diffuse reflectance spectrum of the	14
	polymeric carbon nitride. Inset is the g-C ₃ N ₄ prepared at 550 °C in our lab and corresponding Tauc plot.	
Figure 1.11	Different bonding states of nitrogen atoms into the carbon (graphone) atmosphere	17
Figure 1 12	(graphene) atmosphere.	18
Figure 1.12	based heterojunction/heterostructure.	10
Figure 1.13	Schematic illustration of the various functionalization techniques deployed for the carbon nitride for the task specific application.	20
Figure 1.14	Sustainable pathways from solar energy to Hydrogen (H_2) .	21
Figure 1.15	A volcano plot of experimentally measured exchange current	29
0	density as a function of the DFT-calculated Gibbs free energy of adsorbed atomic hydrogen.	
Figure 1.16	The mechanism of hydrogen evolution on the surface of an	31
118010 1110	electrode in acidic solutions.	01
Figure 1.17	The OER mechanism for acid (blue line) and alkaline (red	32
8	line) conditions.	
Figure 1.18	Direct Z-scheme photocatalysts.	41
Figure 1.19	Three kinds of semiconductor heterojunctions based on band	42
	alignment.	
Figure 1.20	Jablonski Diagram for Fluorescence and Phosphorescence.	44

Figure 2.1	Diffraction pattern of X-ray into the sample and Photograph of the Diffractometer.	53
Figure 2.2	Rayleigh and Raman scattering by molecule upon irradiating	54
Figure 2.3	Reach diagram and Photograph of FTIP Spectrophotometer	56
Figure 2.5	Schematic diagram of the UV visible anostronhotometer and	50
Figure 2.4	Schematic diagram of the $Ov - visible spectrophotometer and Distance where the first sector v = visible spectrophotometer and visible spectrophotometer $	57
E	Photograph of the Spectrophotometer.	(0)
Figure 2.5	Schematic diagram of the components of SEM microscope	60
	and Photograph of the SEM instruments.	
Figure 2.6	Photograph of the FESEM instruments.	62
Figure 2.7	Schematic diagram of the components of TEM microscope and Photograph of the TEM instruments.	63
Figure 2.8	Photoelectron effect in XPS and Photograph of the XPS	65
8	spectrophotometer.	
Figure 2.9	Photograph of the Surface area measurement instrument.	66
Figure 2.10	Block Diagram of the CHI7044 instrument	68
Figure 2.10	A representative electrochemical cell	69
Figure 2.11	I SV waveform CV waveform and Cyclic Voltammogram	70
Figure 2.12	Variation of peak current in cyclic voltammogram as a	70
11guie 2.15	function of scan rate.	/1
Figure 3.1	Schematic diagram representing the synthesis of metal free	80
i iguio sti	ternary nano-composite P-rGO-g-C ₃ N ₄ .	00
Figure 3.2	XRD patterns of σ -C ₃ N ₄ rGO rGO- σ -C ₃ N ₄ Red P 10-20-	83
119410 512	$30-40P-rGO-g-C_2N_4$ respectively and FT-IR spectrum of g-	00
	C_2N_4 rGO rGO- σ - C_2N_4 10-20-30-40P-rGO- σ - C_2N_4	
	respectively	
Figure 3.3	FESEM images of g-C ₂ N ₄ rGO Red P rGO ₂ g-C ₂ N ₄ 10P-	86
I Iguie 5.5	rGO-g-C_N($_2$ OP-rGO-g-C_N($_3$ OP-rGO-g-C_N($_4$) and $_4$ OP-	00
	$r_{GO-g-C_3N_4}$ 201 -100-g-C_3N_4, 501 -100-g-C_3N_4 and 401 -	
Figure 3 4	EDV Elemental manning of 10P rGO g C.N. 20P rGO g	87
Figure 5.4	$C N = 20D \pi C O = C N \text{ and } 40D \pi C O = C N \text{ composition}$	07
Eigene 2.5	C_{31N4} , SOF-100-g- C_{31N4} and 40F-100-g- C_{31N4} composites.	00
Figure 5.5	TEM images of g-C ₃ N ₄ , roO-g-C ₃ N ₄ and 50P-roO-g-C ₃ N ₄	88
Figura 3.6	Deconvoluted XPS peaks of C1s, N1s, O1s, and P2n in 10P	80
Figure 5.0	$r_{CO} \propto C N$ 20D $r_{CO} \propto C N$ and 20D $r_{CO} \propto C N$	09
	respectively	
Figure 3.7	Nitrogen adsorption desorption isotherm and corresponding	91
I Iguie 5.7	nore volume distribution curves of $\alpha_{-}C_{2}N_{+}$ rGO- $\alpha_{-}C_{2}N_{+}$ and	71
	$30P-rGO-g-C_3N_4$ respectively	
Figure 3.8	(A) Polarization curves of $g_{-}C_{2}N_{1}$ rGO rGO- $g_{-}C_{2}N_{1}$ 30P-	93
I iguie 5.6	r_{CO} a C N, and 20% Pt/C in 0.5 M H-SO, at scan rate of 5))
	$100-g-C_{3}N_{4}$ and 20% 1 /C in 0.5 W H ₂ SO ₄ at scalinate of 5 mV sec ⁻¹ (B) Polarization surves of $10/20/30/40$ rCO g	
	In v sec (B) Foralization curves of $10/20/30/40$ F-100-g-	
	$C_{3}N_{4}$ along with 20% Pt/C (C) Talef plots of g- $C_{3}N_{4}$, FGO-	
	$g-U_3N_4$ and $3UP-rUU-g-U_3N_4$, in inset 20% Pt/U (D) Tatel	
	pious of $10/20/30/40P$ -rGO-g-C ₃ N ₄ (E) polarization curves	
	OI $50P-rGO-g-C_3N_4$ at different can rates and (F)	
	Polarization curves of $30P-rGO-g-C_3N_4$ initially, after 300	
	sweeps and after 500 sweeps at scan rate of 5 mV sec ⁻¹ .	

Figure 3.9	Polarization curves of $30P$ -rGO-g-C ₃ N ₄ prepared by sonication method (physical mixing) and by hydrothermal treatment; and B. Polarization curve of $30P$ -rGO-g-C ₃ N ₄ in	95
Figure 3.10	neutral, alkali and acidic media. FESEM image of 30P-rGO-g-C ₃ N ₄ before (A) and after (B)	96
Figure 3.11	A. Comparative cyclic voltammetry of g-C3N4, rGO-g-C3N4and 30P-rGO-g-C3N4 at scan rate of 100 mV sec ⁻¹ ; B. CVs of 30P-rGO-g-C3N4 at various scan rates; C. electrochemical double layer capacitance (Cdl) of g-C ₃ N ₄ , rGO-g-C ₃ N ₄ and 30P-rGO-g-C ₃ N ₄ and D. Stability test of 30P-rGO-g-C ₃ N ₄ modified Toray paper electrode at static over potential of -670 mV vs. Ag/AgCl for 2 h (7200 s) in 0.5 M H ₂ SO ₄ .	99
Figure 4.1	Synthesis protocol of doped carbon encapsulated iron-iron carbide (Fe/Fe ₃ C).	105
Figure 4.2	XRD spectra of iron carbide and its doped variants and and zoomed-in XRD pattern of Fe@C-SN/25 from $2\theta = 35$ to 55° range.	107
Figure 4.3	SEM images of Fe@C, Fe@C-SN/25, Fe@C-SN/50 and Fe@C-SN/75.	108
Figure 4.4	SEM EDX spectra of the as-prepared samples.	109
Figure 4.5	TEM and HRTEM images of Fe@C-SN/50 along with SAED pattern.	110
Figure 4.6	High resolution deconvoluted Fe2p, C1s, N1s and S2p peaks of doped Fe@C-SN/25, Fe@C-SN/50 and Fe@C-SN/75 samples.	112
Figure 4.7	Raman spectrum of the synthesized samples.	114
Figure 4.8	N_2 adsorption-desorption isotherm of equal HER performing catalysts; Fe@C-SN/50 and Fe@C-SN/25.	115
Figure 4.9	(a) LSV polarization curves (scan rate 5 mV/sec) of Fe@C along with its doped variants; (b) Corresponding Tafel slopes; (c) Calculation of double layer capacitance (C_{dl}) of doped variants of Fe@C; (d) CVs of doped variants at scan rate of 100 mV sec ⁻¹ ; (e) Stability LSVs of Fe@C-SN/25 and (f) Fe@C-SN/50 after multiple CV sweeps at scans rate of 5 mV/sec.	117
Figure 4.10	LSV polarization curves of (a) Fe@C-SN/25 and (b) Fe@C-SN/50 at various scan rates.	120
Figure 5.1	Schematic diagram for synthesis of O- and S-doped C_xN_y QDs. Inset shows aqueous dispersion of as-prepared C_xN_y QDs.	127
Figure 5.2	TEM image and the corresponding particle size distribution histogram of CM61.	130

Figure 5.3	FE-SEM image of as prepared C_xN_y QDs and adjacent EDS shows presence of all four elements O, S, C and N in the	131
	prepared quantum dots.	
Figure 5.4	UV-vis absorbance (blue line) and PL spectra (red line); FT- IR spectrum, zeta potential curve and Tauc's plot of as- prepared CM61 ODs.	132
Figure 5.5	XPS survey spectrum and deconvoluted individual elemental peaks of as-prepared CM61 QD for C_{1s} , N_{1s} , O_{1s} and S_{2p} .	134
Figure 5.6	Emission spectra of CM61 at excitation wavelengths from 280 nm to 420 nm; plot of emission peak position corresponding to excitation wavelength; PL intensity of CM61 at various pHs and variation of PL intensity with pH value.	136
Figure 5.7	PL emission intensity of prepared sample under continuous irradiation of UV light (365nm).	137
Figure 5.8	PL emission spectrum of CM61 upon addition of various concentrations of H_2Q solution and relationship between (F_0 - F)/ F_0 and concentration of H_2Q .	138
Figure 5.9	Selectivity of the CM61 for $8 \mu M H_2Q$ detection in presence of various interfering agents.	141
Figure 5.10	Plausible mechanism of H ₂ Q detection using CM61 QDs.	144
Figure 6.1	Synthesis protocol of ternary nanocomposite $(Ag_2O/SnO_2@g-C_3N_4)$.	152
Figure 6.2	XRD pattern of g-C ₃ N ₄ , Ag ₂ O, SnO ₂ , 33 % SnO ₂ @g-C ₃ N ₄ , 33 % Ag ₂ O@g-C ₃ N ₄ and 33 % Ag ₂ O/SnO ₂ @g-C ₃ N ₄ and FTIR spectra of bulk g-C ₃ N ₄ and other composite materials.	155
Figure 6.3	XPS (A) survey analysis, (B) C1s, (C) N1s, (D) O1s for 25% $Ag_2O/SnO_2@g-C_3N_4-11$ and comparative analysis of (E) Sn3d and (F) Ag3d for 25% $Ag_2O/SnO_2@g-C_3N_4-11$ with pure SnO ₂ and Ag ₂ O respectively.	157
Figure 6.4	(A). UV-vis DRS spectra of (a) g-C ₃ N ₄ , (b) 33% SnO ₂ @g-C ₃ N ₄ , (c) 33% Ag ₂ O@g-C ₃ N ₄ and (d) 33% Ag ₂ O/SnO ₂ @g-C ₃ N ₄ ; (B). Plot of $(\alpha hv)^{1/2} vs$ hv for band gap energy of (a) g-C ₃ N ₄ and $(\alpha hv)^2$ vs hv for bandgap energy of (b) Ag ₂ O and (c) SnO ₂ ; and (C). Photoluminescence spectra (PL) of (a) g-C ₃ N ₄ , (b) 33% Ag ₂ O@g-C ₃ N ₄ , (c) 33% SnO ₂ @g-C ₃ N ₄ and (d) 33% Ag ₂ O/SnO ₂ @g-C ₃ N ₄ composites.	160
Figure 6.5	Time resolved PL decay spectra for the charge carrier in the $g-C_3N_4$ and 33% $Ag_2O/SnO_2@g-C_3N_4-11$.	162
Figure 6.6	TEM images of (a) 33% $Ag_2O@g-C_3N_4$, (b) 33% $SnO_2@g-C_3N_4$, (c) 33% $Ag_2O/SnO_2@g-C_3N_4$, (d) HRTEM image of 33% $Ag_2O/SnO_2@g-C_3N_4$, and corresponding (e) SAED pattern of 33% $Ag_2O/SnO_2@g-C_3N_4$.	163
Figure 6.7	TEM elemental mapping of 33% Ag ₂ O/SnO ₂ @g-C ₃ N ₄ and corresponding EDX spectrum.	164
Figure 6.8	FE-SEM image of 25% $Ag_2O/SnO_2@g-C_3N_4$ along with elemental mapping and EDX spectrum.	165

Figure 6.9	N ₂ adsorption-desorption isotherm of nanocomposites and corresponding pore volume distribution plot.	167
Figure 6.10	A. Photocatalyst assisted degradation of Rh B over various composites; B. Absorption spectra of Rh B in presence of $Ag_{2}O/SnO_{2}@g_{2}C_{2}N_{4}$ composite under various sunlight	169
	irradiation times: C. First-order kinetic plots over various	
	composites and D. comparison of rate constant values of (a)	
	$g-C_3N_4$, (b) 25% $SnO_2@g-C_3N_4$, (c) 33% $SnO_2@g-C_3N_4$, (d)	
	25% $Ag_2O@g-C_3N_4$, (e) 33% $Ag_2O@g-C_3N_4$, (f) 33%	
	$Ag_2O/SnO_2@g-C_3N_4$, and (g) 25% $Ag_2O/SnO_2@g-C_3N_4$ -11.	
Figure 6.11	Photocatalytic dye degradation under (A). sunlight exposure	171
	and (B). white LED light by different ratios of metal oxide	
	loaded $g-C_3N_4$.	
Figure 6.12	Rh B dye solution irradiation under sunlight in absence of	171
F i (10)	photocatalyst.	150
Figure 6.13	A. Photocatalyst assisted degradation of Rh B over various composites under white light LED irradiation; B. Absorption	173
	spectra of Rh B in presence of 33% Ag ₂ O/SnO ₂ @g-C ₃ N ₄	
	composite; C. First-order kinetic plots over various	
	composites and D. comparison of rate constant values of (a)	
	$g-C_3N_4$, (b) 25% SnO ₂ @g-C ₃ N ₄ , (c) 25% Ag ₂ O@g-C ₃ N ₄ , (d)	
	33% SnO ₂ @g-C ₃ N ₄ , (e) $33%$ Ag ₂ O@g-C ₃ N ₄ , (f) 25%	
Eigung 6 14	$Ag_2O/SnO_2@g-C_3N_4$, and (g) 33% $Ag_2O/SnO_2@g-C_3N_4-11$.	175
Figure 6.14	different light sources and their corresponding rate constant	175
	not: (a and c denotes 33 % $Ag_0 O/SnO_0 @g_C N_{+}11$: b and	
	d denotes 25 % $\Delta g_2 O/SnO_2 \otimes g_2 C_3 N_4 - 11$, 0 and	
Figure 6.15	(A) Rh B dve degradation in presence of (a) n-benzoquinone	176
1 iguie 0.15	(b) EDTA. (c) DMSO (c) methanol and (e) no scavengers:	170
	(B) reuse-recycle 2^{nd} and 3^{rd} run of 25% Ag ₂ O/SnO ₂ @g-	
	C_3N_4 composite.	
Figure 6.16	(A) TOC evaluation and mineralization efficiency under	178
C	sunlight and LED for 25% Ag ₂ O/SnO ₂ @g-C ₃ N ₄ and 33%	
	$Ag_2O/SnO_2@g-C_3N_4$ respectively and (B) UV-vis	
	absorption spectra of industrial effluent before the exposure	
	to the sunlight and after complete degradation of dye using	
	25% Ag ₂ O/SnO ₂ @g-C ₃ N ₄ -11.	
Figure 6.17	Proposed plausible dye degradation mechanism over the	180
	prepared catalyst.	
Figure A.1	XRD pattern and FTIR spectra of graphene oxide (GO) and	189
	reduced graphene oxide (rGO) after their individual	
	hydrothermal treatment at 200°C for 16 hours.	
Figure A.2	EDX spectrum of 10/20/30/40P-rGO-g-C ₃ N ₄ composites	189
Figure A.3	XPS survey spectrum of g-C ₃ N ₄ , rGO-g-C ₃ N ₄ , 10P-rGO-g-	190
	C ₃ N ₄ , 20P-rGO-g-C ₃ N ₄ and 30P-rGO-g-C ₃ N ₄ .	
Figure A.4	Images of electrochemical set up for testing HER stability in	190
	$0.5M H_2SO_4.$	

Figure A.5	Full scan XPS survey spectrum of all doped species and undoped Fe@C.	191
Figure A.6	High resolution C1s and Fe2p XPS peaks of undoped Fe@C.	191
Figure A.7	UV-Visible absorption spectrum of H_2Q and emission spectrum of as-prepared CNQDs.	192
Figure A.8	Quenching of PL intensity of C_xN_y QDs by H ₂ Q in 7.4 pH phosphate buffer solution (PBS) and in N ₂ saturated PBS solution.	192
Figure A.9	Vibration spectra of (a) SnO ₂ and (b) Ag ₂ O nanoparticles.	193
Figure A.10	UV-visible DRS spectra of Ag ₂ O and SnO ₂ nanoparticles.	193
Figure A.11	XRD pattern of ternary composites 25% $Ag_2O/SnO_2@g-C_3N_4$ before use and after 3 rd photocatalytic run.	194
Figure B.1	Schematic diagram of the synthesis of alkali metal-doped porous $g-C_3N_4$ (pCN-3M).	203
Figure B.2	Photograph of the acid-treated melamine (dispersed in ethylene glycol) and the as-prepared alkali metal-doped porous $g-C_3N_4$.	205
Figure B.3	X-ray diffraction pattern of different alkali metal-doped porous $g-C_3N_4$ (pCN) along with $g-C_3N_4$ and X-ray diffraction pattern of $3/5/7$ wt. % Li doped pCN materials.	206
Figure B.4	SEM images of (a) $g-C_3N_4$, (b) pCN, (c) pCN-3Li, (d) pCN-3Na and (e) pCN-3K.	207
Figure B.5	SEM images of (a) pCN-3Li, (b) pCN-5Li and (c) pCN-7Li	208
Figure B.6	(a) GCD curves of pCN, pCN-3Li, pCN-3Na and pCN-3K at current density of 0.2 A/g, (b) GCD curves of $3/5/7$ wt. % Li added pCN at 0.1 A/g, (c) comparison plot of specific capacitance at 0.1, 0.2 and 0.5 A/g for g-C ₃ N ₄ , pCN, pCN-3Li, pCN-3Na and pCN-3K and (d) comparison plot of specific capacitance at 0.1, 0.2 and 0.5 A/g for $3/5/7$ wt. % Li added pCN.	209
Figure B.7	GCD curves of pCN-3Li at current density 0.1, 0.2 and 0.5 A/g.	211
Figure B.8	Cyclic voltammograms of g -C ₃ N ₄ , pCN, pCN-3Li, pCN-3Na and pCN-3K and pCN and 3/5/7 wt. % Li doped pCN at a scan rate of 100 mV/sec.	212

List of Tables

Table No.	Table Caption	Page No.
Table 3.1	EDAX data for % atomic phosphorous present in different P-rGO-g-C ₃ N ₄ composites.	87
Table 4.1	Atomic % of elements present at the surface of the samples analyzed from XPS analysis.	113
Table 4.2	ECASA, Roughness factor (RF) and specific current density (J_s) at 0.45 V over potential (η) of all electrocatalysts.	119
Table 5.1	Quantum yields of $C_x N_y$ QDs prepared by various molar ratios of precursors.	128
Table 5.2	A comparison of quantum yield of doped C_xN_y with others reported C-dots and carbon nitride dots.	129
Table 5.3	Comparison of different methods for detection of H ₂ Q.	140
Table 5.4	Determination of H ₂ Q in real samples.	142
Table 6.1	Binding states and peak positions of constituting elements of ternary nanocomposites.	158
Table 6.2	Specific surface area and average pore volume of the nanocomposites and $g-C_3N_4$.	167
Table 6.3	Rate constants of various catalysts dispersed in dye solution under irradiation from Sunlight and White light LED.	174
Table 6.4	Comparison of the photocatalytic performance of the as- proposed nanocomposite with earlier research works.	182
Table A.1	Correlative assignments of all the major vibrational peaks in individuals and composites.	195
Table A.2	Binding energy of various binding states of elements present in the as-prepared samples from XPS analysis.	196
Table A.3	Peak assignment of various peaks obtained along with area and FWHM values from Raman analysis.	197
Table A.4	Electrochemical analysis of doped and undoped Fe@C species.	198